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Let us denote by S(k,t; r) the following statement:
There exists a graph G which does not contain a complete subgraph

on t vertices but which has the property that any r-coloring of the

edges of G must contain a monochromatic complete subgraph on k

vertices.

It is immediate from Ramsey's Theorem (cf. [5]) that for any

fixed k and r, 3(k,t; r) is true for t sufficiently large. In partiu-

lar, it follows that 3(3,7; 2) holds by taking G to be K6, the com-

plete graph on 6 vertices. Recently, Erdos and Hajnal [1] asked

whether 3(3,6; 2) holds. This was first answered affirmatively by J.

H. van Lint (unpublished) who gave as an example of a graph which

establishes S(3,6; 2), the complement of the graph shown in Fig. 1.

Figure 1

Soon thereafter, L. Pasa (unpublished) proved the existence of a

graph G for which S(3,5; 2) holds, basing his work on some previous

existence proofs of Erdos.
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The final step in this direction was achieved by the late J. H.

Folkman [2J who established S(3,4; 2) by the explicit construction of

an appropriate (very large) graph G. More generally, Folkman also

established S(k,k+l; 2) in [2J for all k 3. Furthermore, Folkman

asserted in 1968 that he had a proof of S(3,4; 3) and a very compli­
cated proof of 3(3,4; 4) but no notes on these ideas have as of yet

been discovered. It was conjectured by Folkman and independently by

Erdos and Hajnal that 3(k,k+l; r) holds for all k and r.
Erdos has pointed out that it would be of interest to determine

the least number N(k,t; r) of vertices a graph may have which can be

used to establish 3(k,t; r). It was shown by one of the authors in

[3J that N(3,6; 2) 8. The unique graph G which achieves this bound
is the complement of the 8 vertex graph shown in Fig. 2. Thus, G has

8 vertices and 23 edges.

o
o

o

Figure 2

The results of [2J show that N(3,4; 2) < 00, In a recent paper,
Schauble [6J proves N(3,5; 2) 42 by considering the graph shown in

Fig, 3.

Figure 3
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Here, we use the notation

G CJ======'tS H

to indicate that all vertices of G are connected to all vertices of H.

In this note we prove the following result:

Theorem: N(3,5; 2) 23.
Proof: Consider the G given in . 4.

x

Figure 4

In G, each vertex of pentagon A is just connected to the vertices t 2
and t

3
of triangle T, each vertex of B is connected to vertices t l and

t 2 of T, and each vertex of C is connected to vertices t l and All

vertices of pentagon X are connected to all vertices of pentagons A,

B, C. Thus, G has 23 vertices and 128 edges. We must show that G can

be used to establish 8(3,5; 2).

(i) K5 Cl G. Consider the possible locations of the vertices of

a hypothetical subgraph K
5
. We cannot have 3 vertices of this K5 in

one pentagon A, B, C or X since they all contain no triangles. Also,

since there are no edges between pentagons A, Band C, no vertex of

the K
5

can be in X. If the K
5

had 3 vertices not in T, at least two

of the pentagons A, B, C would have to contain a vertex of the K5
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which is impossible since these pentagons have no interconnecting

edges. The only possibility left is if all 3 vertices of T were also

vertices of the K
5
. The remaining 2 vertices of the K

5
must then

belong to one of A, B, C which is also impossible.

(ii) Any 2-coloring of the edges of G contains a monochromatic

triangle. We need two preliminary facts to establish (ii). We refer

to Fig. 5 for the graphs under consideration. Assume the graphs Hl
and H2 have been 2-colored so that no monochromatic triangles have been

formed.

v-I;
r r'

Figure 5

(a) All edges of the pentagons P and Q of Hl must be the same

color. This fact was used by Schauble in [6J. We indicate a short

proof. Assume some edge e of P is red. If 3 of the edges from some

endpoint Pl of e to Q were red then 2 of these edges must go to

adjacent vertices of Q, say, ql and q2' But if any edge between P2,ql'

q2 is red then we get a red triangle; if they are all blue then we

a blue triangle. Thus, at most 2 of the edges from Pl to Q can be red,

i.e., at least 3 of them are blue. Of course, this is also true for

the other endpoint of e. But this implies that any edge of P adjacent

to e must also be red since they share a common endpoint. Hence, all

edges of P are red. Hence, at least 3/5 of all the edges between P and

Q must be blue which implies by symmetry that all the edges of Q are

also red. This proves (a).

(b) If all edges of pentagon R of H2 are red then the edge f is

red. Assume f is blue. For each vertex r of R consider the ordered

pair of colors (C (r),C (r)) where C (r) is the color assigned to thex y x
edge from r to x, with cy(r) defined similarly. We certainly cannot

have (C (r),C (r)) = (blue, blue) since this forms a blue trianglex y
Also (cx(r),cy(r)) = (red,red) is impossible because any red edge

between r',x,y forms a red triangle and if these edges are all blue

then a blue triangle is formed. Hence, we must have (Cx(r),cy(r))

(red,blue) or (blue,red). However, we cannot have (cx(r),cy(r))

(Cx(r'),Cy(r')) because the red component, say, cx(r) = Cx(r') = red,
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would form a red triangle r,r' ,x. Hence adjacent vertices in H2 must

have distinct pairs (C (r),C (r)). This is impossible however becausex y
H2 is an odd cycle. This proves (b).

The proof of (ii) is now immediate. Assume without loss of gen­

erality that some edge of pentagon X in G is red. Hence by (a), all

edges of A, Band C are also red. Finally, by (b), all edges of

triangle T are red. This proves the Theorem.

It might be conjectured that N(3,5; 2) = 23 although admittedly

there is not too much evidence for such an assertion. It seems very

difficult to establish any nontrivial lower bounds on the N(k,t; r).

S. Lin [4] has recently shown N(3,5; 2) 10. However, it is not

known even if N(3,5; 2) 11.
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