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A graph G of order n is p-arrangeable if its vertices can be ordered as v, v, ... t,
such that [N, (Ng (v)) < p for each 1 <i<n—1, where L,={v,,v5,...1v;}, R,=
{eis 1y Vis 2y 0 Uy} and N 4(B) denotes the neighbors of B which lie in 4. We prove
that for each p>1, there is a constant ¢ (depending only on p) such that the
Ramsey number r(G, G} < ¢n for each p-arrangeable graph G of order n. Further we
prove that there exists a fixed positive integer p such that all planar graphs are
p-arrangeable. " 1993 Academic Press, Inc

I. INTRODUCTION

If F, G, and H are graphs, we write F— (G, H) when the following
condition is satisfied: If the edges of F are colored in any fashion with two
colors, say red and blue, then either the red subgraph contains a copy of
G or the blue subgraph contains a copy of H. It follows easily from
Ramsey’s theorem that for every pair (G, H) there is a least positive integer
m such that K,, — (G, H). The integer m is called the Ramsey number and
denoted by #(G, H) and by r(G) when G = H.

We are concerned in this paper with the following conjecture made by
Burr and Erdés in 1973 [1].

Conjecture [1]. For each positive integer d, there exists a constant ¢
(depending only on d) so that if G is a graph on »n vertices for which for
every subgraph G’ of G the average degree of a vertex in G’ is at most d,
then r(G) < cn.

A weakened version of this conjecture was proved by Chvatal, R4dl,
Szemerédi, and Trotter in 1983 [2]. They proved the following theorem
using the Szemerédi Regularity Lemma [3].
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THEOREM A [2]. For each positive integer d, there exists a constant ¢
(depending only on d) so that if G is a graph on n vertices in which each
vertex has at most d neighbors, then r(G)< cn.

Our objective is to improve Theorem A by enlarging the family of graphs
for which the Burr-Erdés conjecture holds. To present our improvement
we need to introduce some terminology and give some definitions.

We say that a collection ¥ of graphs is an L-set (linear set) if there exists
a constant ¢ such that r(G) < c |V(G)| for each G e %. Further for a graph
G define

Y. dy(v)| His asubgraph ofG};

ve V(H)

p(G) = max {m

that is, p(G) is the maximum average degree over all subgraphs of G. In
these terms the Burr—Erdds conjecture says that for any positive integer d
the set of graphs ¥ = {G|G is a graph with p(G)<d} is an L-set.

Given a graph G, let Ng(a)= {xe V(G)|x is adjacent to a} and for
A, B V(G), Ng(d)=(U,ca N(a)ynB. A graph G of order r is called
p-arrangeable if there exists an ordering vy, v, ... v, of the vertices of G
such that for each 1 <i<n—1

INL(Ng () <p,
where
L:={v,, vy, .., 0;} and Ri=1{v;,1,0i 420Uy}
Clearly if G is p-arrangeable then p(G) < 2p.

We will show that the conjecture holds for all p-arrangeable graphs and
that all planar graphs are p-arrangeable for some p.

II. RESULTS
The principal result of the paper is the following theorem.

THEOREM 1. For each positive integer p, the set of p-arrangeable graphs
forms an L-set.

The proof of this result is lengthy and for that reason is placed in the
next section. In fact, all longer proofs are placed in the next section, so that
by reading this section one can learn what has been established without
dealing with many intricate details.
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PROPOSITION 2. If G is a graph with maximum degree A(G)< p, then G
is p(p— 1)+ l-arrangeable.

Proof. Let vy, s, .., v, be an arbitrary ordering of the vertices of G.
Then [N (v;)| < p for each j so that [N, (Ne (v ) <p(p—1)+1. |

Theorem A is thus a corollary to Proposition 2 and Theorem 1.

PROPOSITION 3. FEuvery tree, hence every forest, is 1-arrangeable.

Proof. The proof is an easy induction on the order n of the tree, being
clear for n=1. Assume each tree 7, on n vertices is l-arrangeable and
consider a tree T, ,,. If v, ., is any end vertex of 7, , and v, t5, .., 1, is
a l-arrangeable sequence for T,,,—v,,,, then v, 0., ...0,, v, ., is @
l-arrangeable sequence for 7, ;. |

PROPOSITION 4. Every outerplanar graph G is 3-arrangeable.

Proof. It is well known that an outerplanar graph with a maximal
number of edges is embeddable in the plane so that all vertices lie on the
boundary of the outer region and each interior region is a triangle. Thus
we may assume that G has a maximal number of edges and is so
embedded. To find an appropriate ordering v, v,, .., v, of V(G) which
is 3-arrangeable let ¢, be any vertex of degree 2 and if v,, v, ,,...v, ;
have been selected let v, , ; be any vertex of degree 2 in
G—1{v,,v, y,.t, ;1. One can check that with this selection v, v,, .., v,
is a 3-arrangeable sequence for G. |

THEOREM 5. Every planar graph G is 761-arrangeable.

The lengthy proof of this theorem appears in the next section. We shall
see that the proof does not attempt to find the smaliest p such that G is
p-arrangeable but only shows that there exists a p with p < 761.

Theorems 1 and 5 imply that planar graphs form an L-set. We shall also
see in the next section that a direct consequence of the proof of Theorem 5
1s the following result.

THEOREM 6. For each fixed positive integer d and 0 <e<1 there is a
constant ¢ dependent only on d and &, such that each graph G of order n with
p(G) < d contains an induced subgraph H of G with

r(HY< ¢ |V(H) and [VIH) 2 (1 —¢)n.

There are other collections % of graphs which we wish to identify as
p-arrangeable. To do so for each Ge ¥ let L(G)= {xe V(G)|d(x}< p} and
H(G)= {xe V(G)|d(x)> p].
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THEOREM 7. Each Ge% with |HG)| < p(p—1)+1 is (p(p-1)+1)-
arrangeable.

Proof. Simply order the vertices of G so that the ordering v, v,, .., v,
is such that v;e H(G) and v;e€ L(G) if and only if i</ ||

An immediate corollary of Theorems 1 and 7 is that the collection of
graphs with at most a bounded number of vertices of degree greater than
some fixed p forms an L-set.

THEOREM 8. Let G €% be such that each pair of vertices in H(G) are at
distance =3. Then G is (p(p— 1)+ 1)-arrangeable.

Proof. Give the same ordering to G as that given in the proof of
Theorem 7. {

Unfortunately there are many graphs G with p(G)< p which are not
p-arrangeable. The next result establishes this fact.

THEOREM 9. Let p be a fixed positive integer and let G be a graph of
minimum degree =2p. Let G' be the graph obtained from G by subdividing
each of its edges. Then p(G')< 4 and G’ is not p-arrangeable.

Proof. It is clear that p(G')<4. Suppose G’ is p-arrangeable with
ordering v, v,, ..., v,. Split ¥(G’) into two sets T, and T,, where T, are
those vertices of degree 2 and 7, = V(G'}— T,. Note that each vertex of 7,
has degree >2p. Let / be the largest index of a vertex in 7, under the
ordering v, v, ..., v, and as done earlier let R,={v,, . v, .., t,} and
Ly={v,,v5, v}

Set [Nglv )=k If kzp, then [N, (Ng(v))zk+1>p, which
contradicts the fact that G’ is p-arrangeable. Thus assume k < p and
let m be the largest index in the ordering such that v, e T, AN, (v)
and m</l Then |N, (Ng (v N ZIN (v)nT|22p—k>p, again a
contradiction. §

Since there exist many graphs of given fixed minimum degree (even with
arbitrarily large girth), Theorem 9 provides infinitely many graphs G which
have p(G) <4 and fail to be p-arrangeable. Hence if the Burr-Erdés conjec-
ture holds, then there are infinitely many graphs (even of large girth) which
satisfy the conjecture, yet fail to be p-arrangeable. It is not known what
portion of the graphs G with p(G) bounded are p-arrangeable. Nevertheless
our results show there are infinitely many new graphs (not previously
known to satisfy the Burr-Erdés conjecture) which are p-arrangeable and
thus satisfy the conjecture.
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111. PrROOFS

The first proof we consider is that of Theorem 1. This proof depends
heavily on the Szemerédi Regularity Lemma [3] and as such requires
some preliminary definitions. The reader acquainted with the proof of
Theorem A will see that our proof of Theorem 1 has the same structure.
Nevertheless our proof is enough different that we include it here in detail.

Let H be a graph. If A, B€ V(H), A~ B=(J, then the density é(A4, B)
of the pair (A4, B) is ¢(A, B)/([A4| -|B|), where ¢(A4, B) is the number of
edges joining vertices of A4 to those of B. Clearly 0< (A4, B)< 1.

For a positive real number ¢ the pair of (A4, B) is said to be e-regular if
whenever 4’ 4 and B'< B with [A’| 2¢|A| and |B'| 2 ¢ |B|, then

5(A, B)— e<3(A', B)< (A, B)+e.

Next, let V(H)=A,vAd,u --- A, be a partition of the vertex set
V(H) into pairwise disjoint sets. This partition is said to be equipartite if
[HAl =141 <1 for all 1 <i<j<k. With these definitions we can now
state the Szemerédi Regularity Lemma.

LEmMMA 10 [3]. For every ¢>0 and cvery integer m=20, there exist
integers N, and N, (depending only on ¢ and m) such thar if H is a graph
with |V(H)| = N,, then there exists an equipartite partition V(H)=
A U AU - UA,, where (1) m<k <N, and (ii) all but at most ¢(5) of the
pairs (A;, A,) are e-regular.

In the proof of Theorem 1 we also use the following lemma.

LemMma 11, Let p be a positive integer. If a graph G of order n is
p-arrangeable, then the vertex set V(G) can be partitioned into p+ 1 sets
Vi, Va, o Vo) such that for each i the subgraph induced by V', is the empty
graph.

Proof. Let v, v,, ... v, be a p-arrangeable sequence for G. Then since
[N, (v,)] < p for all i, the result follows by induction on n. |

Proof of Theorem 1

Let p be any positive integer. Choose ¢ as the least positive integer such
that 1/3” > p2”/t and 1log,(#/2)> p+ 1 hold. Next set m = 1/e = so that
the above equalities hold if and only if m == 1/¢ > max{ p6”,2>**}. Let
N, and N, be the values determined by ¢ and m in Lemma 10 and set
c=max{N,, 2N /e}. Note that ¢ is a constant depending only on p and e.

Let G be a p-arrangeable graph under the ordering v,, v, .., v, on its
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vertex set and let V(G)=V,u V,u --- u ¥V, be the partition guaranteed
by Lemma 11.

We show r(G)< cn. Consider an arbitrary coloring of the edges of K,
with colors red and blue. Let H be the subgraph of the colored K,,, induced
by its red edges, so that A is the subgraph induced by its blue edges. Since
for disjoint sets A and B of vertices d,(A, B)y=1—54(A, B), the pair
(A, B) is e-regular in H if and only if it is e-regular in A.

Since |V(H)| =cn = N,, we know by Lemma 10 that there exists an equi-
partition V(H)=A4,u A,u --- U A,. Let H* be the graph with vertex set
t1,2,..,k} and edges (i, j), where (A4,, A,) is e-regular in H, 1 <i<j<k.
The graph H* has at least (1 —&)(%) edges and thus by Turan’s theorem
has a complete subgraph H** of size at least 1/(2¢). Without loss of
generality, we assume the subsets in the partition have been labelled so that
(A, A,)) is e-regular whenever 1<i</j<1/(2¢). Next we two color the
edges of H** with colors green and white as follows: color (7, j) green if
du(A;, A4))=2% and color it white if d,(4,, A;)<3. Since by choice
Llog,(1/2e)> p+1, it foliows from Ramsey’s theorem (being generous)
that we have a monochromatic complete subgraph H*** of H** of order
p+ 1

Without loss of generality we may assume that H*** is a complete green
graph. Then relabelling the sets in the partition (if necessary) we have
(i) (A, A;) is e-regular and (ii) 6,,(A4,, 4;) =4 for all I1<i<j<p+1. We
will show that the red subgraph then contains a copy of G. (If the edges
of H*** are white then by placing H with H in (ii) one can show that the
blue subgraph H contains a copy of G.)

To construct a copy of G in H we proceed inductively to choose vertices
Wy, Wy, .., w, from H so that the map v, —» w, is an isomorphism. Further-
more, we will choose these vertices w; so that for each i=1, 2, .., n the
following conditions hold.

(a) Ifl<a<giandv,eV,forsome l<f<p+1, then w,ed,.

(b)y fl<a <a,<iand v, v, €E(G), then w, w, € E(H).

(¢) Ifi<a'<n V(2 i)={w, |l <a<i v,v,€ E(G)}, x= [V, i),
and v, € V, for some 1 << p+1, then 4, contains a subset 4} having at
least |A4,{/3" vertices so that every vertex in ‘A} is adjacent to every
w, e V(a', i)

Assume that for some nonnegative integer / with { <n, the vertices w,
1 <a<i, have been chosen so that conditions (a)-(c) are satisfied. We
show how to choose w,,, suitably. (Observe that the choice allows /=0
because the rule for choosing w, is the same as that for choosing all other
values of 1.)

Assume v,, € V', so that A, does not contain a vertex from V(i + 1, ).

582b:57.1-10
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Let A}, be the subset of A4, consisting of those vertices adjacent to every
w, in V(i+1,i). By condition (c), [A} | = |4,1/3% x=|V(i+1,i)|. Also,
x=|V(i+1,)]=|N. (v, ) <psothat 1/3">21/3">¢.

With the choice of any vertex of A} as w,, , conditions (a) and (b)
clearly hold. However, more care is needed to insure that condition (c)
is satisfied. It is clear that in choosing w,,, from A} we need only be
concerned with those values o' >/+1 for which v, , i1s adjacent to v,
Since G is p-arrangeable, |N, (Ng (v;,))| < p and therefore

U Nlﬂl(Uz') {U1+I} p_l

vieNg leiy )

Thus there eXISIS Uy, Uy e eNR (v ) with ¢< p27~ "' so that for

each v, (i), there is l < J<q such that N, (v,)= N,M,(uz;) and
Uyo Uy € V/f for some f.

For any v, 1<j<gq. let v,.€ V. Then since v, v;,, € E(G), B # . Set
x'= V], 1+1)|—1+|V( , 7). We already know that 4, contains a
subset A), containing at ledst |4,/3¥ " vertices so that each vertex in
A is adjacent to each vertex of V(aj, i). Also, since 1/3¥ ~'=1/37>¢, it
follows that |4} =& |4,|. In addition since 6(A,,, A,) > 5 at most € |4, | of
the vertices in 4, are adjacent to less than one-third of the vertices in 4.
This means that we will eliminate at most ¢ |4, | of the vertices of 4} as
candidates for w,, , when considering the nughbor v, of v, .

If we range over all possible values for «/, 1 <_/<q< p-277 1 we will
eliminate at most p2” '&|A} | vertices in A}m as candidates for w,, . For
any of the remaining candidates, say w¥, | for w,,,, and any «;, 1 <j<g,
if v, eV, there is a subset A, < 4, such that every vertex in A} is adjacent
to every vertex of V(o;, i)u {wk, | with [} > |4,//3".

Consider any v, e Ng, (v, ) Then there are an o] and a f§ such
that v,,v,eVy, and N, (v )=N, (v 2 Consequently V(a',i+1)=
Via;, i+1 ) and there is a subset 4, < A, of the appropriate cardmahty
such that every vertex in A4} is adjacent to every vertex of

Vi, i+ 1yo {wk Y=V, o {wk ]

We cannot select for w;,, any of the vertices in A4} which have been
previously selected. This eliminates at most # additional vertices from ¥,
Since the number k of sets in the partition of V(H) satisfies k <N, and
¢22N,/e we know that |A,l+12cn/N, so n< ,(|A,;0| +1)e<e Ay
Therefore in order to select vertex w,, , from the set 4} appropriately we
need that €[4, |+ p2” 'e|Ay| < p27e Ay < |Aj| and that [A4,]/3% > 1
But \A,,‘/B"’ 2eldp =1 follows from ¢>=2N,/e while p27e|A,| < |Ap)|
follows from A} |/[As] = 1/37 > p27e.
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Thus whenever w,, w,, ..., w; can be chosen such that conditions (a)—(c)
hold, then w,,, can also be chosen such that these conditions hold. By
induction G is a subgraph of the red subgraph of H, completing the proof
of the theorem. ||

Before proceeding to the proof of Theorem 5 we introduce a greedy algo-
rithm which will be used in the proof. This algorithm will attempt to find
(in a greedy way) a p-arrangeable sequence for a graph G with p(G) <d.
The algorithm we describe will be called the (d, p)-arrangeable algorithm
and will be applied only to graphs G of order »n with p(G)<d< p.

THE (d, p)-ARRANGEABLE ALGORITHM

Step 1. Choose any vertex v,eV(G) such that d(v,)<d, set
R, ={v,}, L, ,=V(G)—R,_,;and i=n-1.

Step 2. 1If there is a vertex ve L, such that the properties |N, (v)| <d
and [N, (Ng(v)u {v}) <p hold, then set v,=v, R, ,=R,u{v}, L,_ =
L,— {v}, and go to Step 3, otherwise stop.

Step 3. Set i=i—1. If i=0 then stop, otherwise go to Step 2.

Observe that when this algorithm is applied to a graph G and stops for
i =k, then the subgraph induced by R, is p-arrangeable. In particular if the
algorithm stops for i=k =0, then R, = V(G), G is p-arrangeable, and we
say the algorithm generates G. The reader will notice that the second
property in Step2 of the algorithm requires something stronger than
IN; (Ng(0))] < p. This is a technical requirement needed for the algorithm
to apply to the proof of Theorem 5.

We next give a lemma which has several useful applications, one which
is in the proof of Theorem 5.

LemMMmA 12. Let G be a graph of order n with p(G)<d. If the (d, p)-
arrangeable algorithm applied 10 G stops when i=k>0, then |L,| <
[d*(d+ 1) |R |1/ [p—d+1].

Proof. Set Li={veL,||N,(v)<d} and L;={veL,||N,(v) >
d+1}. Since ¥, ., d(v)<d|L,| (remember p(G)<d) and ¥, d(v)=
Yeerp dv) = (d+ 1} LY, it follows that |L}| < d|L}]. Also, by assumption
for each velL,, [N, (Ng(v)u{v})lZzp+1 and [N, (v)|<d Thus
N (Ng(v) = p+1—d, which implies that [e(Ng(v), N, (Ng(v))=
p + 1 —d. Therefore

Y. 1e(Ng(0), N (Ng () 2 (p+1—d) L.

vel;
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Since each edge e with end vertex u e R, contributes at most |N, (u)| <d
times to the left-hand side of the above inequality, it follows that
dle(Ly, R Z(p+1—d)|Li]. But |e(L,, Ri) =3, cp Np,(v)<d|R,]
Thus d?|R|=(p+1—-d)|L,] and d|L,|=]L{], so that |L,|<
([d*(d+ D[R/ [p+1-d] 1

Proof of Theorem S

It is well known that any planar graph G with ¢ edges and n > 3 vertices
satisfies g < 3n— 6. Hence for any planar graph G, p(G) < 6. We thus prove
the following proposition, which has Theorem 5 as an immediate corollary.

PropoSITION 13. If G is a planar graph of order n then the (6,761)-
arrangeable algorithm applied to G generates G.

A consequence of this proposition is that a 761-arrangeable sequence can
be found algorithmically for a planar graph by a greedy approach.

Proof of Proposition 13

The proof is by induction on #, the number of vertices G. Since the result
is trivial for n=1, we assume # > 1 and that the result holds for any planar
graph of order <n. Further suppose that when the (6, 761)-arrangeable
algorithm is applied to G the algorithm stops for i=k>0. Then by
Lemma 12

6%(6+ 1) 1
Ll<——— R} ==
<7671 1R =3

IRl

Throughout the remainder of the proof we will assume that G has been
embedded in the plane. By the algorithm R, = {v,, . 04,2, ., and
L,=V(G)—R,.

We first show there does not exist a vertex we R, with |V, ()] <3. To
see that this is the case suppose the contrary, that v e R, with |V, (u) <3.
Let A= {(z,w)|z, we N, (u), z# w}. Further let H be the graph of order
n—1 obtained from G by deleting vertex v and adding as new edges each
nonadjacent pair of vertices of G which belong to 4. Thus H may have as
many as three new edges (not in G) while losing those edges of G incident
to u. It is easy to see that H is planar, with its embedding in the plane
obtained from that of G.

For each j, n2jzk+1 with v,#u, set R¥={v,, ,v,,7, ..., 0,} — {u}
and L,=V(G)—R,. Then letting L (H)=L,nV(H) and R} H)=
R} N V(H) we obtain

IN (N gean(v,) TDISING (N (v) U (o, 1) <761
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and
lNL,«H;(UjN < |NL,(1T,)| <6.

Also, by the induction assumption the (6, 761)-arrangeable algorithm
generates H so there is a vel, such that [N, (v)<6 and
1NLk(H)(NR;(H)(U)U {U})I <761. But INLA,(U” < |N1.,,1H|(U)| <6, and

IN(Ng(v)w {U}H = |NLA(H)(NR,(‘1HI(U)U {U}N <761
unless N g (v)= {u}, in which case
INL(Ng(@)u (v DI<IN, ({u,v})] <3+6<761.

This contradicts the fact that the (6, 761)-arrangeable algorithm stops at
i=k >0. Hence for each ue R,, [N, (u)| =4

Next it is shown that for each v,e R, there is a pair of vertices
w,, w,€ N, (v,) such that for v,#v; in R, the sets {w,,w,} # {w,,w,}].
To prove this fact assume we have found the pairs {w,,w,} for all v,
(j < i< n) such that the condition holds for the selected pairs and that we
wish to select a pair {w,, w,} such that the condition continues to hold for
all selected pairs. We consider three separate cases.

Case 1. There exists a v,e R, (/#J) such that the four element set
{(wi,wy, wa, we} SN, (v,)n N, (v). Assume the subgraph induced by
{v;,v;, w|, wy, w3, w,} in the planar embedding of G contains the
subgraph shown in Fig.1.

Then for each veR,—{v,v,} the set {w,, w;} & Nv) and
{w,,ws} & N(v). Hence if I<j or if />j and {w,, w,}# {w,, w,}, then
set w, =w,, w,=w,, while if />, and {w,,w,}={w,,w;}, then set

W, =Wy, W, =W,

Case 2. There exists a v,€ R, (/#/) such that the three element set
wi,wa, wyt =N, (v)n N (v)) and wae N, (v;) — N, (v)). Then the sub-

A
(.03 P

FIGURE 1
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graph induced by {v,, v;, w;, w,, w3, w, | contains one of the embeddings
in the plane as shown in Fig. 2. .

Then set {w,,w,}={w,, w,} when the embedding is as shown in
Fig. 2a, {w,,w,}={w,,w,} when as in Fig. 2b, and {w;, w,} = {ws, wa)
when as in Fig. 2c.

Case 3. For each v,eR, (I#)) IN,(w)NnN,(v)]<2 Let B=

(a) .

W3
w,
(b) Wy
@k
vj. »Vp
.c/
%
(c) 22!
vj. vp
X&) 7
&)3

FIGURE 2
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{wi,wy, wy,ws} SN, (v)). For each pair w,,w,€B there is a vertex
Upepry € R 0 that N, (v, )N N (v)={w,,w,}. Therefore the sub-
graph induced by {v,, Wy, W3, W3, Wa, Upias Uiy Ty Onzns Uizdp
3.4, contains a subdivision of K, contradicting the fact that G is planar.
Hence this case cannot occur.

Since for each v, € R, there is a pair of vertices w,, w,,€ N, (v} such that
for v;# v, in R, the sets {w,,w,}# {w,,w,}, we form the graph H with
vertex set V(H)=L, and edge set E(H)={J7_, {w,,w;,]. Since G is
planar and all pairs {w,, w,} for k +1<i<n are distinct, H is easily seen
to be planar. But

EGE) =| U {wowg}| =R =3 1L =3 [V(H)

i=k+1

.

a contradiction to the planarity of H. Hence the original supposition that
the (6, 761)-arrangeable algorithm applied to G stops for i =k >0 1s false,
compieting the proof of Proposition 13 and Theorem 5. |

Proof of Theorem 6

For each positive integer d and O<e< ! set p=[d>(d+ 1)/el+d—1.
The result follows as a direct application of Lemma 12, §

IV. CONCLUDING REMARKS

The principal results of the paper, Theorems 1 and 5, give further sup-
port to the truth of the Burr-Erdds conjecture. Also, Theorems 8 and 9
suggest that those graphs which fail to be p-arrangeable might well each
contain an induced subgraph isomorphic to a graph of the type G’ as
described in Theorem 9. It would be interesting to classify the graphs which
fail to be p-arrangeable. Further if % denotes the collection of all graphs G
with p{(G) < d (d fixed), what portion of % are p-arrangeable (p fixed)? An
answer to the latter question would give some indication as to how much
Theorem 1 improves Theorem A,
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