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I dedicate to my Mom
whose son is to be a doctor, but not the kind who cures people.∗

∗The idea taken from Professor Randy Pausch∗∗: “After I got my PhD, my mother took great
relish in introducing me by saying: «This is my son. He’s a doctor, but not the kind who helps
people»”, R. Pausch, Last Lecture, p. 24, Hyperion 2008.

∗∗Randolph Frederick Pausch (October 23, 1960 – July 25, 2008) was an American professor of
computer science, human-computer interaction and design at Carnegie Mellon University in Pitts-
burgh, Pennsylvania, and a best-selling author who achieved worldwide fame for his “The Last
Lecture” speech on September 18, 2007 at Carnegie Mellon. The lecture was conceived after Pausch
learned, in summer 2007, that his previously known pancreatic cancer was terminal. In May 2008,
Pausch was listed by Time as one of the World’s Top-100 Most Influential People.
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ABSTRACT

The topic of this thesis is the hat problem. In this problem, a team of n players

enters a room, and a blue or red hat is randomly placed on the head of each player.

Every player can see the hats of all of the other players but not his own. Then each

player must simultaneously guess the color of his own hat or pass. The team wins

if at least one player guesses his hat color correctly and no one guesses his hat color

wrong, otherwise the team loses. The aim is to maximize the probability of winning.

This thesis is based on publications, which form the second chapter. In the first

chapter we give an overview of the published results.

In Section 1.1 we introduce to the hat problem and the hat problem on a graph,

where vertices correspond to players, and a player can see the adjacent players.

To the hat problem on a graph we devote the next few sections. First, we give

some fundamental theorems about the problem. Then we solve the hat problem on

trees, cycles, and unicyclic graphs. Next we consider the hat problem on graphs with

a universal vertex. We also investigate the problem on graphs with a neighborhood-

dominated vertex. In addition, we consider the hat problem on disconnected graphs.

Next we investigate the problem on graphs such that the only known information

are degrees of vertices. We also present Nordhaus-Gaddum type inequalities for

the hat problem on a graph.

In Section 1.6 we investigate the hat problem on directed graphs.

The topic of Section 1.7 is the generalized hat problem with q ≥ 2 colors.

A modified hat problem is considered in Section 1.8. In this problem there are

n ≥ 3 players and two colors. The players do not have to guess their hat colors

simultaneously and we modify the way of making a guess. We give an optimal

strategy for this problem which guarantees the win.

Applications of the hat problem and its connections to different areas of science

are presented in Section 1.9. We also give there a comprehensive list of variations

of the hat problem considered in the literature.
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Chapter 1

History and overview of the hat

problem

1.1 Introduction

In the hat problem, a team of n players enters a room, and a blue or red hat is

randomly placed on the head of each player. Every player can see the hats of all

of the other players but not his own. No communication of any sort is allowed,

except for an initial strategy session before the game begins. Once they have had

a chance to look at the other hats, each player must simultaneously guess the color

of his own hat or pass. The team wins if at least one player guesses his hat color

correctly and no one guesses his hat color wrong, otherwise the team loses. The aim

is to maximize the probability of winning.

In our game the team plays against nature, which behaves randomly. Thus all

nature conditions are equally probable, that is, the probabilities of getting hats

of each color are equal. The aim is to maximize the chance of success. Thus,

in terms of game theory, we want to maximize the possible outcome. For additional

information on game theory, see [49, 50].

The hat problem with seven players, called “seven prisoners puzzle”, was formu-

lated by Todd Ebert in his Ph.D. Thesis [21]. The hat problem was also the subject

of articles in The New York Times [55], Die Zeit [8] and abcNews [53]. It was also
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one of the Berkeley Riddles [6].

In the hat problem, a 50% chance of success is guaranteed by the following

strategy. One designated player always guesses he has, let us say, a blue hat, while

the remaining players always pass. However, already for n = 3 the team can do

better. The following strategy gives a 75% chance of success. If a player sees two

hats of the same color, then he guesses he has a hat of the other color, otherwise he

passes. Let us observe that the team wins when there are two hats of some color and

one hat of the other color, and they lose when all three hats have the same color.

Coding theory [56] was inaugurated by Richard Hamming [52]. The authors

of [47] showed that strategies for the hat problem with n players are equivalent to

binary covering codes [17] of length n and radius one. Optimal strategies for the hat

problem are equivalent to minimal binary covering codes. The webpage [37] contains

up-to-date information on the best known covering codes. For a comprehensive

bibliography on covering radius, see [48]. Covering codes are strongly related to

Hamming codes. The hat problem and Hamming codes were the subject of [11, 18].

The hat problem is solved only for special values of n. For 2k − 1 players it was

solved in [23], and for 2k players, via extended Hamming codes, in [17]. For other

numbers of players, optimal strategies for the hat problem (so also minimal binary

covering codes of radius one) are not known if n is larger than nine. The hat problem

with n players was investigated in [10].

In this thesis we consider the hat problem on a graph, where vertices correspond

to players, and a player can see the adjacent players. We have defined this problem

in [40], which is Section 2.1 in this thesis. We also investigate the problem on directed

graphs.

Furthermore, we consider the generalized hat problem with n players and q colors.

Among other things, we solve this problem for n = 3 and q = 3.

In addition, we consider a modified hat problem with n ≥ 3 players and two

colors. The players do not have to guess their hat colors simultaneously. Every

one of them has two cards with his name and the sentence “I have a blue hat”

or “I have a red hat”. The players make a guess by coming to the basket and throwing

the proper card into it. If someone wants to resign from answering, then he does
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not do anything. We give an optimal strategy for this problem which guarantees

the win.

There are known many variations of the hat problem. In Section 1.9 we give

a comprehensive list of them. The hat problem and its variations have many ap-

plications and connections to different areas of science, which are also described

in Section 1.9.

Investigating our main problem, we first prove some fundamental theorems about

the hat problem on a graph. We solve the problem on trees, cycles on at least four

vertices, and unicyclic graphs containing a cycle on at least nine vertices. We show

that for these graphs the maximum chance of success is 1/2. Thus, in such graph,

an optimal strategy is for example such that one vertex always guesses it is blue,

while the remaining vertices always pass. It means that the structure of such graph

does not improve the maximum chance of success in the hat problem on a graph com-

paring to the one-vertex graph. Next we consider the hat problem on graphs with

a universal vertex. We also investigate the problem on graphs with a neighborhood-

dominated vertex. Then we consider the hat problem on disconnected graphs. In ad-

dition, we investigate the hat problem on graphs such that the only known informa-

tion are degrees of vertices. We also present Nordhaus-Gaddum type inequalities.

Furthermore, we investigate the hat problem on directed graphs.

1.2 Preliminaries on the hat problem on a graph

We consider the hat problem on a graph, where vertices correspond to players,

and a player can see the adjacent players.

First, let us observe that we can restrict to deterministic strategies (that is,

strategies such that the decision of each player is determined uniquely by the colors

of the other players). We can do this since for any randomized (that is, nondeter-

ministic) strategy there exists a not worse deterministic one. It is true, because

every randomized strategy is a convex combination of some deterministic strategies.

The probability of winning is a linear function on the convex polyhedron correspond-

ing to the set of all randomized strategies which can be achieved by combining those
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deterministic strategies. It is well known that this function achieves its maximum

on a vertex of the polyhedron which corresponds to a deterministic strategy.

The following concepts are defined similarly as in [40], which is Section 2.1 in this

thesis.

A graph is an ordered pair G = (V,E), where a set V is called the set of vertices

and E is the set of edges, which are 2-element subsets of V . We say that two

vertices u, v ∈ V (G) are adjacent if the edge {u, v} (for short, we write uv) belongs

to the set E(G). By complement of G, denoted by G, we mean a graph which

has the same vertices as G, and two vertices of G are adjacent if and only if they

are not adjacent in G. We say that H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). Then we write H ⊆ G. Let v ∈ V (G). The set of neighbors (called

the open neighborhood) of v, that is {x ∈ V (G) : vx ∈ E(G)}, we denote by NG(v).

The closed neighborhood of v, that is NG(v) ∪ {v}, we denote by NG[v]. We say

that a vertex v is universal if NG[v] = V (G). A graph is complete if all its vertices

are universal. By a leaf we mean a vertex having exactly one neighbor. We say

that a vertex v of a graph G is neighborhood-dominated if there is some other vertex

w ∈ V (G) such that NG(v) ⊆ NG(w). The degree of vertex v, that is, the number

of its neighbors, is denoted by dG(v). Thus dG(v) = |NG(v)|. A path in a graph

is a sequence of pairwise distinct vertices (possibly except for the first one and the

last one) such that every two consecutive vertices are adjacent. We say that a graph

is connected if for every pair of vertices there is a path between them. A graph is

disconnected if it is not connected. A cycle in a graph is a path in which the first

vertex is the same as the last vertex. A cycle is also a connected graph in which

every vertex has degree two. We say that a graph is unicyclic if it contains exactly

one cycle as a subgraph. A tree is a connected graph such that the number of edges

is one less than the number of vertices. A path is a tree in which every vertex has

degree at most two. A path (cycle, complete graph, respectively) on n vertices we

denote by Pn (Cn, Kn, respectively).

Let f : X → Y be a function. If Z ⊆ X, then the restriction of f to Z we denote

by f |Z . Let y ∈ Y . If for every x ∈ X we have f(x) = y, then we write f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors,
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where 1 corresponds to the blue color and 2 corresponds to the red color. In Sec-

tion 1.7 we consider sets of more than two colors.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi) means

the color of vertex vi. The set of all possible cases for the graphG we denote by C(G),

obviously |C(G)| = 2|V (G)|. If c ∈ C(G), then to simplify the notation we write

c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. For ex-

ample, if for some graphG with four vertices a case c is such that c(v1) = 2, c(v2) = 1,

c(v3) = 1 and c(v4) = 2, then we write c = 2112.

By a situation of a vertex vi we mean a function si : V (G) → Sc∪{0} = {0, 1, 2},

where si(vj) = c(vj) ∈ {1, 2} if vi and vj are adjacent, and si(vj) = 0 otherwise.

The set of all possible situations of vi in the graph G we denote by Sti(G), obvi-

ously |Sti(G)| = 2dG(vi). If si ∈ Sti(G), then for simplicity of notation we write

si = si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.

For example, if s3 ∈ St3(C4) is such that s3(v2) = 2 and s3(v4) = 1, then we write

s3 = 0201.

We say that a case c for the graph G corresponds to a situation si of vertex vi

if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case corresponds

to a situation of vi if every neighbor of vi in the case has the same color as in the situa-

tion. Obviously, to every situation of vertex vi correspond exactly 2|V (G)|−dG(vi) cases.

Let G and H be graphs such that H ⊆ G. We say that a case c for the graph G

corresponds to a case d for the graph H if c|V (H) = d, that is, every vertex of H

in both cases c and d has the same color. Obviously, to every case for the graph H

correspond 2|V (G)|−|V (H)| cases for the graph G.

For a vertex vi ∈ V (H), we say that its situation si in the graph G corresponds

to its situation ti in the graph H if si|V (H) = ti, that is, every neighbor of vi in the

graph H in both situations ti and si has the same color.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)

→ Sc ∪ {0} = {0, 1, 2}, which for a given situation outputs the color vi guesses

it is, or outputs 0 if vi passes. Thus a guessing instruction is a rule determining

the behavior of a vertex in every situation. We say that vi never guesses its color

if vi passes in every situation, that is gi ≡ 0. We say that vi always guesses its
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color if vi guesses its color in every situation, that is, for every si ∈ Sti(G) we have

gi(si) ∈ {1, 2} (gi(si) ̸= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding to

this case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)

(0 ̸= gi(si) ̸= c(vi), respectively). By result of the case c we mean a win if at least

one vertex guesses its color correctly, and no vertex guesses its color wrong, that is,

gi(si) = c(vi) (for some i) and there is no j such that 0 ̸= gj(sj) ̸= c(vj). Otherwise

the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is the

guessing instruction of vertex vi. The family of all strategies for a graph G we denote

by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,

respectively) using the strategy S we denote by W (S) (L(S), respectively). The set

of cases for which the team loses while some vertex guesses its color (no vertex guesses

its color, respectively) we denote by Ls(S) (Ln(S), respectively). By the chance

of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By the

hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.

We say that a strategy S is optimal for the graph G if p(S) = h(G). The family

of all optimal strategies for the graph G we denote by F0(G).

Let t,m1,m2, . . . ,mt ∈ {1, 2, . . . , n}, where mj ̸= mk for every j ̸= k. Let

cm1 , cm2 , . . . , cmt ∈ {1, 2}. The set of cases c for the graph G such that c(vmj
)

= cmj
we denote by C(G, v

cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ). Let S ∈ F(G). The set of cases

c ∈ C(G, v
cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ) for which the team wins (loses, respectively) using

the strategy S we denote by W (S, v
cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ) (L(S, v

cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ),

respectively).

By solving the hat problem on a given graph we mean determining its hat number.

Now we give an example of the notation for the hat problem on the graph K3.

The vertices are denoted by v1, v2 and v3. Obviously, there are 23 = 8 possible cases

for K3. Assume for example that in a case c the vertices v1 and v3 have the first

color and the vertex v2 has the second color. Thus c(v1) = c(v3) = 1 and c(v2) = 2.

Now let us consider situations of some vertex, say v1. The vertex v1 can see that
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v2 has the second color and v3 has the first color. Obviously, the vertex v1 cannot

see its own color. Thus s1(v1) = 0, s1(v2) = 2 and s1(v3) = 1. A case corresponds

to this situation if in the case each neighbor of v1 has the same color as in the

situation. It is easy to observe that the case in which v1 and v2 have the second

color and v3 has the first color corresponds to that situation. These are the only

two such cases, as 2|V (K3)|−dK3
(v1) = 2. Now let us consider a guessing instruction

of some vertex, say v2. Assume for example that the vertex v2 guesses it has the

second color when v1 and v3 have the first color; it guesses it has the first color

when v1 and v3 have the second color; otherwise it passes. We have g2(101) = 2,

g2(202) = 1 and g2(102) = g2(201) = 0. If a case c is such that c(v1) = c(v3) = 1

and c(v2) = 2, then the guess of v2 is correct as g2(101) = 2 = c(v2).

1.3 Fundamental theorems

Now we summarize a part of [40], which is Section 2.1 in this thesis.

We present a relation between the hat number of a graph and the hat number

of its any subgraph. We characterize the number of cases in which the loss of the

team is caused by a guess of a vertex. We also give a sufficient condition for re-

moving a vertex of a graph without changing its hat number. Let us observe that

in a case in which some vertex already guesses its color, a guess of any other vertex

is unnecessary.

Theorem 1. Let G be a graph.

• If H is a subgraph of G, then h(H) ≤ h(G).

• We have h(G) ≥ 1/2.

• If S ∈ F0(G), then p(S) ≥ 1/2.

• Let H ⊆ G and S ∈ F0(G). If there exists a strategy S ′ for the graph H such

that p(S ′) = p(S), then S ′ ∈ F0(H).

• Let vi be a vertex of G. If vi guesses its color in a situation, then the team

loses for at least half of cases corresponding to this situation.
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• We have h(G) < 1.

• Let v be a vertex of G. If a strategy S ∈ F(G) is such that v always guesses

its color, then p(S) ≤ 1/2.

• Let v be a vertex of G. If there is a strategy S ∈ F0(G) such that v always

guesses its color, then h(G) = 1/2.

• Let v be a vertex of G. If there is a strategy S ∈ F0(G) such that v never

guesses its color, then h(G) = h(G− v).

• Let c be a case in which some vertex guesses its color. Then a guess of any

other vertex cannot improve the result of the case c.

1.4 Main results

Now we present the main results concerning the hat problem on a graph.

Hat problem on a tree

The following solution of the hat problem on paths is a part of [40], which is Sec-

tion 2.1 in this thesis.

Lemma 2. For every path Pn we have h(Pn) = 1/2.

In Section 2.1 in this thesis [40] we use the above lemma to solve the hat problem

on trees.

Theorem 3. For every tree T we have h(T ) = 1/2.

Hat problem on cycles on four or at least nine vertices

The following solution of the hat problem on the cycle on four vertices has been

published as [42], which is Section 2.2 in this thesis.

Theorem 4. h(C4) = 1/2.
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One can observe that Theorem 1 and Lemma 2 together with the inequality

(7/8)6 < 1/2 imply that h(Cn) = 1/2 for integers n ≥ 18.

Theorem 5. For every integer n ≥ 18 we have h(Cn) = 1/2.

Proof. We assume that E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Let S be an optimal

strategy for Cn. If some vertex, say vi, never guesses its color, then by Theorem 1

we have h(Cn) = h(Cn−vi). Since Cn−vi = Pn−1 and h(Pn−1) = 1/2 (by Lemma 2),

we get h(Cn) = 1/2. Now assume that every vertex guesses its color (rather than

passing) in some situation. A single guess of a vertex vi is wrong in exactly 1/8

of all cases. Since the closed neighborhoods of the vertices v2, v5, v8, v11, v14, v17

are pairwise disjoint, in at most (7/8)6 of all cases no one of these vertices guesses

its color wrong. Thus the team can win for at most (7/8)6 of all cases. Since (7/8)6

< 1/2, we have p(S) < 1/2. Now we get h(Cn) = p(S) < 1/2, a contradiction.

Now we proceed to solve the hat problem on cycles on at least nine vertices.

The following results are from [46], which is Section 2.3 in this thesis.

We assume that E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Let S be a strategy

for Cn such that every vertex guesses its color (rather than passing) in exactly one

situation. Let αi(S), βi(S), γi(S) (we write αi, βi, γi) be such that the guess of vi

is wrong when c(vi−1) = αi, c(vi) = βi and c(vi+1) = γi (for i ∈ {2, 3, . . . , n − 1}),

the guess of v1 is wrong when c(vn) = α1, c(v1) = β1 and c(v2) = γ1, and the

guess of vn is wrong when c(vn−1) = αn, c(vn) = βn and c(v1) = γn. For example,

if the vertex v2 guesses it has the second color when v1 has the first color and v3

has the second color, then it follows that the vertex v2 guesses its color wrong when

c(v1) = c(v2) = 1 and c(v3) = 2. Therefore α(v2) = β(v2) = 1 and γ(v2) = 2.

Let us consider strategies such that every vertex guesses its color (rather than

passing) in exactly one situation. In the following lemma we give such strategy

for which the number of cases in which some vertex guesses its color wrong is as small

as possible.

Lemma 6. Let us consider the strategies for Cn such that every vertex guesses

its color (rather than passing) in exactly one situation. The number of cases in which
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some vertex guesses its color wrong is minimal for strategies S such that γi−1 = βi

= αi+1 (for i ∈ {2, 3, . . . , n− 1}), γn−1 = βn = α1 and γn = β1 = α2.

For integers n ≥ 3, let

An = {c ∈ C(Cn) : c(vi−1) = c(vi) = c(vi+1) = 1, for some i ∈ {2, 3, . . . , n− 1}}.

Thus An is the set of cases for Cn in which there are three vertices of the first color

the indices of which are consecutive integers. Let a sequence {an}∞n=0 be such that

an = |An| (for n ≥ 3) and a0 = a1 = a2 = 0.

In the following lemma we give a recursive formula for an.

Lemma 7. If n ≥ 3 is an integer, then an = 2n−3 + an−3 + an−2 + an−1.

For integers n ≥ 3, let

Bn = {c ∈ C(Cn) : c(vi−1) = c(vi) = c(vi+1) = 1 (for some i ∈ {2, 3, . . . , n− 1})

or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1}.

Thus Bn is the set of cases for Cn in which there are three consecutive vertices of the

first color. Let a sequence {bn}∞n=3 be such that bn = |Bn|.

Now we give a relation between the number bn (where n ≥ 6) and the elements

of the sequence {an}∞n=0.

Lemma 8. If n ≥ 6 is an integer, then bn = 5 · 2n−6 + an − 2an−5 − an−6.

Now we give a lower bound on the number bn for n ≥ 9.

Lemma 9. For every integer n ≥ 9 we have bn > 2n−1.

Next we solve the hat problem on cycles on at least nine vertices.

Theorem 10. For every integer n ≥ 9 we have h(Cn) = 1/2.

The above approach does not succeed in solving the hat problem on any cycle

on less than nine vertices, because the inequality bn > 2n−1 (see Lemma 9) holds only

for integers n ≥ 9.
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Hat problem on a unicyclic graph

We say that a graph is unicyclic if it contains exactly one cycle as a subgraph.

Now we present a result from Section 2.4 in this thesis [44], where we solve

the hat problem on unicyclic graphs containing a cycle on at least nine vertices.

Theorem 11. If G is a unicyclic graph containing a cycle Ck for some k ≥ 9,

then h(G) = 1/2.

Hat problem on a graph with a universal vertex

Now we consider the hat problem on graphs G with a universal vertex, that is,

a vertex v such that NG[v] = V (G). The following results are from [44], which is

Section 2.4 in this thesis.

Optimal strategies for graphs with a universal vertex have the following property.

Fact 12. Let G be a graph, and let v be a universal vertex of G. If S ∈ F0(G),

then for every situation of v, in at least one of the two cases corresponding to this

situation some vertex guesses its color.

Now let us consider a strategy for a graph with a universal vertex such that there

are two cases corresponding to the same situation of a universal vertex, and in one

of them some vertex guesses its color while in the other one no vertex guesses

its color. In the following lemma we give a method of designing a strategy, which is

not worse than that.

Lemma 13. Let G be a graph, and let v be a universal vertex of G. Let c and d

be cases corresponding to the same situation of v. Assume that a strategy S ∈ F(G)

is such that in the case c no vertex guesses its color and in the case d some vertex

guesses its color. Let the strategy S ′ for the graph G differ from S only in that in the

situation to which correspond the cases c and d the vertex v guesses it has the color

which it has in the case c. Then p(S ′) ≥ p(S).

One can prove that if a graph has a universal vertex, then there exists an optimal

strategy such that in every case some vertex guesses its color. This implies that
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to solve the hat problem on a graph with a universal vertex, it suffices to examine

only strategies such that in every case some vertex guesses its color. Thus, if in some

case of a strategy no vertex guesses its color, then we can cease further examining

this strategy.

Theorem 14. If a graph G has a universal vertex, then there is a strategy S ∈ F0(G)

such that |Ln(S)| = 0.

There exists a graph with a universal vertex for which there is an optimal strategy

such that in some case no vertex guesses its color.

Fact 15. There exists a strategy S ∈ F0(K2) such that |Ln(S)| > 0.

Hat problem on graphs with neighborhood-dominated vertex

We say that a vertex v of a graph G is neighborhood-dominated if there is some

other vertex w ∈ V (G) such that NG(v) ⊆ NG(w).

Now we present results from Section 2.4 in this thesis [44], where we consider

the hat problem on graphs with a neighborhood-dominated vertex.

First, we investigate optimal strategies for such graphs.

Theorem 16. Let G be a graph, and let v1 and v2 be vertices of G. If NG(v1)

⊆ NG(v2), then there exists an optimal strategy for the graph G such that there is

no case in which both vertices v1 and v2 guess their colors.

Corollary 17. Let G be a graph, and let v1, v2, . . . , vk be vertices of G such that

NG(v1) = NG(v2) = . . . = NG(vk). Then there exists an optimal strategy for the

graph G such that in every situation at most one of the vertices v1, v2, . . . , vk guesses

its color.

There exists a graph having two vertices with the same open neighborhood

for which there is an optimal strategy such that in some situation both these vertices

guess their colors.

Fact 18. There exists a strategy S ∈ F0(P3) such that in some situation both leaves

guess their colors.
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Let G be a graph, and let A1, A2, . . . , Ak be a partition of the set of vertices

of G such that the open neighborhoods of the vertices in each set Ai can be linearly

ordered by inclusion.

Now we give an upper bound on the chance of success of any strategy for the

hat problem on a graph with neighborhood-dominated vertices.

Theorem 19. Let G be a graph and let k mean the minimum number of sets

to which V (G) can be partitioned in a way described above. Then h(G) ≤ k/(k+1).

Next we use the previous theorem to solve the hat problem on the graph H given

in Figure 1. This graph is obtained from K4 by the subdivision of one edge.

v4 v5

v1

v3 v2

Figure 1: The graph H

Fact 20. h(H) = 3/4.

Hat problem on a disconnected graph

Now we present results from Section 2.5 in this thesis [45], where we consider the

hat problem on disconnected graphs.

Let G and H be vertex-disjoint graphs, and let S1 ∈ F(G) and S2 ∈ F(H).

By the union of the strategies S1 and S2 we mean the strategy S ∈ F(G ∪H) such

that every vertex of G behaves in the same way as in S1 and every vertex of H

behaves in the same way as in S2. If S is the union of S1 and S2, then we write

S = S1 ∪ S2.

From now to the end of this subsection, writing that G and H are graphs we as-

sume that they are vertex-disjoint.

In the following theorem we give a sufficient condition for that the union of two

strategies gives worse chance of success than some component of the union.
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Theorem 21. Let G and H be graphs, and let S = S1 ∪ S2, where S1 ∈ F(G)

and S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| · |Ln(S2)|

< |Ls(S1)| · |Ls(S2)|, then p(S) < max{p(S1), p(S2)}.

Corollary 22. Let G and H be graphs, and let S = S1 ∪ S2, where S1 ∈ F(G)

and S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| = 0

or |Ln(S2)| = 0, then p(S) < max{p(S1), p(S2)}.

From now to the end of this subsection, writing S1 ∈ F(G) and S2 ∈ F(H)

we assume that p(S1) > 0, p(S2) > 0 and |Ln(S1)| · |Ln(S2)| ≥ |Ls(S1)| · |Ls(S2)|.

The next theorem determines when the union of two strategies gives at least the

same chance of success as each component of the union.

Theorem 23. If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and

S2 ∈ F(H), then

p(S) ≥ max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)|

∈
[
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
.

Corollary 24. If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and

S2 ∈ F(H), then

p(S) < max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)|

/∈
[
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
.

The following theorem determines when the union of two strategies gives a chance

of success better than each component of the union.

Theorem 25. If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and

S2 ∈ F(H), then

p(S) > max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)|

∈
(
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

)
.

The next theorem determines when the union of two strategies gives the same

chance of success as some component of the union.

Theorem 26. If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and

S2 ∈ F(H), then

p(S) = p(S1) ⇔
|W (S1)|
|W (S2)|

=
|Ln(S1)|
|Ls(S2)|
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and

p(S) = p(S2) ⇔
|W (S1)|
|W (S2)|

=
|Ls(S1)|
|Ln(S2)|

.

Corollary 27. Assume that G and H are graphs and S = S1∪S2, where S1 ∈ F(G)

and S2 ∈ F(H). Let i ∈ {1, 2} be such that p(Si) = max{p(S1), p(S2)}, and let

j ∈ {1, 2}, j ̸= i. Then

p(S) = max{p(S1), p(S2)} ⇔ |W (Si)|
|W (Sj)|

=
|Ln(Si)|
|Ls(Sj)|

.

There exists a disconnected graph for which there is an optimal strategy such

that every vertex guesses its color.

Fact 28. There exists a strategy S ∈ F0(K2 ∪ K2) such that every vertex guesses

its color.

Hat problem on a graph when are known only degrees of ver-

tices

Now we consider the hat problem on a graph such that the only known informa-

tion are degrees of vertices. A major part of material presented here is from [40],

which is Section 2.1 in this thesis.

In the following theorem we give an upper bound on the chance of success of any

strategy for a graph which is based only on the degrees of vertices.

Theorem 29. Let G be a graph, and let S be any strategy for this graph. Then

|W (S)| ≤
∑

v∈V (G)

⌊
2dG(v)+1 − |W (S)|

2|V (G)|−dG(v)−1

⌋
· 2|V (G)|−dG(v)−1.

We use the previous theorem to solve the hat problem on complete graphs on two,

three and four vertices.

Fact 30. h(K2) = 1/2.

Fact 31. h(K3) = 3/4.

Fact 32. h(K4) = 3/4.

Next we solve the hat problem on the graph K3 ∪K2.

Fact 33. h(K3 ∪K2) = 3/4.
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Nordhaus-Gaddum type inequalities

A Nordhaus-Gaddum type result is a lower or upper bound on the sum or product

of a parameter of a graph and its complement. In 1956 Nordhaus and Gaddum [51]

proved the following inequalities for the chromatic number of a graph G and its

complement: 2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 and n ≤ χ(G)χ(G) ≤ (n+ 1)2/4.

In Section 2.4 in this thesis [44] we give Nordhaus-Gaddum type inequalities

for the hat number.

Using Theorem 1 we immediately get the following lower and upper bounds

on the sum and product of the hat numbers of a graph and its complement.

Fact 34. For every graph G we have 1 ≤ h(G)+h(G) < 2 and 1/4 ≤ h(G)h(G) < 1.

We show that for every number smaller than two there exists a graph for which

the sum of its hat number and the hat number of its complement is greater than

that number. We also show that for every number smaller than one there exists

a graph for which the product of its hat number and the hat number of its comple-

ment is greater than that number.

Theorem 35.

• For every α < 2 there is a graph G such that h(G) + h(G) > α.

• For every α < 1 there is a graph G such that h(G)h(G) > α.

1.5 Recent results and state of the art

In this section we review recent results concerning the hat problem on a graph.

We say that a vertex v of a graph G is neighborhood-dominated if there is some

other vertex w ∈ V (G) such that NG(v) ⊆ NG(w).

After publishing the results reviewed in the previous sections, Uriel Feige [25]

has proved the following property of graphs with a neighborhood-dominated vertex.

Lemma 36. Let G be a graph. If v is a neighborhood-dominated vertex of G,

then h(G) = h(G− v).
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The above result implies that the hat number of every bipartite graph is 1/2.

In particular, this solves the hat problem on trees and cycles of even length. One can

also observe that Lemma 36 implies that h(G) ≤ h(Kχ(G)), where χ(G) means the

chromatic number of G. The lemma also implies that h(G) = h(Kω(G)) for graphs

such that χ(G) = ω(G), where ω(G) means the clique number of G. Since h(K4)

= 3/4, one can conclude that the hat number of every planar graph containing

a triangle equals 3/4.

Feige [25] has proved that the problem of computing h(G) is NP-hard. He has also

proved that for every disjoint graphsG andH we have h(G∪H) = max{h(G), h(H)}.

Hat problem on odd cycles

Now we present results from Section 2.6 in this thesis [41], where we solve the hat

problem on cycles of odd length. Obviously, h(C3) = 3/4.

Uriel Feige [25] has conjectured that the hat number of any graph equals the hat

number of its maximum clique. He has proved this for graphs with equal chromatic

and clique numbers. A well known class of such graphs is that of perfect graphs

(where the equality holds not only for the graph, but also for all its subgraphs).

Thus Feige has solved the hat problem for perfect graphs. By the strong perfect

graph theorem [16], every graph such that neither it nor its complement contains

an induced odd cycle of length at least five is perfect. Thus a next step to prove

or refute the conjecture could be to solve the hat problem on odd cycles. We prove

that the hat number of every odd cycle on at least five vertices is 1/2, which is

consistent with the conjecture of Feige.

First we solve the hat problem on the cycle on five vertices.

Lemma 37. h(C5) = 1/2.

Next we prove the main result.

Theorem 38. For every odd integer n ≥ 5 we have h(Cn) = 1/2.

Since cycles of even length are bipartite, we conclude that the hat number of every

cycle on at least four vertices equals 1/2.
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1.6 Hat problem on a directed graph

This section contains the results of the joint work [34], which is Section 2.7 in this

thesis. Here we consider the hat problem on a directed graph. If there is an arc

from u to v, then the vertex u can see the vertex v. Still we can restrict to deter-

ministic strategies.

Previous works focused on the problem on undirected graphs. It was solved

for some classes of graphs, leading Uriel Feige to conjecture that the hat number

of any graph equals the hat number of its maximum clique.

We show that the conjecture does not hold for directed graphs. Moreover, for ev-

ery value of the maximum clique size, we provide a tight characterization of the

range of possible values of the hat number. We construct families of directed graphs

with a fixed clique number the hat number of which is asymptotically optimal.

We also determine the hat number of tournaments to be one half.

A directed graph (called a digraph) is an ordered pair D = (V,A), where a set V

is called the set of vertices and E is the set of arcs, which are ordered pairs of vertices.

We say that E is a subgraph of a digraph D if V (E) ⊆ V (D) and A(E) ⊆ A(D).

Then we write E ⊆ D. A tournament is a directed graph such that for every two ver-

tices there is exactly one arc between them. By the skeleton of a digraph D, denoted

by skel(D), we mean an undirected graph with the vertex set V in which x and y

are adjacent if both arcs between them are present inD. By the clique number of a di-

graph D we mean the clique number of its skeleton, that is, ω(D) = ω(skel(D)).

Given two disjoint digraphs C and D, we define the directed union of C and D,

denoted by C → D, to be the union of these two digraphs with additional arcs from

all vertices of C to all vertices of D. Notice that this operator is associative, that is,

(C → D) → E = C → (D → E), for any three digraphs C, D and E. Thus the

notation C → D → E is unambiguous. The directed union of n disjoint copies

of a digraph D, that is D → D → . . . → D︸ ︷︷ ︸
n

, we denote by D→n.

All concepts regarding the hat problem we define similarly as when considering

the hat problem on undirected graphs.

Let us observe that the following statements regarding the hat problem on a di-
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rected graph, which are generalizations of those for undirected graphs, are also true.

Theorem 39. Let D be a digraph.

• If E ⊆ D, then h(E) ≤ h(D).

• We have h(D) ≥ 1/2.

• Let v be a vertex of D. If there is a strategy S ∈ F0(D) such that v always

guesses its color, then h(D) = 1/2.

• Let v be a vertex of D. If there is a strategy S ∈ F0(D) such that v never

guesses its color, then h(D) = h(D − v).

• Let c be a case in which some vertex guesses its color. Then a guess of any

other vertex cannot improve the result of the case c.

• Let v be a vertex of D. If v has no outgoing arcs, then h(D) = h(D − v).

Since the hat number of the complete graph Km is known to be m/(m+1) when

m+ 1 is a power of two [23], we have the following lower bound on the hat number

of any digraph.

Lemma 40. For every digraph D we have h (D) ≥ ω (D) / (ω (D) + 2).

For an undirected graph G, it is known that if G contains a triangle, then

h(G) ≥ 3/4, and in [25] it is conjectured that if G is triangle-free, then h(G) = 1/2.

We show that directed graphs introduce something in between. Let us consider the

hat problem on the digraph D1 given in Figure 2.?>=<89:;x
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?>=<89:;u

��?
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>>~~~~~~~~~

?>=<89:;y
OO

Figure 2: The directed graph D1
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Fact 41. h(D1) = 5/8.

We extend D1 to a sequence of digraphs that asymptotically achieve the hat

number 2/3, with the property that ω (Dn) = 2. Let Dn = K1 → K→n
2 . Note that

the family {Dn}∞n=1 satisfies the recurrence relation Dn+1 = Dn → K2. In Figure 3

we give examples of Dn for n = 2, n = 3, and a general n.
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Figure 3: The directed graphs D2, D3 and Dn. All vertical arcs have antiparallel

counterparts. The remaining arcs are rightwards

We proceed to compute the hat numbers of the digraphs of the family {Dn}∞n=1.

First we prove an upper bound.

Lemma 42. For every digraph D we have h(D → K2) ≤ max{h(D), 1/2+h(D)/4}.

Next we prove a lower bound.

Lemma 43. For every digraph D we have h(D → K2) ≥ 1/2 + h(D)/4.

In the next lemma we give a lower bound for a more general setting.

Lemma 44. For every positive integer m there exists c ≥ 1/2 such that for any

digraph D we have h(D → Km) ≥ cm/(m+1)+ (1− c) ·h(D). Moreover, if m = 2,

then c = 3/4 satisfies the inequality.

We use Lemmas 42 and 43 to calculate the hat number of Dn.

Fact 45. For every positive integer n we have

h (Dn) =
2

3
− 1

6
· 1

4n
.
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Corollary 46. For every ε > 0 there exists a digraph D satisfying ω(D) = 2

such that h(D) > 2/3− ε.

We generalize the previous result to an arbitrary clique number m.

Theorem 47. For every ε > 0 there exists a digraph D satisfying ω(D) = m

such that h(D) > m/(m+ 1)− ε.

A natural question is whether a chance of success better than m/(m+1) is pos-

sible for such digraphs. It turns out that m/(m + 1) is asymptotically optimal

for digraphs with clique number m. Feige [25] proved that for every undirected

graph G we have h(G) ≤ ω(G)/(ω(G) + 1). We refine his proof to show that the

same holds for digraphs.

Theorem 48. For every digraph D we have h(D) ≤ ω(D)/(ω(D) + 1).

Observe that for any digraphD the hat number h (D) is always a rational number

whose denominator is a power of two. Therefore h (D) < ω (D) / (ω (D) + 1) unless

ω(D) is a power of two decreased by one. If ω(D) = 2k − 1, then the upper bound

is met by a complete graph K2k−1 as h(K2k−1) = (2k − 1)/2k.

Corollary 49. For every tournament T we have h(T ) = 1/2.

Søren Riis [54] defined for directed graphs a guessing game with q ≥ 2 colors,

which differs from the hat problem in that the team wins only if every vertex guesses

its color correctly. A guessing number of a digraph D equals k if there is a strategy

such that the team wins with probability (1/s)n−k. The aim is to determine the

maximum guessing number of a given graph. We have shown that the hat number

of a directed union of two digraphs may be different from the hat number of their

union. It turns out that it is not the case concerning the guessing game. Gadouleau

and Riis [28] proved that the guessing number of a directed union of two graphs

always equals the guessing number of their union. Therefore the additional arcs

are superfluous for the guessing game. By Corollary 49, the hat number of every

tournament equals one half, while the maximum guessing number of tournaments

is of the same order as the number of players [28]. Thus here the arcs are useful

for the guessing game, but not for the hat problem.
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1.7 Hat problem with q colors

In this section, which is similar to [39] (Section 2.8 in this thesis), we generalize

the hat problem to q ≥ 2 colors. Let us observe that we can restrict to deterministic

strategies due to the same reasons as for the hat problem on a graph.

All concepts regarding the hat problem with q colors we define similarly as when

considering the problem with two colors. The family of all strategies for the hat

problem with n players and q colors is denoted by F(n, q). We define h(n, q) to be

the maximum chance of success for this problem.

First we investigate the hat problem with three colors. Our main result is the

solution for three players. Obviously, if there is only one player, then the chance

of success is 1/3. As an example, we show that already two players can do better.

Let us consider the following strategy for the hat problem with two players

and three colors.

Strategy 50. Let S = (g1, g2) ∈ F(2, 3) be a strategy such that

g1(s1) =

 1 if s1(v2) ̸= 3,

0 otherwise;

g2(s2) =

 3 if s2(v1) ̸= 1,

0 otherwise.

It means that the players proceed as follows.

• The player v1. If v2 has a hat of the first or the second color, then he guesses

he has a hat of the first color, otherwise he passes.

• The player v2. If v1 has a hat of the second or the third color, then he guesses

he has a hat of the third color, otherwise he passes.

Analyzing all cases, we make the following observation.

Observation 51. Using Strategy 50 the team wins for 4 of 9 cases.

Now we solve the hat problem with two players and three colors.

Fact 52. h(2, 3) = 4/9.
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Proof. Since using Strategy 50 the team wins for 4 of 9 cases, we have h(2, 3) ≥ 4/9.

Suppose that h(2, 3) > 4/9, that is, there exists a strategy S for the hat problem

with two players and three colors such that the team wins for more than 4 cases.

Any guess made by any player in any situation is wrong in exactly two cases, because

to any situation of any player correspond three cases, and in exactly two of them

this player has a hat of a color differing from the one he guesses. In the strategy S

every player guesses his hat color in at most 2 situations, because if some player

guesses his hat color in at least 3 situations, then the team loses for at least 6 cases,

and wins for at most 3 cases, a contradiction. Any guess made by any player

in any situation is correct in exactly one case, because to any situation of any player

correspond three cases, and in exactly one of them this player has a hat of the

color he guesses. There are two players, every one of them guesses his hat color

in at most two cases, and every guess is correct in exactly one case. Therefore using

the strategy S the team wins for at most 4 cases, a contradiction.

Now we proceed to solve the hat problem with three players and three colors.

We say that a strategy is symmetric if every player makes his decision on the

basis of only numbers of hats of each color seen by him, and all players behave in the

same way. A strategy is nonsymmetric if it is not symmetric.

The authors of [31] solved the hat problem with three players and three colors

by giving a symmetric strategy found by computer, and proving that it is optimal.

We solve this problem by proving the optimality of a nonsymmetric strategy

found without using a computer.

Let us consider the following strategy for the hat problem with three players

and three colors.

Strategy 53. Let S = (g1, g2, g3) ∈ F(3, 3) be a strategy such that

g1(s1) =

 s1(v3) if s1(v2) ̸= s1(v3),

0 otherwise;

g2(s2) =

 s2(v3) if s2(v1) ̸= s2(v3),

0 otherwise;
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g3(s3) =

 s3(v1) if s3(v1) = s3(v2),

0 otherwise.

It means that the players proceed as follows.

• The player v1. If v2 and v3 have hats of different colors, then he guesses

he has a hat of the color v3 has, otherwise he passes.

• The player v2. If v1 and v3 have hats of different colors, then he guesses

he has a hat of the color v3 has, otherwise he passes.

• The player v3. If v1 and v2 have hats of the same color, then he guesses

he has a hat of the color they have, otherwise he passes.

Analyzing all cases, we make the following observation.

Observation 54. Using Strategy 53 the team wins for 15 of 27 cases.

Next we solve the hat problem with three players and three colors.

Fact 55. h(3, 3) = 5/9.

The hat problem with three colors and more than three players remains unsolved.

Now, we investigate the hat problem with n players and q colors. First we prove

an upper bound on the number of cases for which the team wins using any strategy

for the problem.

Theorem 56. For every strategy S ∈ F(n, q) we have

|W (S)| ≤ n

⌊
qn − |W (S)|

q − 1

⌋
.

Now we formulate an equivalent upper bound on the chance of success of any

strategy for the hat problem with n players and q colors.

Theorem 57. For every strategy S ∈ F(n, q) we have

p(S) ≤ n

qn

⌊
qn − qn · p(S)

q − 1

⌋
.
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Let us observe that Facts 52 and 55 follow from Theorem 56 as well as from

Theorem 57.

Next we prove a weaker theorem (following from Theorem 56 or Theorem 57),

which is an explicit upper bound on the chance of success of any strategy for the

hat problem with n players and q colors. This bound was previously proved as Propo-

sition 3 in [47].

Theorem 58. For every strategy S ∈ F(n, q) we have

p(S) ≤ n

n+ q − 1
.

Then we show that Theorem 56 does not follow from Theorem 58.

Now let us consider the hat problem with two colors (q = 2), and any strategy S

for this problem. Using Theorem 58 we get the bound p(S) ≤ n/(n+ 1) previously

given in [23], which is sharp for n = 2k − 1.

Noga Alon [2] proved that for the hat problem with n players and q colors there

exists a strategy such that the chance of success is at least

1− (q − 1) log n+ 1

n
−
(
1− 1

q

)n

.

Now, we consider the number of strategies the verification of which suffices

to solve the hat problem and the generalized hat problem with q colors.

First we count all possible strategies for the hat problem. We have n players,

there are 2n−1 possible situations of each one of them, and in every situation there

are three possibilities of behavior (to guess the first color, to guess the second color,

or to pass). This implies that the number of possible strategies equals(
32

n−1
)n

.

Next we prove that it is not necessary to examine every strategy to solve the

hat problem.

Fact 59. To solve the hat problem with n players, it suffices to examine(
32

n−1−2
)n

=
1

9n
·
(
32

n−1
)n

strategies.
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Now, we count all possible strategies for the generalized hat problem with q

colors. We have n players, there are qn−1 possible situations of each one of them,

and in every situation there are q + 1 possibilities of behavior (to guess one of the

q colors, or to pass). This implies that the number of possible strategies equals(
(q + 1)q

n−1
)n

.

Next we prove that it is not necessary to examine every strategy to solve the

generalized hat problem with q colors.

Fact 60. To solve the hat problem with n players and q colors, it suffices to examine(
(q + 1)q

n−1−1
)n

=
1

(q + 1)n
·
(
(q + 1)q

n−1
)n

strategies.

1.8 Modified hat problem

This section contains material from [38], which is Section 2.9 in this thesis. Let us

consider the hat problem with n ≥ 3 players and two colors, in which the players do

not have to guess their hat colors simultaneously. Every player has two cards with his

name and the sentence “I have a blue hat” or “I have a red hat”. The players make

a guess by coming to the basket and throwing the proper card into it. If someone

wants to resign from answering, then he does not do anything. Let us consider the

following strategy for this problem.

Strategy 61. Players proceed as follows.

Step 1 (5 seconds after the beginning)

Only these players who see the hats of one color only come to the basket. There are

three possibilities:

• Only one player comes to the basket. Then he guesses he has a hat of the

color differing from the one he sees.

• At least two players come to the basket. Then every one of them guesses

he has a hat of the color he sees.
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• No player comes to the basket. Then we execute Step 2.

Let i be a positive integer.

Step 2i (10i seconds after the beginning)

Only these players who see exactly i blue hats come to the basket. There are two

possibilities:

• At least one player comes to the basket. Then every one of them guesses he has

a blue hat.

• No player comes to the basket. Then we execute Step 2i+ 1.

Step 2i+ 1 ((10i+ 5) seconds after the beginning)

Only these players who see exactly i red hats come to the basket. There are two

possibilities:

• At least one player comes to the basket. Then every one of them guesses he has

a red hat.

• No player comes to the basket. Then we execute Step 2i+ 2.

We prove that the above strategy always succeeds.

Theorem 62. Strategy 61 always succeeds for the modified hat problem.

Let us consider the numbers of blue and red hats on the heads of the players.

If there are more blue hats than red hats, then let x mean the number of red hats.

Otherwise let it mean the number of blue hats.

Next we show in which step the team wins using Strategy 61.

Fact 63. If there are less than two blue hats or less than two red hats, then Strat-

egy 61 succeeds in Step 1. In the opposite case, for x defined above, Strategy 61

succeeds in Step 2x − 1 if there are more blue hats than red hats, and otherwise

in Step 2x− 2.
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1.9 Applications and variations of the hat prob-

lem

The hat problem has many applications and connections to different areas of sci-

ence, for example: information theory [7], linear programming [26, 35], genetic pro-

gramming [13], economics [1, 36], biology [31], approximating Boolean functions [4],

and autoreducibility of random sequences [5, 21–24].

We describe these applications and connections in [43], which is Section 2.10

in this thesis.

There are known many variations of the hat problem. For example, in the

papers [1, 14, 36] there was considered a variation in which passing is not allowed,

thus everybody has to guess his hat color. The aim is to maximize the number

of correct guesses. The authors of [26] investigated several variations of the hat

problem in which the aim is to design a strategy guaranteeing a desired number

of correct guesses. In [31] there was considered a variation in which the probabilities

of getting hats of each color do not have to be equal. For more variations of the hat

problem, see for example [3, 9, 12, 15, 18–20, 27, 29, 30, 32, 33, 57–60].

In [43], which is Section 2.10 in this thesis, we give a comprehensive list of vari-

ations of the hat problem considered in the literature. We also present what is

already known about each variation. For some of them we give a strategy which

solves the problem.
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Publications

2.1 Hat problem on a graph
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Abstract: The topic of our paper is the hat problem. In that problem, each
of n people is randomly fitted with a blue or red hat. Then everybody can try
to guess simultaneously his own hat color looking at the hat colors of the other
people. The team wins if at least one person guesses his hat color correctly
and no one guesses his hat color wrong, otherwise the team loses. The aim
is to maximize the probability of win. In this version every person can see
everybody excluding him. In this paper we consider such problem on a graph,
where vertices are people and a person can see these people, to which he is
connected by an edge. We prove some general theorems about the hat problem
on a graph and solve the problem on trees. We also consider the hat problem on
a graph with given degrees of vertices. We give an upper bound that is based
only on the degrees of vertices on the chance of success of any strategy for the
graph G. We show that this upper bound together with integrality constraints
is tight on some toy examples.

1. Introduction

In the hat problem, a team of n people enters a room and a blue or
red hat is randomly placed on the head of each person. Each person can
see the hats of all of the other people but not his own. No communication
of any sort is allowed, except for an initial strategy session before the
game begins. Once they have had a chance to look at the other hats,
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4 M. Krzywkowski

each person must simultaneously guess the color of his own hat or pass.
The team wins if at least one person guesses his hat color correctly and
no one guesses his hat color wrong, otherwise the team loses. The aim is
to maximize the probability of win.

The hat problem with seven people called “seven prisoners puzzle”
was formulated by T. Ebert in his Ph.D. Thesis [10]. The hat problem
was also the subject of articles in The New York Times [20], Die Zeit [5],
and abcNews [19]. The hat problem with n people and two colors of hat
was investigated in [6]. It was solved for 2k − 1 people in [12]. The hat
problem and Hamming codes were also the subject of an article in Polish
math–physics–informatic magazine [9].

There are also known some variants and generalizations of hat prob-
lem. The authors of [18] investigate the generalized hat problem with q ≥
≥ 2 colors, they also consider variants in which there are arbitrary input
distributions, randomized playing strategies, and symmetric strategies.
In the papers [1], [8], and [17] there is considered another variant of
hat problem in which passing is not allowed, thus everybody has to try
to guess his hat color. The aim is to maximize the number of correct
guesses. In [14] the authors investigate several variants of hat problem
in which the aim is to design a strategy such that the number of correct
guesses is greater than or equal to the given positive integer. In the paper
[15] there is considered the hat problem, and also a variant in which the
probabilities of getting hats of each colors do not have to be equal. The
authors of [2] investigate a problem similar to the hat problem. There
are n people which have random bits on foreheads, and they have to vote
on the parity of the n bits.

The hat problem and its variants have many applications and con-
nections to other areas of science, for example: information technol-
ogy [4], linear programming [14, 16], genetic programming [7], economy
[1, 17], biology [15], approximating Boolean functions [2], and autore-
ducibility of random sequences [3, 10–13]. Therefore, it is hoped that the
hat problem on a graph considered in this paper, as a natural general-
ization, is worth exploring, and may also have many applications.

We consider the hat problem on a graph, where vertices are people
and a person can see these people, to which he is connected by an edge.
We prove some general theorems about the hat problem on a graph and
solve the problem on trees. We also consider the hat problem on a graph
with given degrees of vertices. We give an upper bound that is based
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only on the degrees of vertices on the chance of success of any strategy
for the graph G. We show that this upper bound together with integrality
constraints is tight on some toy examples.

The paper is organized as follows. In Sec. 2 we give the notation
and terminology used. In Sec. 3 first we make some general observations
about the hat problem on a graph. In Th. 4 we solve that problem on
paths, and in Th. 5 we solve the hat problem on trees. Then we consider
the hat problem on a graph with given degrees of vertices.

2. Preliminaries

For a graph G, by V (G) and E(G) we denote the set of vertices
and the set of edges of this graph, respectively. If H is a subgraph of G,
then we write H ⊆ G. Let v ∈ V (G). By NG(v) we denote the open
neighbourhood of v, that is NG(v) = {x ∈ V (G) : vx ∈ E(G)}. By NG[v]
we denote the closed neighbourhood of v, that is NG[v] = NG(v) ∪ {v}.
By dG(v) we denote the degree of the vertex v, that is the number of
its neighbours, thus dG(v) = |NG(v)|. By Pn we denote the path with n
vertices. By Cn we denote the cycle with n vertices. By Kn we denote
the complete graph with n vertices. Let f : X → Y be a function. If
Z ⊆ X, then by f|Z we denote the restriction of f to Z. If y ∈ Y , then
by f ≡ y we denote that for every x ∈ X we have f(x) = y.

Without loss of generality we may assume an ordering of the vertices
of a graph G, that is V (G) = {v1, v2, . . . , vn}.

Let {b, r} be the set of colors (b means blue and r means red). If
vi ∈ V (G), then c(vi) is the color of vi, so c : V (G) → {b, r} is a function.
By a case for the graph G we mean a sequence (c(v1), c(v2), . . . , c(vn)).
The set of all cases for the graph G we denote by C(G), of course |C(G)| =
= 2|V (G)|.

If vi ∈ V (G), then by si we denote a function si : V (G) → {b, r, ∗},
where si(vj) ∈ {b, r} is the color of vj if vi sees vj , and mark ∗ otherwise,
that is, si(vj) = c(vj) if vj ∈ NG(vi), while si(vj) = ∗ if vj ∈ V (G) \
\ NG(vi). By a situation of the vertex vi in the graph G we mean the
sequence (si(v1), si(v2), . . . , si(vn)). The set of all possible situations of
vi in the graph G we denote by Sti(G). Of course, |Sti(G)| = 2|NG(vi)|.

Let vi ∈ V (G). We say that a case (c1, c2, . . . , cn) for the graph G
corresponds to a situation (t1, t2, . . . , tn) of the vertex vi in the graph G if
it is created from this situation only by changing every mark ∗ to b or r.
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So, a case corresponds to a situation of vi if every vertex adjacent to vi,
in that case has the same color as in that situation. To every situation
of the vertex vi in the graph G correspond 2|V (G)|−|NG(vi)| cases, because
every situation of vi has |V (G)| − |NG(vi)| marks ∗.

Let G and H be graphs such that V (H) = {v1, v2, . . . , vm}, V (G) =
= {v1, v2, . . . , vm, . . . , vn}, and E(H) ⊆ E(G). We say that a case
(a1, a2, ..., am, ..., an) for the graph G corresponds to a case (b1, b2, ..., bm)
for the graph H if (a1, a2, ..., am) = (b1, b2, ..., bm), that is, every vertex
from the graph H in both cases has the same color. Of course, to every
case for the graph H correspond 2n−m cases for the graph G.

Let G and H be graphs such that V (H) = {v1, v2, . . . , vm}, V (G) =
= {v1, v2, . . . , vm, . . . , vn}, and E(H) ⊆ E(G). Let i ∈ {1, 2, . . . , m}. We
say that a situation (t1, t2, . . . , tm, . . . , tn) of the vertex vi in the graph G
corresponds to a situation (u1, u2, . . . , um) of the vertex vi in the graph
H if (t1, t2, . . . , tm) = (u1, u2, . . . , um), that is, every vertex adjacent to
vi in the graph H , in both of these situations has the same color.

By a statement of a vertex we mean its declaration about the color
it guesses it is. By the result of a case we mean a win or a loss. According
to the definition of the hat problem, the result of a case is a win if at
least one vertex states its color correctly and no vertex states its color
wrong. The result of a case is a loss if no vertex states its color or some
vertex states its color wrong.

By a guessing instruction for the vertex vi ∈ V (G) (denoted by gi)
we mean a function gi : Sti(G) → {b, r, p} which, for a given situation,
gives b or r meaning the color vi guesses it is, or the letter p if vi passes.
Thus a guessing instruction is a rule which determines the behavior of
the vertex vi in every situation. By a strategy for the graph G we mean a
sequence (g1, g2, . . . , gn). By F(G) we denote the family of all strategies
for the graph G.

Let vi ∈ V (G) and S ∈ F(G). We say that vi never states its color
in the strategy S if vi passes in every situation, that is gi ≡ p. We say
that vi always states its color in the strategy S if vi states its color in
every situation, that is, for every T ∈ Sti(G) we have gi(T ) ∈ {b, r}
(gi(T ) 6= p, equivalently).

If S ∈ F(G), then by Cw(S) and Cl(S) we denote the sets of cases
for the graph G in which the team wins or loses, respectively. Of course,
|Cw(S)| + |Cl(S)| = |C(G)|. Consequently, by the chance of success of

the strategy S we mean the number p(S) = |Cw(S)|
|C(G)|

. By the hat number
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of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.
Certainly p(S) ≤ h(G). We say that the strategy S is optimal for the
graph G if p(S) = h(G). By F0(G) we denote the family of all optimal
strategies for the graph G.

Let t, m1, m2, . . . , mt ∈ {1, 2, . . . , n} be such that mj 6= mk and
cmj

∈ {b, r}, for every j, k ∈ {1, 2, . . . , t}.

By C(G, v
cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ) we denote the set of cases for the

graph G such that the color of vmj
is cmj

.

Let S∈F(G). By Cw(S, v
cm1

m1
, v

cm2

m2
, ..., v

cmt
mt ) (Cl(S, v

cm1

m1
, v

cm2

m2
, ..., v

cmt
mt ),

respectively) we denote the set of cases for G which belong to the set
C(G, v

cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ), and in which the team wins (loses, respec-

tively).
Let vi ∈ V (G). If for every j ∈ {1, 2, . . . , t} we have vmj

∈ NG(vi),

then by Sti(G, v
cm1

m1
, v

cm2

m2
, . . . , v

cmt
mt ) we denote the set of possible situa-

tions of vi in the graph G such that the color of vmj
is cmj

.

3. Results

First let us observe that indeed we can confine to deterministic
strategies (that is strategies such that the decision of each person is de-
termined uniquely by the hat colors of other people). We can do this since
for any randomized strategy there exists a not worse deterministic one.
It is true, because every randomized strategy is a convex combination
of some deterministic strategies. The probability of winning is a linear
function on the convex polyhedron corresponding to the set of all ran-
domized strategies which can be achieved combining those deterministic
strategies. It is well known that this function achieves its maximum on a
vertex of the polyhedron which corresponds to a deterministic strategy.

Let G and H be graphs. Assume that H ⊆ G. Since every vertex
from the set V (G) \ V (H) can always pass, and every vertex vi ∈ V (H)
can ignore the colors of vertices from the set NG(vi) \ NH(vi), it is easy
to see that the hat number of the graph G is greater than or equal to the
hat number of the graph H . It is that if H ⊆ G, then h(H) ≤ h(G).

Since K1 is a subgraph of every graph, we get h(G) ≥ 1
2
.

Let S be an optimal strategy for the graph G. By definition we
have p(S) = h(G). Since h(G) ≥ 1

2
, we get p(S) ≥ 1

2
.

Now we prove a fact characterizing the number of cases in which
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the loss of the team is caused by a statement of a vertex.

Fact 1. Let G be a graph and let vi be a vertex of G. Let S ∈ F(G). If
vi states its color in a situation, then the team loses in at least half of all
cases corresponding to this situation.

Proof. Assume that vi states its color in a situation T . Without loss
of generality we assume that in this situation vi states it is blue, that is
gi(T ) = b. In half of all cases corresponding to T we have c(vi) = r, it
means that vi is red. Thus, the team loses in every one of these cases,
because vi states its color wrong, as gi(T ) = b 6= r = c(vi). ♦

Corollary 2. Let G be a graph and let v be a vertex of G. If S ∈ F0(G)
is a strategy such that v always states its color, then h(G) = 1

2
.

Proof. Assumption indicates that in every case v states its color, so by
Fact 1 we have |Cl(S)| ≥ |C(G)|

2
. Consequently,

p(S) =
|Cw(S)|

|C(G)|
=

|C(G)| − |Cl(S)|

|C(G)|
≤

|C(G)| − |C(G)|
2

|C(G)|
=

1

2
.

Since p(S) ≤ 1
2

and S ∈ F0(G), we have h(G) ≤ 1
2

(by definition). On
the other hand we have h(G) ≥ 1

2
. ♦

In the following theorem we give a sufficient condition for deleting
a vertex of a graph without changing its hat number.

Theorem 3. Let G be a graph and let v be a vertex of G. If S ∈ F0(G)
is a strategy such that v never states its color, then h(G) = h(G − v).

Proof. Let S ′ ∈ F(G − v) be the strategy as follows: Every vertex not
adjacent to v in G behaves in the same way as in S, that is, if vi /∈ NG(v),
then g′

i = gi, where g′
i and gi are the guessing instructions for the vertex vi

in the strategies S ′ and S, respectively. First assume that |Cw(S, vb)| ≥
≥ |Cw(S, vr)|. Let every vertex adjacent to v in G behave in the same
way as in S when v is blue, that is, if vi ∈ NG(v), then g′

i = gi|Sti(G,vb).
The result of any case C ′ in the strategy S ′ is the same as the result of
the case C in the strategy S, where C is the corresponding case in which
v is blue, because in both strategies S ′ and S the vertex v never states
its color and every vertex in the strategy S ′ behaves in the same way as
in S when v is blue. This implies that |Cw(S ′)| = |Cw(S, vb)|. Now we
get

p(S ′) =
|Cw(S ′)|

2|V (G−v)|
=

|Cw(S, vb)|

2|V (G)|−1
=

2|Cw(S, vb)|

2|V (G)|
≥

≥
|Cw(S, vb)| + |Cw(S, vr)|

2|V (G)|
= p(S).
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If |Cw(S, vb)| < |Cw(S, vr)|, then similarly we get a strategy S ′ such that
p(S ′) > p(S). Since S ∈ F0(G) and S ′ ∈ F(G − v), we have

h(G) = p(S) ≤ p(S ′) ≤ h(G − v).

On the other hand we have h(G) ≥ h(G − v). ♦

Let S be a strategy for the graph G. Let C be a case in which some
vertex states its color. Since the rules of the hat problem are such that
one correct statement suffices to win, and one wrong statement causes
the loss, it is easy to see that a statement of any other vertex cannot
improve the result of the case C.

Now we solve the hat problem on paths.

Theorem 4. For every path Pn we have h(Pn) = 1
2
.

Proof. Let E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. We distinguish six possi-
bilities: n = 1, n = 2, n = 3, n = 4, n = 5, and n ≥ 6.

First, we assume that n = 1. Since P1 = K1, we have h(P1) =
= h(K1) = 1

2
.

Now assume that n = 2. Let S be an optimal strategy for P2. If
some vertex, say vi, never states its color, then by Th. 3 we have h(P2) =
= h(P2 − vi). Since P2 − vi = P1, we have h(P2) = h(P1) = 1

2
. Now

assume that v1 and v2 state their colors. If one of them always states its
color, then by Cor. 2 we have h(P2) = 1

2
. If, neither v1 nor v2 always

states its color, then without loss of generality we assume that v1 states
its color when v2 is blue, and in this situation it states it is blue. We
consider the following four possibilities: g2(b, ∗) = b (Table 1); g2(b, ∗) =
= r (Table 2); g2(r, ∗) = b (Table 3); g2(r, ∗) = r (Table 4). In the next
tables b means blue, r means red, + means correct statement (success),
− means wrong statement (loss), and blank square means passing.

In Tables 1, 2, and 3 we have |Cw(S)| = 1, |C(P2)| = 4, so p(S) =
= 1

4
< 1

2
, a contradiction.
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Table 1

No The color of The statement of Result
v1 v2 v1 v2

1 b b + + +
2 b r − −
3 r b − −
4 r r −

Table 2

No The color of The statement of Result
v1 v2 v1 v2

1 b b + − −
2 b r + +
3 r b − −
4 r r −

Table 3

No The color of The statement of Result
v1 v2 v1 v2

1 b b + +
2 b r −
3 r b − + −
4 r r − −

Table 4

No The color of The statement of Result
v1 v2 v1 v2

1 b b + +
2 b r −
3 r b − − −
4 r r + +

In Table 4 we have |Cw(S)| = 2, |C(P2)| = 4, so p(S) = 2
4

= 1
2
.

Since S ∈ F0(P2), we have h(P2) = 1
2
.

Now assume that n = 3. Let S be an optimal strategy for P3. If
v1 or v3 never states its color, then without loss of generality we assume
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that it is v1. By Th. 3 we have h(P3) = h(P3−v1). Since P3−v1 = P2, we
have h(P3) = h(P2) = 1

2
. Now assume that v1 and v3 state their colors.

If v1 or v3 always states its color, then by Cor. 2 we have h(P3) = 1
2
. If

neither v1 nor v3 always states its color, then without loss of generality
we assume that v1 states its color when v2 is blue, and in this situation
it states it is blue. We have the following two possibilities: (1) v3 states
its color when v2 is blue; (2) v3 does not state its color when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not state
its color when v2 is blue. Since in every case in which v2 is blue v1 states
its color, the statement of v3 cannot improve the result of any of these
cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(P3), the strategy S ′ is also
optimal for P3. If v3 never states its color in the strategy S ′, then we
have the possibility already considered. The other possibility when v3

states its color we consider in the next paragraph.
(2) Certainly, v3 states its color when v2 is red. Since v1 (v3, re-

spectively) states its color when v2 is blue (red, respectively), by Fact 1
we have

|Cl(S, vb
2)| ≥

|C(P3, v
b
2)|

2

(

|Cl(S, vr
2)| ≥

|C(P3, v
r
2)|

2
, respectively

)

.

This implies that

|Cl(S)| = |Cl(S, vb
2)|+ |Cl(S, vr

2)| ≥
|C(P3, v

b
2)|

2
+

|C(P3, v
r
2)|

2
=

|C(P3)|

2
.

Consequently,

p(S) =
|Cw(S)|

|C(P3)|
=

|C(P3)| − |Cl(S)|

|C(P3)|
≤

|C(P3)| −
|C(P3)|

2

|C(P3)|
=

1

2
.

Since S ∈ F0(P3), we have h(P3) ≤
1
2
. Since h(P3) ≥

1
2
, we get h(P3) =

= 1
2
.

Now assume that n = 4. Let S be an optimal strategy for P4. If
some vertex, say vi, never states its color, then by Th. 3 we have h(P4) =
= h(P4 − vi). If i ∈ {1, 4}, then P4 − vi = P3, so h(P4) = h(P3) = 1

2
.

If i ∈ {2, 3}, then P4 − vi = P1 ∪ P2. Since P1 ∪ P2 ⊆ P3, we have
h(P1 ∪ P2) ≤ h(P3) = 1

2
. Therefore, h(P4) = h(P1 ∪ P2) ≤ 1

2
. Since

h(P4) ≥ 1
2
, we get h(P4) = 1

2
. Now assume that every vertex states its

color. If some vertex always states its color, then by Cor. 2 we have
h(P4) = 1

2
. If no vertex always states its color, then without loss of

generality we assume that v1 states its color when v2 is blue, and in this
situation it states it is blue. Similarly, since NP4

[v1] ∩ NP4
[v4] = ∅, we
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may assume that v4 states its color when v3 is blue, and in this situation
it states it is blue. We consider the following two possibilities: (1) v2

states its color when v3 is blue, or v3 states its color when v2 is blue; (2)
v2 does not state its color when v3 is blue, and v3 does not state its color
when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v2 does not state its
color when v3 is blue, and v3 does not state its color when v2 is blue. Since
in every case in which v3 (v2, respectively) is blue v4 (v1, respectively)
states its color, the statement of v2 (v3, respectively) cannot improve the
result of any of these cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(P4),
the strategy S ′ is also optimal for P4. If v2 or v3 never states its color
in the strategy S ′, then we have the possibility already considered. The
other possibility when v2 and v3 state their colors we consider in the next
paragraph.

(2) If c(v1) = r and c(v2) = b, or c(v3) = b and c(v4) = r, then in
each of the 7 cases, the team loses. Certainly, v2 can state its color
only when v3 is red. Thus there are the following four possibilities:
(2.1) g2(b, ∗, r, ∗) = b; (2.2) g2(b, ∗, r, ∗) = r; (2.3) g2(r, ∗, r, ∗) = b;
(2.4) g2(r, ∗, r, ∗) = r.

(2.1) Since

|Cl(S, vb
1, v

r
2, v

r
3)| = |C(P4, v

b
1, v

r
2, v

r
3)| = 2

and
C(P4, v

b
1, v

r
2, v

r
3) ∩ (C(P4, v

r
1, v

b
2) ∪ C(P4, v

b
3, v

r
4)) = ∅,

the team loses in at least 7 + 2 = 9 cases, and wins in at most 7 cases.
It means that p(S) ≤ 7

16
< 1

2
, a contradiction.

Possibilities (2.2) and (2.3) are similar to (2.1).
(2.4) Certainly, v3 can state its color only when v2 is red. Thus

we have the following four possibilities: (2.4.1) g3(∗, r, ∗, b) = b; (2.4.2)
g3(∗, r, ∗, b) = r; (2.4.3) g3(∗, r, ∗, r) = b; (2.4.4) g3(∗, r, ∗, r) = r.

In possibilities (2.4.1), (2.4.2), and (2.4.3), without considering the
consequences of statements of v2, we get a similar contradiction as in
(2.1), (2.2), and (2.3).

(2.4.4) In this possibility, analyzed in Table 5, we have |Cw(S)| = 8,
|C(P4)| = 16, so p(S) = 8

16
= 1

2
. Since S ∈ F0(P4), we have h(P4) = 1

2
.

Now assume that n = 5. Let S be an optimal strategy for P5. If
for some i ∈ {1, 3, 5} the vertex vi never states its color, then by Th. 3
we have h(P5) = h(P5 − vi). If i ∈ {1, 5}, then P5 − vi = P4, so h(P5) =
= h(P4) = 1

2
. If i = 3, then P5 − v3 = P2 ∪ P2. Since P2 ∪ P2 ⊆ P4,
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we have h(P2 ∪ P2) ≤ h(P4) = 1
2
, so h(P5) = h(P2 ∪ P2) ≤ 1

2
. Since

h(P5) ≥ 1
2
, we get h(P5) = 1

2
. Now assume that every vertex from the

set {v1, v3, v5} states its color. If some of these vertices always states
its color, then by Cor. 2 we have h(P5) = 1

2
. If no vertex from the

set {v1, v3, v5} always states its color, then without loss of generality we
assume that v1 states its color when v2 is blue, and in this situation it
states it is blue. Similarly, since NP5

[v1] ∩ NP5
[v5] = ∅, we may assume

that v5 states its color when v4 is blue, and in this situation it states it is
blue. We consider the following two possibilities: (1) v3 states its color
when v2 or v4 is blue; (2) v3 does not state its color when v2 or v4 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not
state its color when v2 or v4 is blue. Since in every case in which v2

(v4, respectively) is blue, v1 (v5, respectively) states its color, the state-
ment of v3 cannot improve the result of any of these cases. Therefore,
p(S) ≤ p(S ′). Since S ∈ F0(P5), the strategy S ′ is also optimal for P5.

Table 5

No The color of The statement of Result
v1 v2 v3 v4 v1 v2 v3 v4

1 b b b b + + +
2 b b b r + − −
3 b b r b + +
4 b b r r + +
5 b r b b + +
6 b r b r − − −
7 b r r b −
8 b r r r + +
9 r b b b − + −
10 r b b r − − −
11 r b r b − − −
12 r b r r − − −
13 r r b b + +
14 r r b r − − −
15 r r r b + +
16 r r r r + + +

If v3 never states its color in the strategy S ′, then we have the possibility
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already considered. The other possibility when v3 states its color we
consider in the next paragraph.

(2) If c(v1) = r and c(v2) = b, or c(v4) = b and c(v5) = r, then in
each of the 23 + 23 − 2 = 14 cases the team loses. Certainly, v3 states its
color only when v2 and v4 are red. Without loss of generality we assume
that in this situation v3 states it is blue. If c(v2) = c(v3) = c(v4) =
= r, then in each of the 4 cases, the team loses. Since (C(P5, v

r
1, v

b
2) ∪

∪C(P5, v
b
4, v

r
5))∩C(P5, v

r
2, v

r
3, v

r
4) = ∅, the team loses in at least 14+4 = 18

cases, and wins in at most 14 cases. This implies that p(S) ≤ 14
32

< 1
2
, a

contradiction.
The result for n ≥ 6 we prove by the induction on the number of

vertices of a path. Let us assume that n is an integer such that n ≥ 6,
and h(Pn−1) = 1

2
. We will prove that h(Pn) = 1

2
. Let S be an optimal

strategy for Pn. If for some i ∈ {1, 3, n} the vertex vi never states its
color, then by Th. 3 we have h(Pn) = h(Pn − vi). If i ∈ {1, n}, then
Pn − vi = Pn−1, so h(Pn) = h(Pn−1) = 1

2
. If i = 3, then Pn − v3 = P2 ∪

∪ Pn−3. Since P2 ∪ Pn−3 ⊆ Pn−1, we have h(P2 ∪ Pn−3) ≤ h(Pn−1) = 1
2
,

so h(Pn) = h(P2 ∪ Pn−3) ≤ 1
2
. Since h(Pn) ≥ 1

2
, we get h(Pn) = 1

2
.

Now assume that every vertex from the set {v1, v3, vn} states its color.
If some from these vertices always states its color, then by Cor. 2 we
have h(Pn) = 1

2
. If no vertex from the set {v1, v3, vn} always states its

color, then without loss of generality we assume that v1 states its color
when v2 is blue, and in this situation it states it is blue. Similarly, since
NPn

[v1]∩NPn
[vn] = ∅, we may assume that vn states its color when vn−1

is blue, and in this situation it states it is blue. We consider the following
two possibilities: (1) v3 states its color when v2 is blue; (2) v3 does not
state its color when v2 is blue.

(1) Let the strategy S ′ differ from S only in that v3 does not state
its color when v2 is blue. Since in every case in which v2 is blue, v1 states
its color, the statement of v3 cannot improve the result of any of these
cases. Therefore, p(S) ≤ p(S ′). Since S ∈ F0(Pn), the strategy S ′ is
also optimal for Pn. If v3 never states its color in the strategy S ′, then
we have the possibility already considered. The other possibility when
v3 states its color we consider in the next paragraph.

(2) If c(v1) = r and c(v2) = b, or c(vn−1) = b and c(vn) = r, then
in each of the (1

4
+ 1

4
− 1

42 )|C(Pn)| = 7
16
|C(Pn)| cases the team loses.

Certainly, v3 can state its color only when v2 is red. Without loss of
generality we assume that v3 states its color when v2 is red and v4 is
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blue, and in this situation it states it is blue. If c(v2) = c(v3) = r and
c(v4) = b, then the team loses. All the cases in which c(vn−1) = b and
c(vn) = r have been counted, so it remains to count the such ones that
c(v2) = c(v3) = r, c(v4) = b, and (c(vn−1) = r or c(vn) = b). There
are 1

23 · 3
4
· |C(Pn)| = 3

32
|C(Pn)| such cases. This implies that the team

loses in at least ( 7
16

+ 3
32

)|C(Pn)| = 17
32
|C(Pn)| cases, and wins in at most

15
32
|C(Pn)| cases. It means that p(S) ≤ 15

32
< 1

2
, a contradiction. ♦

Now we solve the hat problem on trees.

Theorem 5. For every tree T we have h(T ) = 1
2
.

Proof. The result we prove by induction on the number of vertices of a
tree. If T has one vertex, that is T = K1, it is obvious that the theorem
is true. Let T be any tree with n ≥ 2 vertices, and let us assume that
h(T ′) = 1

2
for every tree T ′ with n − 1 vertices. Every tree has at least

two leafs (that is vertices of a tree having exactly one neighbour). If T
has exactly two leafs, then T is a path, and by Th. 4 we have h(T ) =
= 1

2
. If T has at least three leafs, then let v1, v2, and v3 be any three

of them. Let S be an optimal strategy for T . Since v1, v2, and v3 are
leafs, there are exactly two possible situations of each of them. If for
some i ∈ {1, 2, 3} the vertex vi never states its color, then by Th. 3 we
have h(T ) = h(T − vi). Since T − vi is a tree with n− 1 vertices, by the
inductive assumption we have h(T − vi) = 1

2
, and therefore h(T ) = 1

2
.

Now assume that every vertex from the set {v1, v2, v3} states its color.
If one of them always states its color, then by Cor. 2 we have h(T ) = 1

2
.

Now assume that every vertex from the set {v1, v2, v3} states its color in
exactly one situation. We consider the following two possibilities: (1) at
least two leafs from the set {v1, v2, v3} have the same neighbour, that is,
NT (vi) = NT (vj) for certain i, j ∈ {1, 2, 3}, i 6= j; (2) every leaf from the
set {v1, v2, v3} has another neighbour, that is, NT (v1) 6= NT (v2) 6= NT (v3)
and NT (v1) 6= NT (v3).

(1) Let us denote {x} = NT (vi) = NT (vj). We consider the fol-
lowing two possibilities: (1.1) vi and vj state their colors in the same
situation; (1.2) vi and vj state their colors in different situations.

(1.1) Without loss of generality we assume that vi and vj state their
colors when x is blue. Let the strategy S ′ differ from S only in that vj

does not state its color when x is blue, that is, vj never states its color.
Since in every case in which x is blue vi states its color, the statement
of vj cannot improve the result of any of these cases. Therefore, p(S) ≤
≤ p(S ′). Since S ∈ F0(T ), the strategy S ′ is also optimal for T . Since vj
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never states its color in the strategy S ′, we have the possibility already
considered.

(1.2) Without loss of generality we assume that vi states its color
when x is blue and vj states its color when x is red. By Fact 1 we have

|Cl(S, xb)| ≥
|C(T, xb)|

2
and |Cl(S, xr)| ≥

|C(T, xr)|

2
.

This implies that

|Cl(S)| = |Cl(S, xb)| + |Cl(S, xr)| ≥
|C(T, xb)|

2
+

|C(T, xr)|

2
=

|C(T )|

2
.

Consequently,

p(S) =
|Cw(S)|

|C(T )|
=

|C(T )| − |Cl(S)|

|C(T )|
≤

|C(T )| − |C(T )|
2

|C(T )|
=

1

2
.

Since S ∈ F0(T ), we have h(T ) ≤ 1
2
. Since h(T ) ≥ 1

2
, we get h(T ) = 1

2
.

(2) If i ∈ {1, 2, 3}, then let us denote NT (vi) = {v′
i}. Without loss

of generality we assume that v1 states its color when v′
1 is blue, and in

this situation it states it is blue. Similarly, since v′
1 6= v′

2 6= v′
3 and v′

1 6=
6= v′

3, we may assume that v2 states its color when v′
2 is blue and in this

situation it states it is blue, and v3 states its color when v′
3 is blue and

in this situation it states it is blue. No vertex from the set {v1, v2, v3}
states its color if and only if c(v′

1) = c(v′
2) = c(v′

3) = r. If (c(v1) = r and
c(v′

1) = b) or (c(v2) = r and c(v′
2) = b), or (c(v3) = r and c(v′

3) = b), then
in each of the (1− (1− 1

4
)3)|C(T )| = 37

64
|C(T )| cases the team loses. This

implies that the team wins in at most 27
64
|C(T )| cases. Consequently,

p(S) =
|Cw(S)|

|C(T )|
≤

27
64
|C(T )|

|C(T )|
=

27

64
<

1

2
,

a contradiction. ♦

Now we consider the hat problem on a graph such that the only
information we know about are the degrees of vertices. In the following
theorem we give an upper bound on the chance of success of any strategy
for the hat problem on a graph with given degrees of vertices.

Theorem 6. Let G be a graph and let S be any strategy for this graph.
Then

|Cw(S)| ≤
∑

v∈V (G)

⌊

2dG(v)+1 −
|Cw(S)|

2|V (G)|−dG(v)−1

⌋

· 2|V (G)|−dG(v)−1.

Proof. Let vi be a vertex of G. Every statement of the color in any
situation done by vi is wrong in exactly 2|V (G)|−dG(vi)−1 cases, because
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to every situation of vi correspond 2|V (G)|−dG(vi) cases, and in the half of
them vi has another color than it states it has. The vertex vi cannot
state its color in at least

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

situations, otherwise its statements are wrong in at least

2|V (G)|−dG(vi)−1

(⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

)

>

> 2|V (G)|−dG(vi)−1

(

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

)

= 2|V (G)| − |Cw(S)|

cases. This implies that the team loses in more than 2|V (G)| − |Cw(S)|
cases, and wins in less than

|C(G)| − (2|V (G)| − |Cw(S)|) = 2|V (G)| − 2|V (G)| + |Cw(S)| = |Cw(S)|

cases, but |Cw(S)| is the number of cases in which the team wins, a
contradiction. Since the vertex vi does not state its color in at least

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

+ 1

situations, it states its color in at most
⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

situations. Every statement of the color in any situation done by vi is
correct in exactly 2|V (G)|−dG(vi)−1 cases, because to every situation of vi

correspond 2|V (G)|−dG(vi)−1 cases, and in the half of them vi has the color
it states it has. Therefore, the statements of vi are correct in at most

⌊

2dG(vi)+1 −
|Cw(S)|

2|V (G)|−dG(vi)−1

⌋

· 2|V (G)|−dG(vi)−1

cases. This implies that the team wins in at most
∑

v∈V (G)

⌊

2dG(v)+1 −
|Cw(S)|

2|V (G)|−dG(v)−1

⌋

· 2|V (G)|−dG(v)−1

cases. ♦

In the following three facts we show that the upper bound from
the previous theorem together with integrality constraints is tight on
complete graphs with two, three, and four vertices, respectively.

Fact 7. h(K2) = 1
2
.

Proof. Let S be any strategy for K2. By Th. 6 we have
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|Cw(S)| ≤
∑

v∈V (K2)

⌊

2dK2
(v)+1 −

|Cw(S)|

2|V (K2)|−dK2
(v)−1

⌋

· 2|V (K2)|−dK2
(v)−1.

Since |V (K2)| = 2 and every vertex in K2 has exactly one neighbour, we
get

|Cw(S)| ≤ 2·⌊22−|Cw(S)|⌋ ⇔ |Cw(S)| ≤ 8−2|Cw(S)| ⇔ |Cw(S)| ≤ 2
2

3
.

This implies that |Cw(S)| ≤ 2, as n ∈ N . Consequently,

p(S) =
|Cw(S)|

|C(K2)|
≤

2

22
=

1

2
.

Since S is any strategy for K2, we have h(K2) ≤
1
2
. Since h(K2) ≥

1
2
, we

get h(K2) = 1
2
. ♦

Fact 8. h(K3) = 3
4
.

Proof. Let S be any strategy for K3. By Th. 6 we have

|Cw(S)| ≤
∑

v∈V (K3)

⌊

2dK3
(v)+1 −

|Cw(S)|

2|V (K3)|−dK3
(v)−1

⌋

· 2|V (K3)|−dK3
(v)−1.

Since |V (K3)| = 3 and every vertex in K3 has exactly two neighbours,
we get

|Cw(S)| ≤ 3·⌊23−|Cw(S)|⌋ ⇔ |Cw(S)| ≤ 24−3|Cw(S)| ⇔ |Cw(S)| ≤ 6.

Consequently,

p(S) =
|Cw(S)|

|C(K3)|
≤

6

23
=

3

4
.

Since S is any strategy for K3, we have h(K3) ≤
3
4
. Let S1 ∈ F(K3) be

the strategy such that every vertex considers colors of its two neighbours,
and if they are the same, it states it has the opposite color. If they
are different, it passes. It is easy to verify that |Cw(S1)| = 6. Since

|C(K3)| = 23 = 8, we have p(S1) = |Cw(S)|
|C(K3)|

= 6
8

= 3
4
. Since p(S1) ≤

≤ h(K3), we have h(K3) ≥ 3
4
. Since h(K3) ≥ 3

4
and h(K3) ≤ 3

4
, we get

h(K3) = 3
4
. ♦

Fact 9. h(K4) = 3
4
.

Proof. Let S be any strategy for K4. By Th. 6 we have

|Cw(S)| ≤
∑

v∈V (K4)

⌊

2dK4
(v)+1 −

|Cw(S)|

2|V (K4)|−dK4
(v)−1

⌋

· 2|V (K4)|−dK4
(v)−1.

Since |V (K4)| = 4 and every vertex in K4 has three neighbours, we get

|Cw(S)|≤4·⌊24−|Cw(S)|⌋⇔|Cw(S)| ≤ 64−4|Cw(S)|⇔|Cw(S)|≤12
4

5
.
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This implies that |Cw(S)| ≤ 12, as |Cw(S)| ∈ N . Consequently,

p(S) =
|Cw(S)|

|C(K4)|
≤

12

24
=

3

4
.

Since S is any strategy for K4, we have h(K4) ≤
3
4
. Since K3 ⊆ K4 and

h(K3) = 3
4
, we get h(K3) ≤ h(K4). Since h(K3) = 3

4
, we have h(K4) ≥

3
4
.

This implies that h(K4) = 3
4
. ♦

In the next fact we solve the hat problem on the graph K3 ∪ K2.

Fact 10. h(K3 ∪ K2) = 3
4
.

Proof. Let E(K3 ∪K2) = {v1v2, v2v3, v3v1, v4v5}. Let S be any strategy
for the graph K3 ∪ K2. By Th. 6 we have

|Cw(S)| ≤

≤
∑

v∈V (K3∪K2)

⌊

2dK3∪K2
(v)+1−

|Cw(S)|

2|V (K3∪K2)|−dK3∪K2
(v)−1

⌋

·2|V (K3∪K2)|−dK3∪K2
(v)−1.

Since dK3∪K2
(v1) = dK3∪K2

(v2) = dK3∪K2
(v3) = 2 and dK3∪K2

(v4) =
= dK3∪K2

(v5) = 1, we get

|Cw(S)| ≤ 3 · 22 ·

⌊

23 −
|Cw(S)|

22

⌋

+ 2 · 23 ·

⌊

22 −
|Cw(S)|

23

⌋

=

= 12

⌊

8 −
|Cw(S)|

4

⌋

+ 16

⌊

4 −
|Cw(S)|

8

⌋

.

This implies that

|Cw(S)| ≤ 12

(

8 −
|Cw(S)|

4

)

+ 16

(

4 −
|Cw(S)|

8

)

=

= 96 − 3|Cw(S)|+ 64 − 2|Cw(S)| = 160 − 5|Cw(S)|.

Now we easily get |Cw(S)| ≤ 160
6

= 262
3
. Since |Cw(S)| is an integer, we

have |Cw(S)| ≤ 26. Assume that |Cw(S)| = 26. We have

26 ≤ 12

⌊

8 −
26

4

⌋

+ 16

⌊

4 −
26

8

⌋

= 12 · 1 + 16 · 0 = 12,

a contradiction. Now assume that |Cw(S)| = 25. We have

25 ≤ 12

⌊

8 −
25

4

⌋

+ 16

⌊

4 −
25

8

⌋

= 12 · 1 + 16 · 0 = 12,

a contradiction. This implies that |Cw(S)| ≤ 24, and consequently,

p(S) = |Cw(S)|
|C(K3∪K2)|

≤ 24
32

. Since S is any strategy for K3 ∪ K2, we

have h(K3 ∪ K2) ≤ 3
4
. Since K3 ⊆ K3 ∪ K2 and h(K3) = 3

4
, we get

h(K3 ∪ K2) ≥ h(K3) = 3
4
. This implies that h(K3 ∪ K2) = 3

4
. ♦
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Abstract

The topic of our paper is the hat problem. In that problem, each of
n people is randomly fitted with a blue or red hat. Then everybody can
try to guess simultanously his own hat color looking at the hat colors
of the other people. The team wins if at least one person guesses his
hat color correctly and no one guesses his hat color wrong, otherwise
the team loses. The aim is to maximize the probability of win. In this
version every person can see everybody excluding him. We consider
such problem on a graph, where vertices are people, and a person can
see these people to which he is connected by an edge. The solution of
the hat problem is known for trees. In this paper we solve the problem
on the cycle C4.

Mathematics Subject Classification: 05C38, 05C57, 91A43

Keywords: hat problem, graph, cycle

1 Introduction

In the hat problem, a team of n people enters a room and a blue or red hat is
randomly placed on the head of each person. Each person can see the hats of all
of the other people but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have
had a chance to look at the other hats, each person must simultanously guess
the color of his own hat or pass. The team wins if at least one person guesses
his hat color correctly and no one guesses his hat color wrong, otherwise the
team loses. The aim is to maximize the probability of win.

The hat problem with seven people called ”seven prisoners puzzle” was
formulated by T. Ebert in his Ph.D. Thesis [1]. The hat problem with three
people was the subject of an article in The New York Times [3].
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The hat problem has many applications and connections to other areas
of science, for example: information technology, linear programming, genetic
programming, economy, biology, approximating Boolean functions, and au-
toreducibility of random sequences. Therefore, it is hoped that the hat prob-
lem on a graph considered in this paper, as a natural generalization, is worth
exploring, and may also have many applications.

In the hat problem on a graph, vertices are people and a person can see
these people, to which he is connected by an edge. This variant of the hat prob-
lem was first considered in [2] where there are proved some general theorems
about the hat problem on a graph, and the problem is solved on trees.

In this paper we solve the hat problem on the cycle with four vertices.

2 Preliminaries

For a graph G, by V (G) and E(G) we denote the set of vertices and the set
of edges of this graph, respectively. If H is a subgraph of G, then we write
H ⊆ G. Let v ∈ V (G). By NG(v) we denote the neighbourhood of v, that is
NG(v) = {x ∈ V (G) : vx ∈ E(G)}. By Pn (Cn, Kn, respectively) we denote
the path (cycle, complete graph, respectively) with n vertices.

Without loss of generality we may assume an ordering of the vertices of
a graph G, that is V (G) = {v1, v2, . . . , vn}.

If vi ∈ V (G), then c(vi) is the first letter of the color of vi, so c : V (G)
→ {b, r} is a function. By a case for the graph G we mean a sequence
(c(v1), c(v2), . . . , c(vn)). The set of all cases for the graph G we denote by
C(G), of course |C(G)| = 2|V (G)|.

If vi ∈ V (G), then by si we denote a function si : V (G) → {b, r, ∗},
where si(vj) is the first letter of the color of vj if vi sees vj, and mark ∗
otherwise, that is, si(vj) = c(vj) if vj ∈ NG(vi), while si(vj) = ∗ if vj
∈ V (G) \ NG(vi). By a situation of the vertex vi in the graph G we mean
the sequence (si(v1), si(v2), . . . , si(vn)). The set of all possible situations of vi
in the graph G we denote Sti(G). Of course, |Sti(G)| = 2|NG(vi)|.

Let vi ∈ V (G). We say that a case (c1, c2, . . . , cn) for the graph G cor-
responds to a situation (t1, t2, . . . , tn) of the vertex vi in the graph G if it is
created from this situation only by changing every mark ∗ to the letter b or
r. So, a case corresponds to a situation of vi if every vertex adjacent to vi,
in that case case has the same color as in that situation. To every situation
of the vertex vi in the graph G correspond 2|V (G)|−dG(vi) cases, because every
situation of vi has |V (G)| − dG(vi) marks ∗.

By a statement of a vertex we mean its declaration about the color it
guesses it is. By the effect of a case we mean a win or a loss. According to the
definition of the hat problem, the effect of a case is a win if at least one vertex
states its color correctly and no vertex states its color wrong. The effect of
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a case is a loss if no vertex states its color or somebody states its color wrong.
By a guessing instruction for the vertex vi ∈ V (G) (denoted by gi) we mean

a function gi : Sti(G) → {b, r, p} which, for a given situation, gives the first
letter of the color vi guesses it is or a letter p if vi passes. Thus a guessing
instruction is a rule which determines the conduct of the vertex vi in every
situation. By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn).
By F(G) we denote the family of all strategies for the graph G.

Let vi ∈ V (G) and S ∈ F(G). We say that vi never states its color in the
strategy S if vi passes in every situation, that is gi ≡ p. We say that vi always
states its color in the strategy S if vi states its color in every situation, that
is, for every T ∈ Sti(G) we have gi(T ) ∈ {b, r} (gi(T ) ̸= p, equivalently).

If S ∈ F(G), then by Cw(S) and Cl(S) we denote the sets of cases for
the graph G in which the team wins or loses, respectively. Of course, |Cw(S)|
+|Cl(S)| = |C(G)|. Consequently, by the chance of success of the strategy S

we mean the number p(S) = |Cw(S)|
|C(G)| . By the hat number of the graph G we

mean the number h(G) = max{p(S) : S ∈ F(G)}. Certainly p(S) ≤ h(G). We
say that the strategy S is optimal for the graph G if p(S) = h(G). By F0(G)
we denote the family of all optimal strategies for the graph G.

Let t,m1,m2, . . . ,mt ∈ {1, 2, . . . , n} be such thatmj ̸= mk and cmj
∈ {b, r},

for every j, k ∈ {1, 2, . . . , t}. By C(G, v
cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ) we denote the set of

cases for the graph G such that the first letter of the color of vmj
is cmj

.

The following theorems are from [2]. The first of them presents a relation
between the hat number of a graph and the hat number of its any subgraph.

Theorem 1 If H is a subgraph of G, then h(H) ≤ h(G).

Since the graph K1 is a subgraph of every graph, we get the following
Corollary.

Corollary 2 For every graph G we have h(G) ≥ 1
2
.

In the next two theorems there are considered optimal strategies such that
some vertex always (never, respectively) states its color.

Theorem 3 Let G be a graph and let v be a vertex of G. If S ∈ F0(G) is
a strategy such that v always states its color, then h(G) = 1

2
.

Theorem 4 Let G be a graph and let v be a vertex of G. If S ∈ F0(G) is
a strategy such that v never states its color, then h(G) = h(G− v).

The following theorem is the solution of the hat problem on paths.

Theorem 5 For every path Pn we have h(Pn) =
1
2
.
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The next fact is about the unnecessity of statements of any further vertices
in a case in which some vertex already states its color.

Fact 6 Let G be a graph and let S be a strategy for this graph. Let C be a case
in which some vertex states its color. Then a statement of any other vertex
cannot improve the effect of the case C.

Now we characterize the number of cases in which the loss of the team is
caused by a statement of a vertex.

Fact 7 Let G be a graph and let vi be a vertex of G. Let S ∈ F(G). If vi
states its color in a situation, then the team loses in at least half of all cases
corresponding to this situation.

3 Results

In the following theorem we solve the hat problem on the cycle with four
vertices.

Theorem 8 h(C4) =
1
2
.

Proof. Let S be an optimal strategy for C4 such that there is no situation in
which both v1 and v3 state its colors, and there is no situation in which both
v2 and v4 state its colors. Now we prove that such strategy exists. Let S ′ be
an optimal strategy for C4. Assume in S ′ there is a situation in which both
v1 and v3 state its colors, or there is a situation in which both v2 and v4 state
its colors. Let the strategy S differ from S ′ only by that v3 does not state its
color when v1 states its color, and v4 does not state its color when v2 states its
color. By Fact 6 the statements of v3 and v4 cannot improve the effect of any
from that cases. Therefore, p(S) ≥ p(S ′). Since S ′ ∈ F0(C4), the strategy S is
also optimal. In the strategy S there is no such situation in which both v1 and
v3 state its colors, and there is no such situation in which both v2 and v4 state
its colors. If some vertex in C4 never states its color, then let i ∈ {1, 2, 3, 4} be
such that vi never states its color. By Theorem 4 we have h(C4) = h(C4 − vi).
Since C4 − vi = P3, and by Theorem 5 we have h(P3) =

1
2
, we get h(C4) =

1
2
.

Now assume every vertex in C4 states its color. If some vertex in C4 always
states its color, then by Theorem 3 we have h(C4) =

1
2
. Now assume there is

no vertex in C4 such that always states its color. Every vertex states its color
in one, two, or three situations. We consider the following two possibilities:
(1) every vertex states its color in exactly one situation; (2) there is a vertex
which states its color in at least two situations.

(1) Any statement of any vertex in any situation is correct in exactly two
cases, because to every situation of any vertex correspond four cases, and in
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the half of them this vertex has the color it states it has. If every vertex states
its color in exactly one situation, then there are exactly 8 correct statements,
and even if every of them is in another case, then the team can win in at
most 8 cases. This implies that p(S) ≤ 8

16
= 1

2
. Since S ∈ F0(C4), we have

h(C4) ≤ 1
2
. Since by Corollary 2 we have h(C4) ≥ 1

2
, we get h(C4) =

1
2
.

(2) We consider the following two possibilities: (2.1) there is a vertex which
states its color in exactly three situations; (2.2) every vertex states its color in
at most two situations.

(2.1) Without loss of generality we assume v1 states its color in exactly
three situations. Since there is no such situation in which both v1 and v3 state
its colors, and v3 states its color in at least one situation, v3 states its color in
exactly one situation. Since in every from the situations (∗, b, ∗, b), (∗, b, ∗, r),
(∗, r, ∗, b), and (∗, r, ∗, r) the vertex v1 or v3 states his hat color, by Fact 7 we
have

|Cl(S, vb2, v
b
2)| ≥

|C(C4, v
b
2, v

b
2)|

2
, |Cl(S, vb2, v

r
2)| ≥

|C(C4, v
b
2, v

r
2)|

2
,

|Cl(S, vr2, v
b
2)| ≥

|C(C4, v
r
2, v

b
2)|

2
, and |Cl(S, vr2, v

r
2)| ≥

|C(C4, v
r
2, v

r
2)|

2
.

Consequently

|Cl(S)| = |Cl(S, vb2, v
b
2)|+ |Cl(S, vb2, v

r
2)|+ |Cl(S, vr2, v

b
2)|+ |Cl(S, vr2, v

r
2)|

≥ |C(C4, v
b
2, v

b
2)|

2
+
|C(C4, v

b
2, v

r
2)|

2
+
|C(C4, v

r
2, v

b
2)|

2
+
|C(C4, v

r
2, v

r
2)|

2
=

|C(C4)|
2

.

Now we get

p(S) =
|Cw(S)|
|C(C4)|

=
|C(C4)| − |Cl(S)|

|C(C4)|
≤

|C(C4)| − |C(C4)|
2

|C(C4)|
=

1

2
.

Since S ∈ F0(C4), we have h(C4) ≤ 1
2
. Since by Corollary 2 we have h(C4) ≥ 1

2
,

we get h(C4) =
1
2
.

(2.2) Since there is a vertex which states its color in exactly two situations,
without loss of generality we assume v1 states its color in exactly two situations.
We consider the following two possibilities: (2.2.1) v3 states its color in exactly
two situations; (2.2.2) v3 states its color in exactly one situation.

(2.2.1) Since in every from the situations (∗, b, ∗, b), (∗, b, ∗, r), (∗, r, ∗, b),
(∗, b, ∗, b) v1 or v3 states his hat color, by the same arguments as in (2.1), we
get h(C4) =

1
2
.

(2.2.2) We consider the following two possibilities: (a1) in both situations
in which v1 states its color, v2 has the same color or v4 has the same color; (a2)
in both situations in which v1 states its color, v2 has different colors, and v4



210 M. Krzywkowski

has different colors. We consider the following two possibilities: (b1) in both
situations v1 states it has the same color; (b2) in both situations v1 states it
has different colors.

Let vi ∈ {v1, v2}. Now we consider the following four possibilities: (2.2.2.1)
(a1),(b1); (2.2.2.2) (a1),(b2); (2.2.2.3) (a2),(b1); (2.2.2.4) (a2),(b2).

(2.2.2.1) Without loss of generality we assume v1 states its color in the
situations (∗, b, ∗, b) and (∗, b, ∗, r), and in these situations it states it is blue.
Also without loss of generality we assume v3 states its color in the situation
(∗, r, ∗, b), and in this situation it states it is blue. These statements are correct
in the cases: (b, b, b, b), (b, b, r, b), (b, b, b, r), (b, b, r, r), (b, r, b, b), and (r, r, b, b),
and are wrong in the cases: (r, b, b, b), (r, b, r, b), (r, b, b, r), (r, b, r, r), (b, r, r, b),
and (r, r, r, b),. To the situation (b, ∗, b, ∗) correspond three cases in which v1
or v3 states its color correctly, and the case (b, r, b, r) in which neither v1 nor
v3 states its color. By Fact 6, among cases corresponding to the situation
(b, ∗, b, ∗), the effect only of (b, r, b, r) can be improved. In two cases corre-
sponding to the situation (b, ∗, b, ∗) the statement of vi is wrong. This implies
that in at least one case corresponding to the situation (b, ∗, b, ∗) in which v1 or
v3 states its color correctly, vi states its color wrong. Therefore, the statement
of vi in the situation (b, ∗, b, ∗) cannot improve the chance of success. Thus
we assume vi does not states its color in the situation (b, ∗, b, ∗). Now let us
consider the cases corresponding to the situation (b, ∗, r, ∗). To the situation
(b, ∗, r, ∗) correspond two cases in which v1 or v3 states its color correctly, one
case in which v1 or v3 states its color wrong, and one in which vi does not state
its color. By Fact 6, among cases corresponding to the situation (b, ∗, r, ∗), the
effect only of (b, r, r, r) can be improved. To improve the effect of this case, the
statement of vi has to be correct in this case. Among four cases corresponding
to the situation (b, ∗, r, ∗) in two of them the statement of vi is wrong. This
implies that in some case corresponding to the situation (b, ∗, b, ∗) in which v1
or v3 states its color correctly, vi states its color wrong, making worse the eval-
uation of this case. Therefore, the statement of vi in the situation (b, ∗, r, ∗)
cannot improve the chance of success. Thus we may assume vi does not state
its color in the situation (b, ∗, r, ∗). There is only one case corresponding to
the situation (r, ∗, b, ∗) in which neither v1 nor v3 states its color. There in
also only one case corresponding to the situation (r, ∗, r, ∗) in which neither
v1 nor v3 states its color. Therefore, there are only two cases which effects
can be improved. This implies that the team wins in at most eight cases,
so p(S) = |Cw(S)|

|C(Cn)| ≤ 8
16

= 1
2
. Since S is an optimal strategy for G, we have

h(C4) ≤ 1
2
. Since by Theorem 1 we have h(C4) ≥ 1

2
, we get h(C4) =

1
2
.

(2.2.2.2) Without loss of generality we assume in the situation (∗, b, ∗, b) v1
states it is blue, and in the situation (∗, b, ∗, r) it states it is red. Also with-
out loss of generality we assume v3 states its color in the situation (∗, r, ∗, b),
and in this situation it states it is blue. These statements are correct in the
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cases: (b, b, b, b), (b, b, r, b), (r, b, b, r), (r, b, r, r), (b, r, b, b), and (r, r, b, b), and
are wrong in the cases: (r, b, b, b), (r, b, r, b), (b, b, b, r), (b, b, r, r), (b, r, r, b), and
(r, r, r, b). To the situation (b, ∗, b, ∗) correspond two correspond two cases in
which v1 or v3 states its color correctly, one case in which v1 or v3 states its
color wrong, and one in which neither v1 nor v3 states its color. To the situation
(r, ∗, b, ∗) also correspond two cases in which v1 or v3 states its color correctly,
one case in which v1 or v3 states its color wrong, and one in which neither v1
nor v3 states its color. By reasons similar as when considering the situation
(b, ∗, r, ∗) in (2.2.2.1), we may assume vi does not states its color in any of
the situations (b, ∗, b, ∗) and (r, ∗, b, ∗). To the situation (b, ∗, r, ∗) correspond
three cases in which v1 or v3 states its color, and one in which neither v1 nor v3
states its color. To the situation (r, ∗, r, ∗) also correspond three cases in which
v1 or v3 states its color, and one in which neither v1 nor v3 states its color.
Therefore, by Fact 6, there are two cases which effects can be improved. This
implies that the team wins in at most eight cases, so p(S) = |Cw(S)|

|C(C4)| ≤
8
16

= 1
2
.

(2.2.2.3) Without loss of generality we assume v1 states its color in the
situations (∗, b, ∗, b) and (∗, r, ∗, r), and in these situations it states it is blue.
Also without loss of generality we assume v3 states its color in the situation
(∗, r, ∗, b), and in this situation it states it is blue. These statements are correct
in the cases: (b, b, b, b), (b, b, r, b), (b, r, b, r), (b, r, r, r), (b, r, b, b), and (r, r, b, b),
and are wrong in the cases: (r, b, b, b), (r, b, r, b), (r, r, b, r), (r, r, r, r), (b, r, r, b),
and (r, r, r, b). To the situation (b, ∗, b, ∗) correspond three cases in which v1 or
v3 states its color correctly, and one in which neither v1 nor v3 states its color.
By reasons similar as in the situation (b, ∗, b, ∗) in (2.2.2.1), we may assume vi
does not state its color in the situation (b, ∗, b, ∗). To the situation (b, ∗, r, ∗)
correspond two cases in which v1 or v3 states its color correctly, one case in
which v1 or v3 states its color wrong, and one in which neither v1 nor v3 states
its color. By reasons similar in the situation (b, ∗, r, ∗) in (2.2.2.1), we may
assume vi does not states its color in the situation (b, ∗, r, ∗). To the situation
(r, ∗, b, ∗) corresponds only one case in which neither v1 nor v3 states its color,
and therefore statements of v2 or v4 can improve the effects of only two cases.
To the situation (r, ∗, r, ∗) also corresponds only one case in which neither v1
nor v3 states its color. Therefore, by Fact 6, there are two cases which effects
can be improved. This implies that the team wins in at most eight cases, so
p(S) = |Cw(S)|

|C(C4)| ≤
8
16

= 1
2
.

(2.2.2.4) Without loss of generality we assume in the situation (∗, b, ∗, b) v1
states it is blue, and in the situation (∗, r, ∗, r) it states it is red. Also with-
out loss of generality we assume v3 states its color in the situation (∗, r, ∗, b),
and in this situation it states it is blue. These statements are correct in the
cases: (b, b, b, b), (b, b, r, b), (r, r, b, r), (r, r, r, r), (b, r, b, b), and (r, r, b, b), and
are wrong in the cases: (r, b, b, b), (r, b, r, b), (b, r, b, r), (b, r, r, r), (b, r, r, b), and
(r, r, r, b). To the situation (b, ∗, b, ∗) correspond two cases in which v1 or v3
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states its color correctly, one case in which v1 or v3 states its color wrong,
and one in which neither v1 or v3 states its color. To the situation (r, ∗, b, ∗)
correspond two cases in which v1 or v3 states its color correctly, one case in
which v1 or v3 states its color wrong, and one in which neither v1 or v3 states
its color. By reasons similar as when considering the situation (b, ∗, r, ∗) in
(2.2.2.1), we may assume vi does not states its color in any of the situations
(b, ∗, b, ∗) and (r, ∗, b, ∗). To the situation (b, ∗, r, ∗) corresponds only one case
in which neither v1 nor v3 states its color, and therefore the statements of v2
or v4 can improve the effects of only two cases. To the situation (r, ∗, r, ∗) cor-
responds only one case in which neither v1 nor v3 states its color. Therefore,
by Fact 6, there are two cases which effects can be improved. This implies
that the team wins in at most eight cases, so p(S) = |Cw(S)|

|C(C4)| ≤ 8
16

= 1
2
, and

consequenty h(C4) =
1
2
.
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Abstract

The topic is the hat problem in which each of n players is ran-
domly fitted with a blue or red hat. Then everybody can try to guess
simultaneously his own hat color by looking at the hat colors of the
other players. The team wins if at least one player guesses his hat
color correctly, and no one guesses his hat color wrong; otherwise the
team loses. The aim is to maximize the probability of winning. In
this version every player can see everybody excluding himself. We
consider such a problem on a graph, where vertices correspond to
players, and a player can see each player to whom he is connected
by an edge. The solution of the hat problem on a graph is known
for trees and for the cycle C4. We solve the problem on cycles on at
least nine vertices.
Keywords: hat problem, graph, cycle.
AMS Subject Classification: 05C38, 05C99, 91A12.

1 Introduction

In the hat problem, a team of n players enters a room and a blue or red
hat is randomly placed on the head of each player. Each player can see
the hats of all of the other players but not his own. No communication of
any sort is allowed, except for an initial strategy session before the game
begins. Once they have had a chance to look at the other hats, each player
must simultaneously guess the color of his own hat or pass. The team wins
if at least one player guesses his hat color correctly and no one guesses his
hat color wrong; otherwise the team loses. The aim is to maximize the
probability of winning.

ARS COMBINATORIA 101(2011), pp. 3-13



The hat problem with seven players, called the “seven prisoners puzzle”,
was formulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was
also the subject of articles in The New York Times [24], Die Zeit [6], and
abcNews [23]. It is also a one of subjects of the webpage [4].
The hat problem with 2k − 1 players was solved in [14], and for 2k

players in [11]. The problem with n players was investigated in [7]. The
hat problem and Hamming codes were the subject of [8]. The generalized
hat problem with n people and q colors was investigated in [22].
There are many known variations of the hat problem (for a comprehen-

sive list, see [21]). For example in the papers [1, 10, 18] there was considered
a variation in which passing is not allowed, thus everybody has to guess
his hat color. The aim is to maximize the number of correct guesses. The
authors of [16] investigated several variations of the hat problem in which
the aim is to design a strategy guaranteeing a desired number of correct
guesses. In [17] there was considered a variation in which the probabilities
of getting hats of each colors do not have to be equal. The authors of [2]
investigated a problem similar to the hat problem. There are n players
which have random bits on foreheads, and they have to vote on the parity
of the n bits.
The hat problem and its variations have many applications and con-

nections to different areas of science (for a survey on this topic, see [21]),
for example: information technology [5], linear programming [16], genetic
programming [9], economics [1, 18], biology [17], approximating Boolean
functions [2], and autoreducibility of random sequences [3, 12–15]. There-
fore, it is hoped that the hat problem on a graph is worth exploring as
a natural generalization, and may also have many applications.
We consider the hat problem on a graph, where vertices correspond to

players and a player can see each player to whom he is connected by an
edge. This variation of the hat problem was first considered in [19]. There
were proven some general theorems about the hat problem on a graph, and
the problem was solved on trees. Additionally, there was considered the
hat problem on a graph such that the only known information are degrees
of vertices. In [20] the problem was solved on the cycle C4. It has been
proven that for both trees and the cycle C4 the maximum chance of success
is one by two. Thus in such graph an optimal strategy is for example such
in which one vertex always guesses it is blue, while the remaining vertices
always pass. It means that the structure of such graph does not improve
the maximum chance of success in the hat problem on a graph comparing
to the one-vertex graph.
We solve the hat problem on cycles on at least nine vertices.
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2 Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G)
and E(G), respectively. Let v ∈ V (G). The degree of vertex v, that is, the
number of its neighbors, we denote by dG(v). The path (cycle, respectively)
on n vertices we denote by Pn (Cn, respectively).
Let f : X → Y be a function, and let y ∈ Y . If for every x ∈ X we have

f(x) = y, then we write f ≡ y.
Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors,

where 1 corresponds to blue, and 2 corresponds to red.
By a case for a graph G we mean a function c : V (G) → {1, 2}, where

c(vi) means color of vertex vi. The set of all cases for the graph G we
denote by C(G); of course |C(G)| = 2|V (G)|.
By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0}

= {0, 1, 2}, where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise.
The set of all possible situations of vi in the graph G we denote by Sti(G);
of course |Sti(G)| = 2dG(vi).
We say that a case c for the graph G corresponds to a situation si of

vertex vi if c(vj) = si(vj), for every vj adjacent to vi. This implies that
a case corresponds to a situation of vi if every vertex adjacent to vi in that
case has the same color as in that situation. Of course, to every situation
of the vertex vi correspond exactly 2|V (G)|−dG(vi) cases.
By a guessing instruction of a vertex vi ∈ V (G) we mean a function

gi : Sti(G) → Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the
color vi guesses it is, or 0 if vi passes. Thus, a guessing instruction is a rule
determining the behavior of a vertex in every situation. We say that vi
never guesses its color if vi passes in every situation, that is, gi ≡ 0.
Let c be a case, and let si be the situation (of vertex vi) corresponding

to that case. The guess of vi in the case c is correct (wrong, respectively)
if gi(si) = c(vi) (0 ̸= gi(si) ̸= c(vi), respectively). Let S ∈ F(G) and let
vi ∈ V (G). By L(S, vi) we denote the set of cases for the graph G such
that in the strategy S the vertex vi guesses its color wrong. By result of
the case c we mean a win if at least one vertex guesses its color correctly,
and no vertex guesses its color wrong, that is, gi(si) = c(vi) (for some i)
and there is no j such that 0 ̸= gj(sj) ̸= c(vj). Otherwise the result of the
case c is a loss.
By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where

gi is the guessing instruction of vertex vi. The family of all strategies for
a graph G we denote by F(G).
If S ∈ F(G), then the set of cases for the graph G for which the team

wins (loses, respectively) using the strategy S we denote by W (S) (L(S),
respectively). By the chance of success of the strategy S we mean the
number p(S) = |W (S)|/|C(G)|. By the hat number of the graph G we mean
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the number h(G) = max{p(S) : S ∈ F(G)}. We say that a strategy S is
optimal for the graph G if p(S) = h(G). The family of all optimal strategies
for the graph G we denote by F0(G).
Let t ∈ {1, 2, . . . , n}, and let m1,m2, . . . ,mt ∈ {1, 2, . . . , n} be such

that mj ̸= mk for every j ̸= k. Let cm1 , cm2 , . . . , cmt ∈ {1, 2}. The
set of cases c for the graph G such that c(vmj ) = cmj we denote by
C(G, v

cm1
m1 , v

cm2
m2 , . . . , v

cmt
mt ).

By solving the hat problem on a graph G we mean finding the number
h(G).
Now we give an example of notation for the hat problem on the graphK3.

Of course, there are 23 = 8 possible cases. The vertices we denote by v1, v2,
and v3. Assume for example that in a case c the vertices v1 and v3 have the
first color, and the vertex v2 has the second color. Thus c(v1) = c(v3) = 1
and c(v2) = 2. Now let us consider situations of some vertex, say v1. The
vertex v1 can see that v2 has the second color and v3 has the first color. Of
course, the vertex v1 cannot see its own color. Thus s1(v1) = 0, s1(v2) = 2,
and s1(v3) = 1. We say that a case corresponds to that situation if each
one of the neighbors of v1 has the same color as in that situation. It is
easy to see that the case in which v1 and v2 have the second color and v3
has the first color corresponds to that situation. These are the only two
cases corresponding to that situation as 2|V (K3)|−dK3 (v1) = 23−2 = 2. Now
let us consider a guessing instruction of some vertex, say v2. Assume for
example that the vertex v2 guesses it has the first color when v1 and v3
have the second color; it guesses it has the second color when v1 and v3
have the first color; otherwise it passes. We have g2(202) = 1, g2(101) = 2,
and g2(102) = g2(201) = 0. If a case c is such that c(v1) = c(v3) = 1 and
c(v2) = 2, then the guess of v2 is correct as g2(101) = 2 = c(v2).
The following theorems are from [19]. The first of them is a lower bound

on the chance of success of an optimal strategy.

Theorem 1 Let G be a graph. If S is an optimal strategy for G, then
p(S) ≥ 1/2.

Now we give a sufficient condition for deleting a vertex of a graph with-
out changing its hat number.

Theorem 2 Let G be a graph and let v be a vertex of G. If there ex-
ists a strategy S ∈ F0(G) such that v never guesses its color, then h(G)
= h(G− v).

The following theorem is the solution of the hat problem on paths.

Theorem 3 For every path Pn we have h(Pn) = 1/2.

4



3 Results

In the next few pages we solve the hat problem on cycles on at least nine
vertices.
We assume that E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Let S be

a strategy for Cn such that every vertex guesses its color (rather than
passing) in exactly one situation. Let αi(S), βi(S), γi(S) ∈ {1, 2} (we
write αi, βi, γi) be such that the guess of vi is wrong when c(vi−1) = αi,
c(vi) = βi, and c(vi+1) = γi (i ∈ {2, 3, . . . , n− 1}), the guess of v1 is wrong
when c(vn) = α1, c(v1) = β1, and c(v2) = γ1, and the guess of vn is wrong
when c(vn−1) = αn, c(vn) = βn, and c(v1) = γn. For example, if the vertex
v2 guesses it has the second color when v1 has the first color and v3 has
the second color, then it follows that the vertex v2 guesses its color wrong
when c(v1) = c(v2) = 1 and c(v3) = 2. Therefore α(v2) = β(v2) = 1 and
γ(v2) = 2.
Let us consider strategies such that every vertex guesses its color (rather

than passing) in exactly one situation. In the following lemma we give such
strategy for which the number of cases in which some vertex guesses its
color wrong is as small as possible.

Lemma 4 Let us consider the family of all strategies for Cn such that every
vertex guesses its color (rather than passing) in exactly one situation. The
number of cases in which some vertex guesses its color wrong is minimal
for a strategy S such that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1

= βn = α1, and γn = β1 = α2.

Proof. First, we prove that we may assume that αn = γn−2. Consider
the possibility αn ̸= γn−2. Thus βn−1 = αn or βn−1 = γn−2, other-
wise αn = γn−2, a contradiction. Without loss of generality we assume
that βn−1 = γn−2. Since αn ̸= γn−2, we have γn−2 = βn−1 ̸= αn. Let
a strategy S′ differ from S only in that αn(S

′) ̸= αn(S) = αn. Thus
αn(S

′) = βn−1 = γn−2. Let B (B′, respectively) denote the set of cases
in which in the strategy S (S′, respectively) the vertex vn guesses its color
wrong, and at the same time another vertex also guesses its color wrong.
Thus B = L(S, vn) ∩

∪n−1
i=1 L(S, vi) and B′ = L(S′, vn) ∩

∪n−1
i=1 L(S′, vi).

We want to minimize the number of cases in which some vertex guesses its
color wrong. Therefore we want the number of cases in which vn guesses
its color wrong, and at the same time another vertex also guesses its color
wrong to be as great as possible. Since the strategies S and S′ differ
only in the behavior of the vertex vn, and for each set Ai (i ∈ {1, 2, . . . , n
−3}) the color of the vertex vn−1 is not determined, we have |L(S, vn)|
∩
∪n−3

i=1 L(S, vi)| = |L(S′, vn)| ∩
∪n−3

i=1 L(S′, vi)|. We also get |L(S, vn)
∩L(S, vn−2)| = |C(Cn, v

αn
n−1, v

βn
n , vγn

1 ) ∩ C(Cn, v
αn−2

n−3 , v
βn−2

n−2 , v
γn−2

n−1 )| = 0 as
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αn ̸= γn−2. Since αn ̸= βn−1, we have |L(S, vn) ∩ L(S, vn−1)| = |C(Cn,

vαn
n−1, v

βn
n , vγn

1 ) ∩ C(Cn, v
αn−1

n−2 , v
βn−1

n−1 , v
γn−1
n )| = 0. This implies that |B′|

≥ |B|, and therefore we may assume that αn = γn−2. Let us make this
assumption.
Now we prove that we may assume that βn−1 = γn−2. Consider the

possibility βn−1 ̸= γn−2. Let a strategy S′′ differ from S only in that
βn−1(S

′′) ̸= βn−1(S) = βn−1, thus βn−1(S
′′) = γn−2 = αn. Let us define

sets D and D′′ analogically as the sets B and B′. Similarly we get |D′′|
≥ |D|. Therefore we may assume that βn−1 = γn−2.
Because of the possibility of cyclic renumbering of vertices of the cycle,

we may assume that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1 = βn

= α1, and γn = β1 = α2.

If n ≥ 3 is an integer, then let

An = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1, for an i ∈ {2, 3, . . . , n−1}},

that is, An is the set of cases for Cn such that there are three vertices of the
first color the indices of which are consecutive integers. Let the sequence
{an}∞n=1 be such that an = |An| (n ≥ 3), and also a1 = a2 = 0.

In the following lemma we give a recursive formula for an (with n ≥ 4).

Lemma 5 For every integer n ≥ 4 we have an = 2n−3+an−3+an−2+an−1.

Proof. To find the number an, we have to count the cases for Cn such that
c(vi−1) = c(vi) = c(vi+1) = 1, for some i ∈ {2, 3, . . . , n − 1}. Let c be any
case for Cn. We consider the following four possibilities: (1) min{i : c(vi)
= 2} = 1; (2) min{i : c(vi) = 2} = 2; (3) min{i : c(vi) = 2} = 3; (4) c(v1)
= c(v2) = c(v3) = 1.
(1) There are an−1 such cases, because there are n−1 vertices which can

form a triple of vertices of the first color the indices of which are consecutive
integers.
(2) There are an−2 such cases, because there are n−2 vertices which can

form a triple of vertices of the first color the indices of which are consecutive
integers, as v2 has the second color, and v1 cannot belong to any triple
of vertices of the first color the indices of which are consecutive integers
because of the interruption of v2.
(3) There are an−3 such cases, due to reasons similar to those in (2).
(4) There are 2n−3 such cases, because v1, v2, and v3 form a triple of

vertices of the first color the indices of which are consecutive integers, and
there are 2n−3 possibilities of coloring the remaining n− 3 vertices.
From (1)–(4) it follows that an = 2n−3 + an−3 + an−2 + an−1.
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If n is an integer such that n ≥ 3, then let

Bn = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1 (for an i ∈ {2, 3, . . . , n− 1})
or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1},

that is, Bn is the set of cases for Cn such that there are three consecutive
vertices of the first color. Let the sequence {bn}∞n=3 be such that bn = |Bn|.

Now we give a relation between the number bn (with n ≥ 6), and the
elements of the sequence {an}∞n=1.

Lemma 6 If n ≥ 6 is an integer, then bn = 5 · 2n−6 + an − 2an−5 − an−6.

Proof. Let us consider the partition of the set Bn (the set of cases for
Cn such that there are three consecutive vertices of the first color) into
the following two sets. In the first set there are the cases for Cn such that
there are three vertices of the first color the indices of which are consecutive
integers. In the second set there are the cases for Cn such that there are
three consecutive vertices of the first color, but there are not any three
vertices of the first color the indices of which are consecutive integers. Thus

Bn = {c ∈ C(Cn) : c(vi−1)=c(vi)=c(vi+1)=1 (for an i ∈ {2, 3, . . . , n− 1})
or c(vn−1) = c(vn) = c(v1) = 1 or c(vn) = c(v1) = c(v2) = 1}

= {c ∈ C(Cn) : c(vi−1)= c(vi)=c(vi+1)=1, for an i ∈ {2, 3, . . . , n−1}}
∪ {c ∈ C(Cn) : c(vn−1)=c(vn)=c(v1)=1 or c(vn)=c(v1)=c(v2)=1,

and at the same time there is no i ∈ {2, 3, . . . , n− 1} such that
c(vi−1) = c(vi) = c(vi+1) = 1}

= An ∪ (Bn \An).

We have

bn = |Bn| = |An ∪ (Bn \An)| = |An|+ |Bn \An| = an + |Bn \An|.

Now let us find a formula for |Bn \An|. Let c be any case for Cn belonging
to the set Bn\An. We consider the following three possibilities: (1) c(vn−1)
= c(vn) = c(v1) = c(v2) = 1 (so also c(vn−2) = c(v3) = 2, as this case does
not belong to the set An); (2) c(vn−1) = 2 and c(vn) = c(v1) = c(v2) = 1
(so also c(v3) = 2, as this case does not belong to the set An); (3) c(vn−1)
= c(vn) = c(v1) = 1 and c(v2) = 2 (so also c(vn−2) = 2, as this case does
not belong to the set An), see Figure 1.
(1) There are 2n−6−an−6 such cases, because there are 2n−6 possibilities

of coloring the remaining n−6 vertices, and we do not count the an−6 cases
such that there are three vertices of the first color the indices of which are
consecutive integers.
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(2) There are 2n−5 − an−5 such cases, due to reasons analogical to that
in (1).
(3) There are 2n−5 − an−5 such cases, also due to reasons analogical to

that in (1).
It follows from (1), (2), and (3) that

|Bn \An| = 2n−6 − an−6 + 2(2n−5 − an−5) = 5 · 2n−6 − 2an−5 − an−6.

Since bn = an + |Bn \An|, we get bn = 5 · 2n−6 + an − 2an−5 − an−6.

a vertex of the first color

a vertex of the second color

a vertex of unknown color

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

v3

v4

v1

v2

vn−2

vn−3

vn

vn−1

Figure 1: Illustrations to the proof of Lemma 6:
possibilities (1), (2), and (3), respectively

Now we give a lower bound on the number bn (with n ≥ 9).

Lemma 7 For every integer n ≥ 9 we have bn > 2n−1.

Proof. First, we find the eleven initial elements of the sequence {an}∞n=1.
We calculate them recursively. If we try to solve the recurrence which
determines the elements of the sequence {an}∞n=1, then in the generating
function we get the expression x3+x2+x+1 corresponding to the so-called
tribonacci sequence for which the iterative formula is not known. Solving
the recurrence of the sequence {an}∞n=1 using tribonacci numbers, we can
only get a formula which is also recursive.
Using Lemma 5, the definition of the sequence {an}∞n=1, and the fact

that a3 = 1 (as the case in which every vertex has the first color is the only
one such case), we get

a1 = 0,
a2 = 0,
a3 = 1,
a4 = 2 + a1 + a2 + a3 = 2 + 0 + 0 + 1 = 3,
a5 = 22 + a2 + a3 + a4 = 4 + 0 + 1 + 3 = 8,
a6 = 23 + a3 + a4 + a5 = 8 + 1 + 3 + 8 = 20,
a7 = 24 + a4 + a5 + a6 = 16 + 3 + 8 + 20 = 47,
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a8 = 25 + a5 + a6 + a7 = 32 + 8 + 20 + 47 = 107,
a9 = 26 + a6 + a7 + a8 = 64 + 20 + 47 + 107 = 238,
a10 = 27 + a7 + a8 + a9 = 128 + 47 + 107 + 238 = 520,
a11 = 28 + a8 + a9 + a10 = 256 + 107 + 238 + 520 = 1121.

By Lemma 6 we get

b9 = 5 · 23 + a9 − 2a4 − a3
= 40 + 238 − 2 · 3 − 1
= 271
> 256 = 28.

Now assume that n ≥ 10. Since an = |An|, bn = |Bn|, and An ⊆ Bn

(see the definition of the set Bn), we get an ≤ bn. This implies that it
suffices to prove that an > 2n−1. We prove this by induction. We have
a10 = 520 > 512 = 29 and a11 = 1121 > 1024 = 210. Assume that n ≥ 10
is an integer, and we have an > 2n−1 and an+1 > 2n. We prove that
an+2 > 2n+1. By Lemma 5 and the inductive hypothesis we get

an+2 = 2n−1 + an−1 + an + an+1

> 2n−1 + 0 + 2n−1 + 2n

= 2n+1.

Now we solve the hat problem on cycles on at least nine vertices.

Theorem 8 For every integer n ≥ 9 we have h(Cn) = 1/2.

Proof. Let S be an optimal strategy for Cn. If some vertex, say vi, never
guesses its color, then by Theorem 2 we have h(Cn) = h(Cn − vi). Since
Cn − vi = Pn−1 and h(Pn−1) = 1/2 (by Theorem 3), we get h(Cn) = 1/2.
Now assume that every vertex guesses its color (rather than passing) in at
least one situation. We are interested in the possibility when the number
of cases for which the team loses is as small as possible. We assume that
every vertex guesses its color (rather than passing) in exactly one situation,
and we prove that these guesses suffice to cause the loss of the team in
more than half of all cases. Let us consider the strategy S′ ∈ F(Cn) such
that γi−1 = βi = αi+1 (i ∈ {2, 3, . . . , n − 1}), γn−1 = βn = α1, and γn
= β1 = α2. Without loss of generality we assume that γi−1 = βi = αi+1 = 1
(i ∈ {2, 3, . . . , n − 1}), γn−1 = βn = α1 = 1, and γn = β1 = α2 = 1.
Some vertex guesses its color wrong in the cases such that there are three
consecutive vertices of the first color. Using the definition of the sequence
{bn}∞n=3, there are bn such cases. From Lemma 4 we know that the number
of cases in which some vertex guesses its color wrong in the strategy S′

is minimal among all strategies for Cn such that every vertex guesses its
color (rather than passing) in exactly one situation. This implies that in
the strategy S in at least bn cases some vertex guesses its color wrong.
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Therefore the team loses for at least bn cases, that is, |L(S)| ≥ bn. Since
bn > 2n−1 (by Lemma 7), we have |L(S)| > 2n−1. Now we get

p(S) =
|W (S)|
|C(Cn)|

=
|C(Cn)| − |L(S)|

|C(Cn)|
<

2n − 2n−1

2n
=

1

2
,

a contradiction to Corollary 1.

Of course, h(C3) = 3/4. A natural issue is to determine the hat numbers
of cycles of length between four and eight. This will make the hat problem
on cycles solved. One can also investigate the problem on another classes
of graphs. This may be helpful for solving generally the hat problem on an
arbitrary graph.
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ON THE HAT PROBLEM ON A GRAPH
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Abstract. The topic of this paper is the hat problem in which each of n players is uni-
formly and independently fitted with a blue or red hat. Then everybody can try to guess
simultaneously his own hat color by looking at the hat colors of the other players. The team
wins if at least one player guesses his hat color correctly, and no one guesses his hat color
wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this
version every player can see everybody excluding himself. We consider such a problem on a
graph, where vertices correspond to players, and a player can see each player to whom he is
connected by an edge. The solution of the hat problem on a graph is known for trees and
for cycles on four or at least nine vertices. In this paper first we give an upper bound on
the maximum chance of success for graphs with neighborhood-dominated vertices. Next we
solve the problem on unicyclic graphs containing a cycle on at least nine vertices. We prove
that the maximum chance of success is one by two. Then we consider the hat problem on a
graph with a universal vertex. We prove that there always exists an optimal strategy such
that in every case some vertex guesses its color. Moreover, we prove that there exists a graph
with a universal vertex for which there exists an optimal strategy such that in some case no
vertex guesses its color. We also give some Nordhaus-Gaddum type inequalities.

Keywords: hat problem, graph, degree, neighborhood, neighborhood-dominated, unicyclic,
universal vertex, Nordhaus-Gaddum.
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1. INTRODUCTION

In the hat problem, a team of n players enters a room and a blue or red hat is
uniformly and independently placed on the head of each player. Each player can see
the hats of all of the other players but not his own. No communication of any sort
is allowed, except for an initial strategy session before the game begins. Once they
have had a chance to look at the other hats, each player must simultaneously guess
the color of his own hat or pass. The team wins if at least one player guesses his hat
color correctly and no one guesses his hat color wrong; otherwise the team loses. The
aim is to maximize the probability of winning.
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The hat problem with seven players, called the “seven prisoners puzzle”, was for-
mulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was also the subject
of articles in The New York Times [26], Die Zeit [6], and abcNews [25]. It is also one
of the Berkeley Riddles [4].

The hat problem with 2k − 1 players was solved in [14], and for 2k players in [11].
The problem with n players was investigated in [7]. The hat problem and Hamming
codes were the subject of [8]. The generalized hat problem with n people and q colors
was investigated in [24].

There are many known variations of the hat problem (for a comprehensive list,
see [22]). For example in [19] there was considered a variation in which players do
not have to guess their hat colors simultaneously. In the papers [1, 10, 18] there was
considered a variation in which passing is not allowed, thus everybody has to guess
his hat color. The aim is to maximize the number of correct guesses. The authors of
[16] investigated several variations of the hat problem in which the aim is to design a
strategy guaranteeing a desired number of correct guesses. In [17] there was considered
a variation in which the probabilities of getting hats of each colors do not have to be
equal. The authors of [2] investigated a problem similar to the hat problem. There are
n players which have random bits on foreheads, and they have to vote on the parity
of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science (for a survey on this topic, see [22]), for example: information
technology [5], linear programming [16], genetic programming [9], economics [1, 18],
biology [17], approximating Boolean functions [2], and autoreducibility of random
sequences [3, 12–15]. Therefore, it is hoped that the hat problem on a graph considered
in this paper is worth exploring as a natural generalization, and may also have many
applications.

We consider the hat problem on a graph, where vertices correspond to players and
a player can see each player to whom he is connected by an edge. This variation of the
hat problem was first considered in [20]. There were proven some general theorems
about the hat problem on a graph, and the problem was solved on trees. Additionally,
there was considered the hat problem on a graph such that the only known information
are degrees of vertices. In [21] the problem was solved on the cycle C4. The problem
on cycles on at least nine vertices was solved in [23].

In this paper first we give an upper bound on the maximum chance of success
for graphs with neighborhood-dominated vertices. We use this bound to solve the hat
problem on the graph obtained from K4 by the subdivision of one edge. We also prove
that there exists a graph having two vertices with the same open neighborhood for
which there exists an optimal strategy such that in some situation both those vertices
guess their colors. Next we solve the problem on unicyclic graphs containing a cycle
on at least nine vertices. We prove that the maximum chance of success is one by two.
Then we consider the hat problem on a graph with a universal vertex. We prove that
there always exists an optimal strategy such that in every case some vertex guesses its
color. Moreover, we prove that there exists a graph with a universal vertex for which
there exists an optimal strategy such that in some case no vertex guesses its color.
We also give some Nordhaus-Gaddum type inequalities.
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2. PRELIMINARIES

For a graph G, the set of vertices and the set of edges we denote by V (G) and E(G),
respectively. By complement of G, denoted by G, we mean a graph which has the
same vertices as G, and two distinct vertices of G are adjacent if and only if they are
not adjacent in G. If H is a subgraph of G, then we write H ⊆ G. Let v ∈ V (G). The
open neighborhood of v, that is {x ∈ V (G) : vx ∈ E(G)}, we denote by NG(v). We say
that a vertex of G is universal if it is adjacent to every one of the remaining vertices.
By a leaf we mean a vertex having exactly one neighbor. We say that a vertex v of
a graph G is neighborhood-dominated in G if there is some other vertex w ∈ V (G)
such that NG(v) ⊆ NG(w). We say that a graph is unicyclic if it contains exactly one
cycle as a subgraph.

The degree of vertex v, that is, the number of its neighbors, we denote by dG(v).
Thus dG(v) = |NG(v)|. The path (cycle, complete graph, respectively) on n vertices
we denote by Pn (Cn, Kn, respectively).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we write
f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where 1
corresponds to the blue color, and 2 corresponds to the red color.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi) means
color of vertex vi. The set of all cases for the graph G we denote by C(G), of course
|C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G) → Sc∪{0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).

We say that a case c for the graph G corresponds to a situation si of vertex vi

if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case corresponds
to a situation of vi if every vertex adjacent to vi in the case has the same color as
in the situation. Of course, to every situation of the vertex vi correspond exactly
2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)
→ Sc ∪ {∗} = {1, 2, ∗}, which for a given situation gives the color vi guesses if
gi(si) 6= ∗, otherwise vi passes. Thus a guessing instruction is a rule determining the
behavior of a vertex in every situation. We say that vi never guesses its color if vi

passes in every situation, that is, gi ≡ ∗.
Let c be a case, and let si be the situation (of vertex vi) corresponding to that

case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(∗ 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one vertex guesses its color correctly, and no vertex guesses its color wrong, that is,
gi(si) = c(vi) (for some i) and there is no j such that ∗ 6= gj(sj) 6= c(vj). Otherwise
the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is the
guessing instruction of vertex vi. The family of all strategies for a graph G we denote
by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
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respectively) using the strategy S we denote by W (S) (L(S), respectively). The set of
cases for which the team loses, and no vertex guesses its color we denote by Ln(S). By
the chance of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.
We say that a strategy S is optimal for the graph G if p(S) = h(G). The family of all
optimal strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
Let G and H be graphs. Assume that H ⊆ G. Since every vertex from the set

V (G) \ V (H) can always pass, and every vertex vi ∈ V (H) can ignore the colors of
vertices from the set NG(vi) \NH(vi), we get the following relation between numbers
h(H) and h(G).

Fact 2.1. If H is a subgraph of G, then h(H) ≤ h(G).

Since the one-vertex graph is a subgraph of every graph, we get the following
corollary.

Corollary 2.2. For every graph G we have h(G) ≥ 1/2.

Using the definition of an optimal strategy, we immediately get the following
corollary.

Corollary 2.3. Let G be a graph. If S ∈ F0(G), then p(S) ≥ 1/2.

The following four results are from [20]. The first of them states that there does
not exist any graph such that the team can always win.

Fact 2.4. For every graph G we have h(G) < 1.

Now we state that a guess of any other vertex is unnecessary in a case in which
some vertex already guesses its color.

Fact 2.5. Let G be a graph, and let S be a strategy for this graph. Let c be a case in

which some vertex guesses its color. Then a guess of any other vertex cannot improve

the result of the case c.

Now there is a sufficient condition for deleting a vertex of a graph without changing
its hat number.

Theorem 2.6. Let G be a graph, and let v be a vertex of G. If there exists a strategy

S ∈ F0(G) such that v never guesses its color, then h(G) = h(G − v).

The next theorem is the solution of the hat problem on trees.

Theorem 2.7. For every tree T we have h(T ) = 1/2.

The following solution of the hat problem on cycles on at least nine vertices is a
result from [23]. It was obtained by proving that even if every vertex guesses its color
in exactly one situation, then in at least half of all cases some vertex guesses its color
wrong, causing the loss of the team.

Theorem 2.8. For every integer n ≥ 9 we have h(Cn) = 1/2.
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3. HAT PROBLEM ON A GRAPH WITH NEIGHBORHOOD –
DOMINATED VERTICES

In this section we consider the hat problem on graphs with neighborhood-dominated
vertices.

First, we investigate optimal strategies for such graphs.

Theorem 3.1. Let G be a graph, and let v1 and v2 be vertices of G. If NG(v1)
⊆ NG(v2), then there exists an optimal strategy for the graph G such that there is no

case in which both vertices v1 and v2 guess their colors.

Proof. Suppose that for every optimal strategy for the graph G there exists a case
in which both v1 and v2 guess their colors. Let S be any optimal strategy for G. Let
c1, c2, . . . , ck be the cases in which both vertices v1 and v2 guess their colors. These
cases correspond to the situations s1

2, s
2
2, . . . , s

l
2 of v2 (si

2 6= sj
2 for i 6= j). Let the

strategy S′ for the graph G differ from S only in that v2 does not guess its color in
the situations s1

2, s
2
2, . . . , s

l
2. Since in every one of the cases corresponding to these

situations v1 guesses its color, by Fact 2.5 the guess of v2 cannot improve the result
of any one of these cases. Therefore p(S) ≤ p(S′). Since S ∈ F0(G), the strategy
S′ is also optimal. In this strategy there is no case in which both v1 and v2 guess
their colors.

Corollary 3.2. Let G be a graph, and let v1, v2, . . . , vk be vertices of G such that

NG(v1) = NG(v2) = . . . = NG(vk). Then there exists an optimal strategy for the

graph G such that in each situation at most one of the vertices v1, v2, . . . , vk guesses

its color.

In the next fact we state that there exists a graph having two vertices with the
same open neighborhood for which there exists an optimal strategy such that in some
situation both those vertices guess their colors.

Fact 3.3. There exists an optimal strategy for the path P3 such that in some situation

the two vertices having the same open neighborhood guess their colors.

Proof. Let E(P3) = {v1v2, v2v3}, and let S = (g1, g2, g3) ∈ F(P3) be the strategy as
follows.

g1(s1) =

{

1 if s1(v2) = 2,
0 otherwise,

g2(s2) ≡ 1,

g3(s3) =

{

1 if s3(v2) = 2,
0 otherwise.

It means that the vertices proceed as follows.

— The vertex v1. If v2 has the second color, then v1 guesses it has the first color,
otherwise it passes.

— The vertex v2 always guesses it has the first color.
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— The vertex v3. If v2 has the second color, then v3 guesses it has the first color,
otherwise it passes.

It is not difficult to verify that |W (S)| = 4. Since |C(P3)| = 8, we get p(S) =
4/8 = 1/2. By Theorem 2.7 we have h(P3) = 1/2, therefore the strategy S is optimal.
We have NP3

(v1) = NP3
(v3), and in the strategy S both vertices v1 and v3 guess their

colors in the situation when v2 has the second color.

Let G be a graph, and let A1, A2, . . . , Ak be a partition of the set of vertices of
G such that the open neighborhoods of the vertices of each set Ai can be linearly
ordered by inclusion.

Now we give an upper bound on the chance of success for any strategy for the hat
problem on a graph with neighborhood-dominated vertices.

Theorem 3.4. Let G be a graph, and let k mean the minimum number of sets to

which V (G) can be partitioned in a way described above. Then h(G) ≤ k/(k + 1).

Proof. Theorem 3.1 implies that there exists a strategy S ∈ F0(G) such that in
every case at most one vertex from each set Ai guesses its color. The number of
cases in which the vertices of Ai guess their colors in the strategy S is at most
2(2|V (G)| − |W (S)|), otherwise the number of cases in which some of these vertices
guesses its color wrong is greater than 2|V (G)| − |W (S)|. This implies that the team
loses for more than 2|V (G)|−|W (S)| cases, and therefore the number of cases for which
the team wins is less than |W (S)|. This is a contradiction as |W (S)| is the number of
cases for which the team wins. In half of all cases the guesses of the vertices of Ai are
correct, thus their guesses are correct in at most 2|V (G)|−|W (S)| cases. Therefore the
number of cases for which the team wins using the strategy S is less than or equal to
k(2|V (G)| − |W (S)|). This implies that p(S) = |W (S)|/2|V (G)| ≤ k/(k + 1).

Now we use the previous theorem to solve the hat problem on the graph H (given
in Figure 1). This graph is obtained from K4 by the subdivision of one edge.

v3

v4

v1

v2

v5

Fig. 1. The graph H

Fact 3.5. h(H) = 3/4.

Proof. It is easy to observe that NH(v1) ⊆ NH(v3) and NH(v2) = NH(v5). This
implies that we can partition the set of vertices of H into three sets the open neigh-
borhoods of which can be linearly ordered. By Theorem 3.4 we have h(G) ≤ 3/4. On
the other hand, by Fact 2.1 we get 3/4 = h(K3) ≤ h(H) as K3 ⊆ H .
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4. HAT PROBLEM ON A UNICYCLIC GRAPH

In this section we solve the hat problem on unicyclic graphs containing a cycle on at
least nine vertices.

Theorem 4.1. If G is a unicyclic graph containing the cycle Ck for some k ≥ 9,
then h(G) = 1/2.

Proof. The result we prove by induction on the number n of vertices of G. For n = k
the Theorem holds by Theorem 2.8. Now assume that n > k. Assume that for every
unicyclic graph G′ with n − 1 vertices containing Ck we have h(G′) = 1/2. Let S
be an optimal strategy for G. If some vertex, say vi, never guesses its color, then
by Theorem 2.6 we have h(G) = h(G − vi). If vi is a vertex of the cycle, then the
graph G− vi is a subgraph of a tree. Using Theorem 2.7 we get h(G− vi) ≤ 1/2, and
therefore h(G) ≤ 1/2. On the other hand, by Fact 2.2 we have h(G) ≥ 1/2. If vi is a
leaf (obviously, G has at least one leaf), then the graph G−vi is a unicyclic graph with
n − 1 vertices containing Ck. By the inductive hypothesis we have h(G − vi) = 1/2,
and therefore h(G) = 1/2. Now assume that every vertex of the cycle, and every leaf
guesses its color, that is, every one of these vertices guesses its color in at least one
situation. We are interested in the possibility when the number of cases for which the
team loses is as small as possible. We assume that every one of those vertices guesses
its color in exactly one situation, and we prove that these guesses suffice to cause the
loss of the team in more than a half of all cases. The vertices of the cycle we denote
by v1, v2, . . . , vk. Let vi and vi+1 be adjacent.

First assume that at least three vertices of the cycle have degree at least three.
This implies that G has at least three leaves having different neighbors. Observe that
each one of the leaves guesses its color wrong in a quarter of all cases. Since the
closed neighborhoods of the leaves are pairwise disjoint, the team wins for at most
(3/4)3 = 27/64 < 1/2 of all cases. This is a contradiction to Corollary 2.3.

Now assume that exactly two vertices of the cycle have degree at least three. Thus
G has at least two leaves, say x and y, which have different neighbors. The neighbor of
x (y, respectively) we denote by x′ (y′, respectively). Let vi mean a vertex of the cycle
such that x, y, x′, y′ /∈ NG[vi]. Let us observe that the vertex vi guesses its color wrong
in 1/8 of all cases as it has two neighbors. Each one of the leaves x and y guesses its
color wrong in a quarter of all cases. Since the closed neighborhoods of the vertices x,
y, and vi are pairwise disjoint, the team wins for at most (3/4)2 · 7/8 = 63/128 < 1/2
of all cases. This is a contradiction to Corollary 2.3.

Now assume that exactly one vertex of the cycle, say v1, has degree at least three.
Let x mean a leaf of Tk which is joined with v1 by a path which does not go through
any other vertex of the cycle. The vertex x guesses its color wrong in a quarter of
all cases. Each one of the vertices v3 and v4 guesses its color wrong in 1/8 of all
cases. Let us observe that both these vertices at the same time guess their colors
wrong in at most 1/16 of all cases. Thus they guess their colors wrong in at least
1/8 + 1/8 − 1/16 = 3/16 of all cases. Similarly we conclude that the vertices v7

and v8 guess their colors wrong in at least 3/16 of all cases. Disjointness of proper
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neighborhoods implies that the team wins for at most (13/16)2 ·3/4 = 507/1024 < 1/2
of all cases. This is a contradiction to Corollary 2.3.

5. HAT PROBLEM ON A GRAPH WITH A UNIVERSAL VERTEX

Now we consider the hat problem on graphs with a universal vertex.
We have the following property of optimal strategies for such graphs.

Fact 5.1. Let G be a graph, and let v be a universal vertex of G. If S is an optimal

strategy for the graph G, then for every situation of v, in at least one of two cases

corresponding to this situation some vertex guesses its color.

Proof. Let s be a situation of v. Suppose that the strategy S for the graph G is
optimal, and in the cases c and d corresponding to the situation s no vertex guesses
its color. Of course, for both these cases the team loses. Let the strategy S′ for the
graph G differ from S only in that in the situation s the vertex v guesses it has the
color which it has in the case c. In the strategy S′ the result of the case c is a win,
and d is a loss. This implies that |W (S′)| = |W (S)| + 1, and consequently,

p(S′) =
|W (S′)|
|C(G)| =

|W (S)| + 1

|C(G)| >
|W (S)|
|C(G)| = p(S),

a contradiction to the optimality of S.

Now, let us consider a strategy for a graph with a universal vertex such that there
are two cases corresponding to the same situation of a universal vertex, and in one
of them no vertex guesses its color, while in the second some vertex guesses its color.
In the following lemma we give a method of creating a strategy which is not worse
than that.

Lemma 5.2. Let G be a graph and let v be a universal vertex of G. Let c and d be

any cases corresponding to the same situation of v. Let S be a strategy for the graph

G such that in the case c no vertex guesses its color, and in the case d some vertex

guesses its color. Let the strategy S′ for the graph G differ from S only in that v, in

the situation to which correspond cases c and d, guesses it has the color which it has

in the case c. Then p(S′) ≥ p(S).

Proof. The result of the case c in the strategy S′ is a win, and in the strategy S is a
loss. The result of the case d in the strategy S′ is a loss. If the result of the case d in
the strategy S is also a loss, then |W (S′)| = |W (S)|+ 1. If the result of the case d in
the strategy S is a win, then |W (S′)| = |W (S)|. This implies that |W (S′)| ≥ |W (S)|.
Therefore p(S′) ≥ p(S).

It is possible to prove that if a graph has a universal vertex, then there exists an
optimal strategy such that in every case some vertex guesses its color. This implies
that to solve the hat problem on a graph with a universal vertex it suffices to examine
only strategies such that in every case some vertex guesses its color. Thus if in some
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case of a strategy no vertex guesses its color, then we can cease further examining
this strategy.

Theorem 5.3. If G is a graph with a universal vertex, then there exists a strategy

S ∈ F0(G) such that |Ln(S)| = 0.

Proof. Suppose that for every optimal strategy S for the graph G we have |Ln(S)| > 0.
Let S′ be an optimal strategy for G, and let c1, c2, . . . , cn be the cases in which no
vertex guesses its color. By Fact 5.1, any two of them do not correspond to the same
situation of v. Let the strategy S1 for the graph G differ from S′ only in that v, in the
situation to which corresponds the case c1, guesses it has the color which it has in the
case c1. By Lemma 5.2 we have p(S1) ≥ p(S′). Let the strategy S2 for the graph G
differ from S1 only in that v, in the situation to which corresponds the case c2, guesses
it has the color which it has in the case c2. By Lemma 5.2 we have p(S2) ≥ p(S1).
After n− 2 further analogical steps we get the strategy S = Sn for the graph G such
that p(S) ≥ p(Sn−1) ≥ . . . ≥ p(S2) ≥ p(S1) ≥ p(S′), and there is no case in which
no vertex guesses its color. Since the strategy S′ for the graph G is optimal, and
p(S) ≥ p(S′), the strategy S is also optimal. In every case in the strategy Sn some
vertex guesses its color, thus |Ln(S)| = 0.

In the next fact we state that there exists a graph with a universal vertex for which
there exists an optimal strategy such that in some case no vertex guesses its color.

Fact 5.4. There exists a strategy S ∈ F0(K2) such that |Ln(S)| > 0.

Proof. Let S = (g1, g2) ∈ F(K2) be the strategy as follows.

g1(s1) =

{

1 if s1(v2) = 1,

∗ otherwise,

g2(s2) =

{

2 if s2(v1) = 2,

∗ otherwise.

All cases we present in Table 1.

Table 1.

No The color of The guess of Result
v1 v2 v1 v2

1 1 1 + +
2 1 2 −
3 2 1 − − −
4 2 2 + +

From Table 1 we know that |W (S)| = 2 and |Ln(S)| = 1. We have |C(K2)| = 4,
thus p(S) = 2/4 = 1/2. The graph K2 is a tree, therefore by Theorem 2.7 we have
h(K2) = 1/2. Since h(K2) = 1/2, the strategy S is optimal for K2. Both vertices v1

and v2 are universal, and |Ln(S)| = 1 as in the case in which v1 has the first color,
and v2 has the second color no vertex guesses its color.
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6. A NORDHAUS-GADDUM TYPE INEQUALITIES

In this section we give some Nordhaus-Gaddum type inequalities.
In the following two theorems we give a lower and upper bounds on the product

(sum, respectively) of the hat number of a graph and the hat number of its comple-
ment.

Theorem 6.1. For every graph G we have 1/4 ≤ h(G)h(G) < 1.

Proof. By Corollary 2.2 we have h(G) ≥ 1/2 and h(G) ≥ 1/2, so h(G)h(G) ≥ 1/4.
Since by Fact 2.4 we have h(G)<1 and h(G)<1, we get h(G)h(G)<1.

Theorem 6.2. For every graph G we have 1 ≤ h(G) + h(G) < 2.

The proof is similar to that of Theorem 6.1.
Now we prove that for every number greater than or equal to quarter, and smaller

than one, there exists a graph for which the product of its hat number and the hat
number of its complement is greater than that number.

Theorem 6.3. For every α ∈ [1/4; 1) there is a graph G such that h(G)h(G) > α.

Proof. Let G be a graph with 2n vertices such that V (G) = {v1, v2, . . . , vn, v′1, v
′
2,

. . . , v′n} and E(G) = {vivj : i, j ∈ {1, 2, . . . , n}, i 6= j}. It is easy to see that E(G) =
{viv

′
j : i, j ∈ {1, 2, . . . , n}} ∪ {v′iv′j : i, j ∈ {1, 2, . . . , n}, i 6= j}. Since Kn is a subgraph

of both graphs G and G, by Fact 2.1 we have h(G) ≥ h(Kn) and h(G) ≥ h(Kn). To
prove that h(G)h(G) > α, it suffices to prove that (h(Kn))2 > α, that is h(Kn) >

√
α.

The authors of [14] have proven that for the hat problem with n = 2k−1 players there
exists a strategy giving the chance of success (2k−1)/2k. Since limk→∞(2k−1)/2k = 1,
for every α ∈ [1/4; 1) there exists a positive integer k such that for the hat problem
with n = 2k − 1 players there exists a strategy S such that p(S) ≥ 1 − 1/2k =
1 − 1/(n + 1) >

√
α. By definition we have h(Kn) ≥ p(S), thus h(Kn) >

√
α.

The following theorem says that for every number greater than or equal to one,
and smaller than two, there exists a graph for which the sum of its hat number and
the hat number of its complement is greater than that number.

Theorem 6.4. For every α ∈ [1; 2) there is a graph G such that h(G) + h(G) > α.

The proof is similar to that of Theorem 6.3.
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The hat problem on a union of disjoint graphs

Abstract. The topic is the hat problem in which each of n players is randomly
fitted with a blue or red hat. Then everybody can try to guess simultaneously his
own hat color by looking at the hat colors of the other players. The team wins if
at least one player guesses his hat color correctly, and no one guesses his hat color
wrong; otherwise the team loses. The aim is to maximize the probability of winning.
In this version every player can see everybody excluding himself. We consider such
a problem on a graph, where vertices correspond to players, and a player can see
each player to whom he is connected by an edge. The solution of the hat problem
is known for cycles and bipartite graphs. We investigate the problem on a union of
disjoint graphs.

2000 Mathematics Subject Classification: 05C99, 91A12.
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1. Introduction. In the hat problem, a team of n players enters a room and
a blue or red hat is randomly placed on the head of each player. Each player can
see the hats of all of the other players but not his own. No communication of any
sort is allowed, except for an initial strategy session before the game begins. Once
they have had a chance to look at the other hats, each player must simultaneously
guess the color of his own hat or pass. The team wins if at least one player guesses
his hat color correctly and no one guesses his hat color wrong; otherwise the team
loses. The aim is to maximize the probability of winning.

The hat problem with seven players, called the “seven prisoners puzzle”, was
formulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was also the
subject of articles in The New York Times [28], Die Zeit [6], and abcNews [27]. It
was also one of the Berkeley Riddles [4].

The hat problem with 2k−1 players was solved in [14], and for 2k players in [11].
The problem with n players was investigated in [7]. The hat problem and Hamming
codes were the subject of [8]. The generalized hat problem with n people and q
colors was investigated in [26].
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There are many known variations of the hat problem (for a comprehensive list,
see [24]). For example in [20] there was considered a variation in which players do
not have to guess their hat colors simultaneously. In the papers [1, 10, 19] there was
considered a variation in which passing is not allowed, thus everybody has to guess
his hat color. The aim is to maximize the number of correct guesses. The authors
of [17] investigated several variations of the hat problem in which the aim is to
design a strategy guaranteeing a desired number of correct guesses. In [18] there
was considered a variation in which the probabilities of getting hats of each colors
do not have to be equal. The authors of [2] investigated a problem similar to the
hat problem. There are n players which have random bits on foreheads, and they
have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science (for a survey on this topic, see [24]), for example: infor-
mation technology [5], linear programming [17], genetic programming [9], econo-
mics [1, 19], biology [18], approximating Boolean functions [2], and autoreducibility
of random sequences [3, 12–15]. Therefore, it is hoped that the hat problem on a
graph considered in this paper is worth exploring as a natural generalization, and
may also have many applications.

We consider the hat problem on a graph, where vertices correspond to players
and a player can see each player to whom he is connected by an edge. This variation
of the hat problem was first considered in [21]. There were proven some general
theorems about the hat problem on a graph, and the problem was solved on trees.
Additionally, there was considered the hat problem on a graph such that the only
known information are degrees of vertices. In [23] the hat problem was solved on the
cycle C4. In [25] the problem was solved on cycles on at least nine vertices. Then the
problem was solved on all odd cycles [22]. Uriel Feige [16] conjectured that for any
graph the maximum chance of success in the hat problem is equal to the maximum
chance of success for the hat problem on the maximum clique in the graph. He
provided several results that support this conjecture, and solved the hat problem
for bipartite graphs and planar graphs containing a triangle. He also proved that
the hat number of a union of disjoint graphs is the maximum hat number among
that graphs.

In this paper we consider the hat problem on a union of disjoint graphs. By the
union of two strategies (each for another graph) we mean the strategy for the union
of that graphs such that every vertex behaves in the same way as in the proper
strategy which is an element of the union. First, we give a sufficient condition for
that the union of strategies gives worse chance of success than some component of
the union. Next, we characterize when the union of strategies gives at least the same
(better, the same, respectively) chance of success as each component of the union.
Finally, we prove that there exists a disconnected graph for which there exists an
optimal strategy such that every vertex guesses its color.

2. Preliminaries. For a graph G, the set of vertices and the set of edges we
denote by V (G) and E(G), respectively. If H is a subgraph of G, then we write
H ⊆ G. Let v ∈ V (G). The degree of vertex v, that is, the number of its neighbors,
we denote by dG(v). The path (complete graph, respectively) on n vertices we denote
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by Pn (Kn, respectively).
Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where

1 corresponds to blue, and 2 corresponds to red.
By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi)

means color of vertex vi. The set of all cases for the graph G we denote by C(G),
of course |C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G)→ Sc∪{0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).

We say that a case c for the graph G corresponds to a situation si of vertex vi
if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case corresponds
to a situation of vi if every vertex adjacent to vi in that case has the same color as
in that situation. Of course, to every situation of the vertex vi correspond exactly
2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)
→ Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the color vi guesses it is,
or 0 if vi passes. Thus, a guessing instruction is a rule determining the behavior of
a vertex in every situation.

Let c be a case, and let si be the situation (of vertex vi) corresponding to that
case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(0 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one vertex guesses its color correctly, and no vertex guesses its color wrong, that is,
gi(si) = c(vi) (for some i) and there is no j such that 0 6= gj(sj) 6= c(vj). Otherwise
the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is
the guessing instruction of vertex vi. The family of all strategies for a graph G we
denote by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
respectively) using the strategy S we denote by W (S) (L(S), respectively). The set
of cases for which the team loses, and some vertex guesses its color (no vertex guesses
its color, respectively) we denote by Ls(S) (Ln(S), respectively). By the chance of
success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By the hat
number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}. We
say that a strategy S is optimal for the graph G if p(S) = h(G). The family of all
optimal strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
Since for every graph we can apply a strategy in which one vertex always guesses

it has, let us say, the first color, and the other vertices always pass, we immediately
get the following lower bound on the hat number of a graph.

Fact 2.1 For every graph G we have h(G) ­ 1/2.

The next solution of the hat problem on paths is a result from [21].

Theorem 2.2 For every path Pn we have h(Pn) = 1/2.
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3. Results. Let G and H be vertex-disjoint graphs, and let S1 ∈ F(G) and
S2 ∈ F(H). By the union of the strategies S1 and S2 we mean the strategy S ∈
F(G∪H) such that every vertex of G behaves in the same way as in S1, and every
vertex of H behaves in the same way as in S2. If S is the union of S1 and S2, then
we write S = S1 ∪ S2.

From now writing that G and H are graphs, we assume that they are vertex-
disjoint.

In the following theorem we give a sufficient condition for that the union of
strategies gives worse chance of success than some component of the union.

Theorem 3.1 Let G and H be graphs, and let S = S1 ∪ S2, where S1 ∈ F(G)
and S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| · |Ln(S2)|
< |Ls(S1)| · |Ls(S2)|, then p(S) < max{p(S1), p(S2)}.

Proof First, let us observe that |Ls(S1)| > 0, otherwise no vertex guesses its color,
and therefore |W (S1)| = 0. Consequently, p(S1) = 0, a contradiction. Similarly we
get |Ls(S2)| > 0. Now let us consider the strategy S = S1∪S2 for the graph G∪H.
The team wins if at least one vertex guesses its color correctly, and no vertex guesses
its color wrong, thus the team wins if:

(i) some vertex of G guesses its color correctly and no vertex of G guesses its
color wrong, and some vertex of H guesses its color correctly and no vertex
of H guesses its color wrong, or

(ii) some vertex of G guesses its color correctly and no vertex of G guesses its
color wrong, and no vertex of H guesses its color, or

(iii) no vertex ofG guesses its color, and some vertex ofH guesses its color correctly
and no vertex of H guesses its color wrong.

This implies that

|W (S)| = |W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|.

Since |C(G ∪H)| = |C(G)||C(H)|, we get

p(S) =
|W (S)|
|C(G ∪H)| =

|W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|
|C(G)||C(H)| .

We have

p(S) ­ max{p(S1), p(S2)} ⇔ (p(S) ­ p(S1) and p(S) ­ p(S2)).

Now we get the following chain of equivalences

p(S1) ¬ p(S) ⇔ |W (S1)|
|C(G)| ¬

|W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|
|C(G)||C(H)|

⇔ |W (S1)||C(H)| ¬ |W (S1)||W (S2)|+ |W (S1)||Ln(S2)|
+ |Ln(S1)||W (S2)|

⇔ |C(H)| ¬ |W (S2)|+ |Ln(S2)|+ |Ln(S1)||W (S2)||W (S1)|
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⇔ |Ls(S2)| ¬ |Ln(S1)||W (S2)||W (S1)|
.

Similarly we get

p(S) ­ p(S2)⇔ |Ln(S2)||W (S1)|
|W (S2)| ­ |Ls(S1)|.

Therefore we have
p(S) ­ max{p(S1), p(S2)}

if and only if

|Ln(S1)||W (S2)|
|W (S1)| ­ |Ls(S2)| and

|Ln(S2)||W (S1)|
|W (S2)| ­ |Ls(S1)|.

Consequently,

p(S) ­ max{p(S1), p(S2)} ⇒ |Ln(S1)| · |Ln(S2)| ­ |Ls(S1)| · |Ls(S2)|.

Equivalently,

|Ln(S1)| · |Ln(S2)| < |Ls(S1)| · |Ls(S2)| ⇒ p(S) < max{p(S1), p(S2)}.

Corollary 3.2 Let G and H be graphs, and let S = S1∪S2, where S1 ∈ F(G) and
S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| = 0 or |Ln(S2)| = 0,
then p(S) < max{p(S1), p(S2)}.

Proof As we have observed in the proof of Theorem 3.1, we have |Ls(S1)| > 0
and |Ls(S2)| > 0. Therefore |Ln(S1)| · |Ln(S2)| = 0 < |Ls(S1)| · |Ls(S2)|. Now, by
Theorem 3.1 we have p(S) < max{p(S1), p(S2)}. �

From now writing S1 ∈ F(G) and S2 ∈ F(H), we assume that p(S1) > 0,
p(S2) > 0, and |Ln(S1)| · |Ln(S2)| ­ |Ls(S1)| · |Ls(S2)|.

The following theorem determines when the union of strategies gives at least the
same chance of success as each component of the union.

Theorem 3.3 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) ­ max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)| ∈

[ |Ls(S1)|
|Ln(S2)| ;

|Ln(S1)|
|Ls(S2)|

]
.

Proof From the proof of Theorem 3.1 we know that

p(S) ­ max{p(S1), p(S2)}

if and only if

|Ln(S1)||W (S2)|
|W (S1)| ­ |Ls(S2)| and

|Ln(S2)||W (S1)|
|W (S2)| ­ |Ls(S1)|.
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Since |Ln(S1)| > 0, |Ln(S2)| > 0, and |Ls(S2)| > 0 (see the proof of Theorem 3.1),
the condition above is equivalent to that

|W (S1)|
|W (S2)| ¬

|Ln(S1)|
|Ls(S2)| and

|W (S1)|
|W (S2)| ­

|Ls(S1)|
|Ln(S2)| ,

that is
|Ls(S1)|
|Ln(S2)| ¬

|W (S1)|
|W (S2)| ¬

|Ln(S1)|
|Ls(S2)| .

The interval [ |Ls(S1)|
|Ln(S2)| ;

|Ln(S1)|
|Ls(S2)|

]

is nonempty, because |Ln(S1)| · |Ln(S2)| ­ |Ls(S1)| · |Ls(S2)|. Concluding,

p(S) ­ max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)| ∈

[ |Ls(S1)|
|Ln(S2)| ;

|Ln(S1)|
|Ls(S2)|

]
.

Corollary 3.4 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) < max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)| /∈

[ |Ls(S1)|
|Ln(S2)| ;

|Ln(S1)|
|Ls(S2)|

]
.

The following two theorems determine when the union of strategies gives better
(or the same) chance of success than each component of the union. The proof of each
one of these two theorems is similar to proofs of Theorems 3.1 and 3.3. Therefore
we do not prove them.

Theorem 3.5 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) > max{p(S1), p(S2)} ⇔ |W (S1)|
|W (S2)| ∈

( |Ls(S1)|
|Ln(S2)| ;

|Ln(S1)|
|Ls(S2)|

)
.

Theorem 3.6 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) = p(S1)⇔ |W (S1)|
|W (S2)| =

|Ln(S1)|
|Ls(S2)|

and

p(S) = p(S2)⇔ |W (S1)|
|W (S2)| =

|Ls(S1)|
|Ln(S2)| .
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Corollary 3.7 Assume that G and H are graphs, and S = S1 ∪ S2, where S1

∈ F(G) and S2 ∈ F(H). Let i ∈ {1, 2} be such that p(Si) = max{p(S1), p(S2)}, and
let j ∈ {1, 2}, j 6= i. Then

p(S) = max{p(S1), p(S2)} ⇔ |W (Si)|
|W (Sj)|

=
|Ln(Si)|
|Ls(Sj)|

.

It is possible to prove that there exists a disconnected graph for which there
exists an optimal strategy such that every vertex guesses its color. First, we solve
the hat problem on such graph, K2 ∪K2.

Fact 3.8 h(K2 ∪K2) = 1/2.

Proof We have K2∪K2 ⊆ P4, thus h(K2∪K2) ¬ h(P4). By Theorem 2.2 we have
h(P4) = 1/2. Therefore h(K2 ∪K2) ¬ 1/2. On the other hand, by Fact 2.1 we have
h(K2 ∪K2) ­ 1/2. �

Fact 3.9 There exists an optimal strategy for the graph K2 ∪K2 such that every
vertex guesses its color.

Proof Let S′ = (g1, g2) ∈ F(K2) be the strategy as follows.

g1(s1) =
{

1 if s1(v2) = 1,
0 otherwise;

g2(s2) =
{

2 if s2(v1) = 2,
0 otherwise.

It means that the vertices proceed as follows.

• The vertex v1. If v2 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v2. If v1 has the second color, then it guesses it has the second
color, otherwise it passes.

All cases we present in Table 1, where the symbol + means correct guess (success),
− means wrong guess (loss), and blank square means passing.

No The color of The guess of Result
v1 v2 v1 v2

1 1 1 + +
2 1 2 −
3 2 1 − − −
4 2 2 + +

Table 1
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From Table 1 we know that |W (S′)| = 2, |Ln(S′)| = 1, and |Ls(S′)| = 1. Since
|C(K2)| = 4, we get p(S′) = |W (S′)|/|C(K2)| = 2/4 = 1/2. Let S = S1 ∪ S2

∈ F(K2 ∪K2), where S1 = S2 = S′. We have |W (S1)|/|W (S2)| = |W (S′)|/|W (S′)|
= 1 and |Ln(S1)|/|Ls(S2)| = |Ln(S′)|/|Ls(S′)| = 1/1 = 1. Since |W (S1)|/|W (S2)|
= |Ln(S1)|/|Ls(S2)|, by Theorem 3.6 we get p(S) = p(S1). We have S1 = S′ and
p(S′) = 1/2, thus p(S) = 1/2. By Fact 3.8 we have h(K2 ∪K2) = 1/2. This implies
that the strategy S is optimal. In this strategy every vertex guesses its color. �

Now we prove this fact elementary.

Proof Let E(K2 ∪K2) = {v1v2, v3v4}, and let S = (g1, g2, g3, g4) be the strategy
for K2 ∪K2 as follows.

g1(s1) =
{

1 if s1(v2) = 1,
0 otherwise;

g2(s2) =
{

2 if s2(v1) = 2,
0 otherwise;

g3(s3) =
{

1 if s3(v4) = 1,
0 otherwise;

g4(s4) =
{

2 if s4(v3) = 2,
0 otherwise.

It means that the vertices proceed as follows.

• The vertex v1. If v2 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v2. If v1 has the second color, then it guesses it has the second
color, otherwise it passes.

• The vertex v3. If v4 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v4. If v3 has the second color, then it guesses it has the second
color, otherwise it passes.

All cases we present in Table 2. From this table we get |W (S)| = 8. We have
|C(K2 ∪K2)| = 16, thus p(S) = 8/16 = 1/2. Similarly as in the previous proof we
conclude that the strategy S is optimal. In this strategy every vertex guesses its
color. �
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No The color of The guess of Result
v1 v2 v3 v4 v1 v2 v3 v4

1 1 1 1 1 + + +
2 1 1 1 2 + +
3 1 1 2 1 + − − −
4 1 1 2 2 + + +
5 1 2 1 1 + +
6 1 2 1 2 −
7 1 2 2 1 − − −
8 1 2 2 2 + +
9 2 1 1 1 − − + −
10 2 1 1 2 − − −
11 2 1 2 1 − − − − −
12 2 1 2 2 − − + −
13 2 2 1 1 + + +
14 2 2 1 2 + +
15 2 2 2 1 + − − −
16 2 2 2 2 + + +

Table 2
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MARCIN KRZYWKOWSKI

Communicated by Stephen W. Semmes

Abstract. The topic is the hat problem in which each of n players is ran-

domly fitted with a blue or red hat. Then everybody can try to guess

simultaneously his own hat color by looking at the hat colors of the other

players. The team wins if at least one player guesses his hat color correctly,

and no one guesses his hat color wrong; otherwise the team loses. The aim

is to maximize the probability of a win. In this version every player can see

everybody excluding himself. We consider such a problem on a graph, where

vertices correspond to players, and a player can see each player to whom he

is connected by an edge. The hat problem on a graph was solved for trees

and for the cycle on four vertices. Then Uriel Feige conjectured that for

any graph the maximum chance of success in the hat problem is equal to

the maximum chance of success for the hat problem on the maximum clique

in the graph. He provided several results that support this conjecture, and

solved the hat problem for bipartite graphs and planar graphs containing

a triangle. We make a step towards proving the conjecture of Feige. We

solve the hat problem on all cycles of odd length. Of course, the maximum

chance of success for the hat problem on the cycle on three vertices is three

fourths. We prove that the hat number of every odd cycle of length at least

five is one half, which is consistent with the conjecture of Feige.

1. Introduction

In the hat problem, a team of n players enters a room and a blue or red hat is
randomly placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, each player must simultaneously guess the

2000 Mathematics Subject Classification. 05C38, 05C99, 91A12.

Key words and phrases. Hat problem, graph, cycle.
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color of his own hat or pass. The team wins if at least one player guesses his hat
color correctly and no one guesses his hat color wrong; otherwise the team loses.
The aim is to maximize the probability of a win.

The hat problem with seven people called ”seven prisoners puzzle” was for-
mulated by T. Ebert in his Ph.D. Thesis [4]. There are known many variations
of the hat problem (for a comprehensive list, see [9]). For example in [6] there
was considered a variation in which players do not have to guess their hat colors
simultaneously. In [2] there was considered a variation in which passing is not
allowed, thus everybody has to guess his hat color. The aim is to maximize the
number of correct guesses. N. Alon [1] has proved a lower bound on the chance of
success for the generalized hat problem with n people and q colors. This problem
was also studied in [10]. The hat problem with three people was the subject of
an article in The New York Times [11].

We consider the hat problem on a graph, where vertices correspond to players
and a player can see each player to whom he is connected by an edge. This
variation of the hat problem was first considered in [7]. There were proven some
general theorems about the hat problem on a graph, and the problem was solved
on trees. Additionally, there was considered the hat problem on a graph such that
the only known information are degrees of vertices. In [8] the problem was solved
on the cycle C4. Uriel Feige [5] conjectured that for any graph the maximum
chance of success in the hat problem is equal to the maximum chance of success
for the hat problem on the maximum clique in the graph. He provided several
results that support this conjecture, and solved the hat problem for bipartite
graphs and planar graphs containing a triangle. Feige proved that if a graph is
such that the chromatic number equals the number of vertices of the maximum
clique, then the conjecture is true. A well known class of graphs for which the
chromatic number equals the number of vertices of the maximum clique is that
of perfect graphs (where that equality holds not only for the graph, but also for
all its subgraphs). Thus Feige solved the hat problem for all perfect graphs. By
the strong perfect graph theorem [3], every graph for which neither it nor its
complement contains an induced odd cycle of length at least five is perfect. We
solve the hat problem on all cycles of odd length. Of course, the maximum chance
of success for the hat problem on the cycle on three vertices is three fourths. We
prove that the hat number of every odd cycle of length at least five is one half,
which is consistent with the conjecture of Feige.
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2. Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G)
and E(G), respectively. If H is a subgraph of G, then we write H ⊆ G. The
path (cycle, respectively) on n vertices we denote by Pn (Cn, respectively). The
neighborhood of a vertex v of G, that is {x ∈ V (G) : vx ∈ E(G)}, we denote by
NG(v). We say that a vertex v is neighborhood-dominated if there is some other
vertex u such that NG(v) ⊆ NG(u).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we
write f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where
1 corresponds to the blue color, and 2 corresponds to the red color.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi)
means color of vertex vi. The set of all cases for the graph G we denote by C(G),
of course |C(G)| = 2|V (G)|. If c ∈ C(G), then to simplify notation, we write
c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. For
example, if a case c ∈ C(C5) is such that c(v1) = 2, c(v2) = 1, c(v3) = 1, c(v4) = 2,
and c(v5) = 1, then we write c = 21121.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0}
= {0, 1, 2}, where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The
set of all possible situations of vi in the graph G we denote by Sti(G), of course
|Sti(G)| = 2dG(vi). If si ∈ Sti(G), then for simplicity of notation, we write si

= si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.
For example, if s3 ∈ St3(C5) is such that s3(v2) = 2 and s3(v4) = 1, then we
write s3 = 02010.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)
→ Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the color vi guesses it
is, or 0 if vi passes. Thus guessing instruction is a rule determining behavior of
a vertex in every situation. We say that vi never guesses its color if vi passes in
every situation, that is, gi ≡ 0. We say that vi always guesses its color if vi guesses
its color in every situation, that is, for every si ∈ Sti(G) we have gi(si) ∈ {1, 2}
(gi(si) 6= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding to that
case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(0 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at
least one vertex guesses its color correctly, and no vertex guesses its color wrong,
that is, gi(si) = c(vi) (for some i) and there is no j such that 0 6= gj(sj) 6= c(vj).
Otherwise the result of the case c is a loss.
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By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is
the guessing instruction of vertex vi. The family of all strategies for a graph G

we denote by F(G).
If S ∈ F(G), then the set of cases for the graph G for which the team

wins (loses, respectively) using the strategy S we denote by W (S) (L(S), re-
spectively). By the chance of success of the strategy S we mean the number
p(S) = |W (S)|/|C(G)|. By the hat number of the graph G we mean the number
h(G) = max{p(S) : S ∈ F(G)}. We say that a strategy S is optimal for the
graph G if p(S) = h(G). The family of all optimal strategies for the graph G we
denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
The following four results are from [7].

Theorem 2.1. If H is a subgraph of G, then h(H) ≤ h(G).

Corollary 2.2. For every graph G we have h(G) ≥ 1/2.

The following theorem is the solution of the hat problem on paths.

Theorem 2.3. For every path Pn we have h(Pn) = 1/2.

Now there is a sufficient condition for the removal of a vertex of a graph without
changing its hat number.

Theorem 2.4. Let G be a graph, and let v be a vertex of G. If there exists
a strategy S ∈ F0(G) such that v never guesses its color, then h(G) = h(G− v).

Uriel Feige [5] proved the following result.

Lemma 2.5. Let G be a graph. If v is a neighborhood-dominated vertex of G,
then h(G) = h(G− v).

3. Results

To solve the hat problem on odd cycles of length at least five, we need the fact
that h(C5) = 1/2, see Lemma 3.2. Now we prove our main result.

Theorem 3.1. If n ≥ 5 is an odd integer, then h(Cn) = 1/2.

Proof. We obtain the result by induction on the length of the cycle. For n = 5
the theorem is true by Lemma 3.2. Now assume that n ≥ 7 is an odd integer, and
h(Cn−2) = 1/2. Let Hn = Cn ∪ v1v4. By Theorem 2.1 we have h(Hn) ≥ h(Cn).
Observe that NHn

(v3) ⊂ NHn
(v1). Let H ′n = Hn − v3. By Lemma 2.5 we get

h(Hn) = h(H ′n). Moreover, since NH′
n
(v2) ⊂ NH′

n
(vn), again by Lemma 2.5 we
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get h(H ′n) = h(H ′n − v2). Let us observe that the graph H ′n − v2 is isomorphic to
the cycle Cn−2. By the inductive hypothesis we have h(Cn−2) = 1/2. Now we get
h(Cn) ≤ h(Hn) = h(H ′n) = h(Cn−2) = 1/2. On the other hand, by Corollary 2.2
we have h(Cn) ≥ 1/2. �

Now we solve the hat problem on the cycle on five vertices. We use a Mathe-
matica code to solve the problem. The code is available on the web edition.

Lemma 3.2. h(C5) = 1/2.

Proof. Let S be an optimal strategy for C5. If some vertex, say vi, never guesses
its color, then by Theorem 2.4 we have h(C5) = h(C5 − vi). Since C5 − vi = P4

and h(P4) = 1/2 (by Theorem 2.3), we get h(C5) = 1/2. Now assume that every
vertex guesses its color.

Let us consider a guessing instruction of a vertex. If in every case in which
this instruction gives a correct guess some other vertex also guesses its color, then
we say that the guessing instruction is dominated. Let us observe that we do
not have to consider strategies with a dominated guessing instruction because
such instruction cannot improve the chance of success. Even if it is the only one
guess of a vertex, then by Theorem 2.4 we get p(S) ≤ h(C5 − vi) = h(P4) = 1/2
implying that h(C5) = 1/2.

Now we explain a way in which the result can be easily verified using computer.
We consider only guessing instructions which are not passing. First consider
strategies S with exactly one instruction for every vertex. There are exactly 8
possible instructions for each vertex (because of the colors of two neighbors and
the guess it is going to make). Thus the total number of possibilities for S is
85 = 215. Let us observe that from a strategy we can obtain a group of 320 (not
necessarily distinguishable) symmetrical strategies. We can perform each one of
the following operations: rotating the vertices (gives 5 possibilities), reflecting
the vertices (gives 2 possibilities), and relabeling the colors of the vertices (gives
25 = 32 possibilities). Reducing modulo this symmetry group gives only 120
possibilities for S. Now for every one of these possibilities we check the number
of cases in which some vertex guesses its color wrong. If in at least 16 cases some
vertex guesses its color wrong, then the team loses for at least 16 cases implying
that p(S) ≤ 1/2. For 61 of those 120 strategies in at least 16 cases some vertex
guesses its color wrong. Therefore it suffices to consider only the remaining 59
strategies. Now we reduce the set of possibilities by using the idea of dominance
from the previous paragraph. In this way we exclude 37 strategies, having only
22 strategies left. Now for every one of them we check the number of cases in
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which the team so far wins, that is, cases in which some vertex guesses its color
correctly while at the same time no vertex guesses its color wrong. The best
score among those 22 strategies is 12 successes. Thus we now examine adding an
additional instruction to each one of the 22 strategies. Again we exclude strategies
for which the team loses for at least 16 cases, or some guessing instruction is
dominated. As a result there are only 23 strategies (each one consisting of six
guessing instructions) left. Among them, the best score of cases for which the
team wins is 12. Now we try to add an additional instruction to each one of the 23
strategies. We verify that for every one of them the team loses for at least 16 cases,
or some guessing instruction is dominated. This implies that for every strategy
S ∈ F(C5) we have p(S) ≤ 1/2. Now, by definition we get h(C5) = 1/2. �

Acknowledgments. Thanks are due to the anonymous referee for comments
that helped to substantially improve the presentation of the results, especially
the proof of Lemma 3.2.
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Abstract

A team of n players plays the following game. After a strategy session, each
player is randomly fitted with a blue or red hat. Then, without further communi-
cation, everybody can try to guess simultaneously his own hat color by looking at
the hat colors of the other players. Visibility is defined by a directed graph; that
is, vertices correspond to players, and a player can see each player to whom he is
connected by an arc. The team wins if at least one player guesses his hat color
correctly, and no one guesses his hat color wrong; otherwise the team loses. The
team aims to maximize the probability of a win, and this maximum is called the
hat number of the graph.

Previous works focused on the hat problem on complete graphs and on undi-
rected graphs. Some cases were solved, e.g., complete graphs of certain orders,
trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat
number of any graph is equal to the hat number of its maximum clique.

We show that the conjecture does not hold for directed graphs. Moreover, for
every value of the maximum clique size, we provide a tight characterization of the
range of possible values of the hat number. We construct families of directed graphs
with a fixed clique number the hat number of which is asymptotically optimal. We
also determine the hat number of tournaments to be one half.

Keywords: hat problem, directed graph, digraph, skeleton, clique number.
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1 Introduction

In the hat problem, a team of n players enters a room and a blue or red hat is randomly
and independently placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed, except for
an initial strategy session before the game begins. Once they have had a chance to look
at the other hats, each player must simultaneously guess the color of his own hat or pass.
The team wins if at least one player guesses his hat color correctly and no one guesses
his hat color wrong; otherwise the team loses. The aim is to maximize the probability of
a win.

The hat problem with seven players, called the “seven prisoners puzzle”, was formu-
lated by Todd Ebert in his Ph.D. Thesis [6]. It is often posed as a puzzle (e.g., in the
Berkeley Riddles [2]) and was also the subject of articles in popular media [3, 20, 21].

The hat problem with q ≥ 2 possible colors was investigated in [19]. Noga Alon [1]
proved that the q-ary hat number of the complete graph tends to one as the graph grows.

Many other variations of the problem exist (for a comprehensive list, see [15]), among
them a random but non-uniform hat color distribution [10], an adversarial allocation of
hat from a pool known by the players [9], a variation in which passing is not allowed [4],
a variation in which players do not have to guess their hat colors simultaneously [11],
and many more.

The hat problem can be considered on a graph, where vertices correspond to players,
and a player can see each player to whom he is connected by an edge. We seek to determine
the hat number of the graph, that is, the maximum chance of success for the hat problem
on it. This variation of the hat problem was first considered in [12], and further studied
for example in [8, 13, 14, 16–18].

Note that the hat problem on the complete graph is equivalent to the original hat
problem. This case was solved for 2k − 1 players in [7] and for 2k players in [5]. In [19] it
was shown that a strategy for n players in the complete graph is equivalent to a covering
code of radius 1 in the Hamming cube.

The hat problem was solved for trees [12], cycles [8, 13, 14, 18], bipartite graphs [8],
perfect graphs [8], and planar graphs containing a triangle [8]. Feige [8] conjectured that
for any graph the hat number is equal to the hat number of its maximum clique. He
proved this for graphs with clique number 2k − 1. Thus triangle-free graphs are the
simplest remaining open case.

We consider the hat problem on directed graphs. Under an appropriate definition of
the clique number for directed graphs, we provide a tight characterization of the range
of possible values of the hat number, for every size of the maximum clique. We con-
struct families of directed graphs with a fixed clique number the hat number of which
is asymptotically optimal. We also determine the hat number of tournaments to be one
half.

the electronic journal of combinatorics 19 (2012), #P30 2



2 Preliminaries

For a graph G, the set of vertices and the set of edges we denote by V (G) and E(G),
respectively. If H is a subgraph of G, then we write H ⊆ G. The degree of vertex v,
that is, the number of its neighbors, we denote by dG(v).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we write
f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where 1
corresponds to blue and 2 corresponds to red.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi) means
color of vertex vi. The set of all cases for the graph G we denote by C(G), of course
|C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G) → Sc ∪ {0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G) → Sc
∪{0} = {0, 1, 2}, which for a given situation gives the color vi guesses it is, or 0 if vi
passes. Thus a guessing instruction is a rule determining the behavior of a vertex in every
situation. We say that vi never guesses its color if vi passes in every situation, that is,
gi ≡ 0. We say that vi always guesses its color if vi guesses its color in every situation,
that is, for every si ∈ Sti(G) we have gi(si) ∈ {1, 2} (gi(si) 6= 0, equivalently).

Let c be a case, and let si be the situation (of vertex vi) corresponding to that case. The
guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi) (0 6= gi(si) 6= c(vi),
respectively). By result of the case c we mean a win if at least one vertex guesses its color
correctly, and no vertex guesses its color wrong, that is, gi(si) = c(vi) (for some i) and
there is no j such that 0 6= gj(sj) 6= c(vj). Otherwise the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is the
guessing instruction of vertex vi. The family of all strategies for a graph G we denote by
F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
respectively) using the strategy S we denote by W (S) (L(S), respectively). The set of
cases for which the team loses, and some vertex guesses its color we denote by Ls(S). By
the chance of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}. We
say that a strategy S is optimal for the graph G if p(S) = h(G). The family of all optimal
strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
For a directed graph (digraph) D, the set of vertices and the set of arcs we denote by

V (D) and A(D), respectively.
By the skeleton of a digraph D, denoted by skel(D), we mean the undirected graph

on the vertex set V in which x and y are adjacent if both arcs between them belong to
the set A, that is, if they form a directed 2-cycle in D.

By the clique number of a digraph D we mean the clique number of its skeleton;

the electronic journal of combinatorics 19 (2012), #P30 3



that is, ω(D) = ω(skel(D)).
The transpose of a digraph D = (V,A) is the digraph Dt = (V,At), where At

= {(x, y) : (y, x) ∈ A}.
Slightly abusing notation, we identify a digraph D with its (undirected) skeleton in

the case that D = Dt, that is, if all arcs of D have anti-parallel counterparts.
We can also consider the hat problem on directed graphs. If there is an arc from u

to v, then the vertex u can see the vertex v. All concepts we define similarly as when
considering the hat problem on undirected graphs treated for example in [8, 12]. We now
cite four propositions that generalize to digraphs with little or no change.

Proposition 1 For every two digraphs D and E such that E ⊆ D we have h(E) ≤ h(D).

Proposition 2 For every digraph D we have h(D) ≥ 1/2.

Proposition 3 Let D be a digraph and let v be a vertex of D. If S ∈ F0(D) is a strategy
such that v always guesses its color, then h(D) = 1/2.

Proposition 4 Let D be a digraph and let v be a vertex of D. If S ∈ F0(D) is a strategy
such that v never guesses its color, then h(D) = h(D − v).

We have the following corollary from Propositions 2, 3, and 4.

Proposition 5 Let D be a digraph and let v be a vertex of D. If v has no outgoing arcs,
then h(D) = h(D − v).

3 Constructions

For an undirected graph G, it is known that if G contains a triangle, then h(G) ≥ 3/4,
and in [8] it is conjectured that if G is triangle-free, then h(G) = 1/2. Do directed graphs
introduce anything in between? The answer is yes.

Let us consider the hat problem on the digraph D1 given in Figure 1.

x

��

u

��

>>

y

OO

Figure 1: The digraph D1

Fact 6 h(D1) = 5/8.
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We omit the proof of this fact in favor of extending D1 to a construction of a family
{Dn}∞n=0 of semi-complete digraphs that asymptotically achieve the hat number 2/3, with
the property that ω(Dn) = 2. The skeleton of Dn is a matching of size n plus an isolated
vertex. For short, we write skel(Dn) = nK2 ∪K1.

Definition 7 Given two disjoint digraphs C and D, we define the directed union of C
and D, denoted by C → D, to be the union of these two digraphs with the additional arcs
from all vertices of C to all vertices of D. Note that this operator is associative, that is,
C → (D → E) = (C → D)→ E, for any three digraphs C, D and E. Thus the notation
C → D → E is unambiguous. The directed union of n disjoint copies of a digraph D,
that is D → D → . . .→ D︸ ︷︷ ︸

n

, we denote by D→n.

Expressed in the terms of the directed union, D1 = K1 → K2. We extend this to
a family of digraphs by defining Dn = K1 → K→n

2 . Note that the family {Dn}∞n=0

satisfies the recurrence relation Dn+1 = Dn → K2.
In Figure 2 we give examples of Dn for n = 2, n = 3, and a general n.
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(c) General n

Figure 2: The directed, semi-complete graphs D2, D3, and Dn. All vertical arcs have
anti-parallel counterparts. The remaining arcs are rightwards

We proceed to compute the hat number of the digraphs of the family {Dn}∞n=0. First
we prove an upper bound.

Lemma 8 For every digraph D we have h(D → K2) ≤ max{h(D), 1/2 + h(D)/4}.

Proof. Let S be an optimal strategy for D → K2. The vertices of the K2 we denote by x
and y. If one of them, say x, never guesses its color, then using Propositions 4 and 5 we get
h(D → K2) = h(D → K2 − x) = h(D → K1) = h(D). Now assume that each one of the
vertices x and y guesses its color. If x or y always guesses its color, then by Proposition 3
we have h(D → K2) = 1/2. Now assume that neither x nor y always guesses its color.
This implies that each one of them guesses its color in one of the two situations as every
one of them has just one outgoing arc. Hence, with probability at least 1/4 at least one of
the vertices x and y is wrong. The chance of the success of the strategy S benefits from
the behavior of the vertices of D only when both x and y pass, and this happens exactly
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with probability 1/4 since they see different vertices (that is, each other). This implies
that p(S) = 1/2 + h(D)/4. Now we get h(D → K2) = p(S) ≤ max{h(D), 1/2 + h(D)/4}.

Now we prove a lower bound.

Lemma 9 For every digraph D we have h(D → K2) ≥ 1/2 + h(D)/4.

Proof. Let S be an optimal strategy for the digraph D. The vertices of the K2 we denote
by x and y. Let S ′ be a strategy for D → K2 as follows. If y is blue, then x guesses it is
also blue; otherwise it passes. If x is red, then y guesses it is also red; otherwise it passes.
If x is blue and y is red, then the vertices of D behave as in the strategy S, otherwise
they pass. Let us observe that if x and y have the same color, then the team wins. If x
is red and y is blue, then the team loses. If x is blue and y is red, then the team wins
with probability p(S). Therefore p(S ′) = 1/2 + p(S)/4 = 1/2 + h(D)/4. Consequently,
h(D → K2) ≥ p(S ′) = 1/2 + h(D)/4.

Now we prove a lower bound for a more general setting.

Lemma 10 For every positive integer m there exists c ≥ 1/2 such that for any digraph
D we have h(D → Km) ≥ cm/(m+ 1) + (1− c) · h(D). Moreover, if m = 2, then c = 3/4
satisfies the inequality.

Proof. Let S be an optimal strategy for the digraph D. The vertices of Km we denote
by x1, x2, . . . , xm. Let C ⊂ {blue, red}m be a code of distance 3, and consider the packing
of stars K1,m in the hypercube graph Hm formed by selecting balls of radius one around
each codeword. Let A mean the event that the case of x1, x2, . . . , xm is covered by the
packing. Now let S ′ be a strategy for D → Km as follows. All vertices of D pass if A
occurred, otherwise they behave according to S. The vertices of Km behave as follows. If
xi is in a situation consistent with some codeword, then it guesses the color that disagrees
with it; otherwise it passes. When A occurs, either m vertices guess their colors wrong,
or exactly one vertex guesses its color and the guess is correct; then the team wins with
probability m/(m+1). Let c = p(A). We get p(S ′) = p(A) ·m/(m+1)+(1−p(A)) ·p(S)
= cm/(m + 1) + (1 − c) · h(D). Now, the existence of codes of distance 3, length m,
and size d2m−1/(m + 1)e implies that c ≥ 1/2.

We use Lemmas 8 and 9 to calculate the hat number of Dn.

Proposition 11 For every non-negative integer n we have

h (Dn) =
2

3
− 1

6
· 1

4n
.
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Proof. The result we prove by induction on the number n. For n = 0 the result is
obviously true as D0 is a single vertex and h(D0) = 1/2 = 2/3− 1/6. Let n be a positive
integer, and assume that h(Dn−1) = 2/3− 41−n/6. Since h(Dn−1) < 2/3, using Lemma 8
we get h(Dn) ≤ max{h(Dn−1), 1/2 + h(Dn−1)/4} = 1/2 + h(Dn−1)/4. The lower bound
is matched by Lemma 9.

Corollary 12 For every ε > 0 there exists a digraph D satisfying ω(D) = 2 such that
h(D) > 2/3− ε.

The previous result can be generalized to an arbitrary clique number m.

Theorem 13 For every ε > 0 there exists a digraph D satisfying ω(D) = m such that
h(D) > m/(m + 1)− ε.

Proof. Let us consider D = K→n
m , where n =

⌈
log1−c(ε)

⌉
and c is the appropriate

constant from Lemma 10. By repeatedly applying the lemma we get h(D) ≥ (1−(1 −c)n)
·m/(m + 1) ≥ (1− ε) ·m/(m + 1) > m/(m + 1)− ε.

A natural question is whether m/(m + 1) is the best possible hat number of such
digraphs. In the following section we show that indeed this is the best possible, i.e.,
the chance of success m/(m + 1) is asymptotically optimal for digraphs with the clique
number m.

4 The upper bound

Feige [8] proved that for every undirected graph G we have h(G) ≤ ω(G)/(ω(G) + 1). We
repeat his proof, refining it a bit to show that the same holds for digraphs.

Proposition 14 For every digraph D we have h(D) ≤ ω(D)/(ω(D) + 1).

Proof. Let S be an optimal strategy for D. We define a bipartite graph B whose left-
hand side is Ls(S), and the right-hand side is W (S). A losing case l ∈ Ls(S) is adjacent
to a winning case w ∈ W (S) if they differ only by one coordinate, which is the color of
a vertex v ∈ V (D) that guesses its color in these cases. Since v cannot see its own hat
color, it acts the same in both hat cases l and w. Now let us examine the right and left
degrees in B.

Right degree. Let w ∈ W (S), and let v ∈ V (D) be a vertex that guesses its color
correctly in w. Let l be a case which differs from w only in the color of the vertex v. Since
v does not distinguish between the cases w and l, it makes the same guess in l, but now
it is incorrect. Therefore l ∈ Ls(S) is a neighbor of w in B, and d(w) ≥ 1.
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Left degree. Let l ∈ Ls(S), and let w1, w2, . . . , wdG(l) ∈ W (S) mean the neighbors of l
in B. Let vi ∈ V (D) be the vertex whose color differs in the cases l and wi, for every
i ∈ {1, 2, . . . , d}. Suppose that some arc vi → vj is not present in D. By the definition
of vi, it makes a correct guess at the case wi. It cannot tell wi apart from l, and thus
it makes the same, now wrong, guess at the case l. But then it must make the same
incorrect guess at the case wj, which only differs from l by the color of vj, unseen by vi.
This contradicts the fact that wj is a winning case. Therefore {vi}di=1 is a clique in skel(D)
and d = d(l) ≤ ω(skel(D)) = ω(D).

We have shown that the right degree in B is at least one and the left degree in B
is at most ω(D). This implies that |W (S)| ≤ |E(B)| ≤ ω(D)|Ls(S)|, and consequently,
h(D) = p(S) = |W (S)|/2|V (D)| ≤ |W (S)|/(|W (S)|+ |Ls(S)|) ≤ ω(D)/(ω(D) + 1).

Observe that for a digraph D, the hat number h(D) is always a rational number whose
denominator is a power of two. Therefore h(D) < ω(D)/(ω(D) + 1) unless ω(D) + 1 is
a power of two. When ω(D) + 1 = 2k is a power of two, the upper bound is met by
a complete graph K2k−1 as h(K2k−1) = (2k − 1)/2k.

Corollary 15 For every tournament T we have h(T ) = 1/2.

Proof. Apply Proposition 14 with ω(T ) = 1. The lower bound is by Proposition 2.
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FOLIA number will be asignedin the printed versionAnnales Universitatis Paedagogi
ae Cra
oviensisStudia Mathemati
a X (2011)
Mar
in KrzywkowskiA more 
olorful hat problem

Abstra
t.The topi
 is the hat problem in whi
h ea
h of n players is randomly �ttedwith a blue or red hat. Then everybody 
an try to guess simultaneously hisown hat 
olor by looking at the hat 
olors of the other players. The teamwins if at least one player guesses his hat 
olor 
orre
tly, and no one guesseshis hat 
olor wrong; otherwise the team loses. The aim is to maximize theprobability of winning. We 
onsider a generalized hat problem with q ≥ 2
olors. We solve the problem with three players and three 
olors. Next weprove some upper bounds on the 
han
e of su

ess of any strategy for thegeneralized hat problem with n players and q 
olors. We also 
onsider thenumbers of strategies that su�
e to be examined to solve the hat problem,or the generalized hat problem.1. Introdu
tionIn the hat problem, a team of n players enters a room and a blue or red hatis randomly pla
ed on the head of ea
h player. Ea
h player 
an see the hats of allof the other players but not his own. No 
ommuni
ation of any sort is allowed,ex
ept for an initial strategy session before the game begins. On
e they have hada 
han
e to look at the other hats, ea
h player must simultaneously guess the 
olorof his own hat or pass. The team wins if at least one player guesses his hat 
olor
orre
tly and no one guesses his hat 
olor wrong; otherwise the team loses. Theaim is to maximize the probability of winning.The hat problem with seven players, 
alled the �seven prisoners puzzle�, wasformulated by T. Ebert in his Ph.D. Thesis [13℄. The hat problem was also thesubje
t of arti
les in The New York Times [22℄, Die Zeit [7℄, and ab
News [21℄. Itis also one of the Berkeley Riddles [5℄.The hat problem with 2k − 1 players was solved in [15℄, and for 2k playersin [12℄. The problem with n players was investigated in [8℄. The hat problemand Hamming 
odes were the subje
t of [9℄. The generalized hat problem with npeople and q 
olors was investigated in [20℄.There are known many variations of the hat problem. For example in the papers[1, 11, 19℄ there was 
onsidered a variation in whi
h passing is not allowed, thusAMS (2000) Subje
t Classi�
ation: 91A12.



[68℄ Mar
in Krzywkowskieverybody has to guess his hat 
olor. The aim is to maximize the number of 
orre
tguesses. The authors of [17℄ investigated several variations of the hat problem inwhi
h the aim is to design a strategy guaranteeing a desired number of 
orre
tguesses. In [18℄ there was 
onsidered a variation in whi
h the probabilities ofgetting hats of ea
h 
olors do not have to be equal. The authors of [3℄ investigateda problem similar to the hat problem, in that paper there are n players whi
h haverandom bits on foreheads, and they have to vote on the parity of the n bits.The hat problem and its variations have many appli
ations and 
onne
tions todi�erent areas of s
ien
e, for example: information te
hnology [6℄, linear program-ming [17℄, geneti
 programming [10℄, e
onomi
s [1, 19℄, biology [18℄, approximatingBoolean fun
tions [3℄, and autoredu
ibility of random sequen
es [4, 13�16℄.In this paper we 
onsider a generalized hat problem with q ≥ 2 
olors whi
hwas �rst investigated in [20℄. Every player has got a hat of one from q possible
olors, and the probabilities of getting hats of all 
olors are equal. We solve theproblem with three players and three 
olors. Next we prove some upper boundson the 
han
e of su

ess of any strategy for the generalized hat problem with nplayers and q 
olors. We also 
onsider the numbers of strategies that su�
e to beexamined to solve the hat problem, or the generalized hat problem.2. PreliminariesFirst, let us observe that we 
an 
on�ne to deterministi
 strategies (that is,strategies su
h that the de
ision of ea
h player is determined uniquely by the hat
olors of the other players). We 
an do this sin
e for any randomized (not deter-ministi
) strategy there exists a not worse deterministi
 one. It is true, be
auseevery randomized strategy is a 
onvex 
ombination of some deterministi
 strate-gies. The probability of winning is a linear fun
tion on the 
onvex polyhedron
orresponding to the set of all randomized strategies whi
h 
an be a
hieved 
om-bining those deterministi
 strategies. It is well known that this fun
tion a
hievesits maximum on a vertex of the polyhedron whi
h 
orresponds to a deterministi
strategy.Let {v1, v2, . . . , vn} mean a set of players. By Sc = {1, 2, . . . , q} we denote theset of 
olors.By a 
ase for the hat problem with n players and q 
olors we mean a fun
tion
c: {v1, v2, . . . , vn} → {1, 2, . . . , q}, where c(vi) means the hat 
olor of player vi.The set of all 
ases for the hat problem with n players and q 
olors we denote by
C(n, q), of 
ourse |C(n, q)| = qn. If c ∈ C(n, q), then to simplify notation, we write
c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. Forexample, if a 
ase c ∈ C(4, 3) is su
h that c(v1) = 2, c(v2) = 3, c(v3) = 1, and
c(v4) = 2, then we write c = 2312.By a situation of a player vi we mean a fun
tion si: {v1, v2, . . . , vn} → Sc∪{0},where si(vj) ∈ Sc if i 6= j, while si(vi) = 0. The set of all possible situations of viin the hat problem with n players and q 
olors we denote by Sti(n, q), of 
ourse
|Sti(n, q)| = qn−1. If si ∈ Sti(n, q), then for simpli
ity of notation, we write si
= si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.For example, if s2 ∈ St2(4, 3) is su
h that s2(v1) = 3, s2(v3) = 4, and s2(v4) = 2,



A more 
olorful hat problem [69℄then we write s2 = 3042.We say that a 
ase c 
orresponds to a situation si of player vi if c(vj) = si(vj),for every j 6= i. This implies that a 
ase 
orresponds to a situation of vi if everyplayer ex
luding vi in the 
ase has a hat of the same 
olor as in the situation. Of
ourse, to every situation 
orrespond exa
tly q 
ases.By a guessing instru
tion of a player vi we mean a fun
tion gi:Sti(n, q) →
Sc∪{∗}, whi
h for a given situation gives the 
olor vi guesses his hat is if gi(si) 6= ∗,otherwise vi passes. Thus a guessing instru
tion is a rule determining the behaviorof a player in every situation.Let c be a 
ase, and let si be the situation (of player vi) 
orresponding to this
ase. The guess of vi in the 
ase c is 
orre
t (wrong, respe
tively) if gi(si) = c(vi)(∗ 6= gi(si) 6= c(vi), respe
tively). By result of the 
ase c we mean a win if at leastone player guesses his hat 
olor 
orre
tly, and no player guesses his hat 
olor wrong,that is, gi(si) = c(vi) (for some i) and there is no j su
h that ∗ 6= gj(sj) 6= c(vj).Otherwise the result of the 
ase c is a loss.By a strategy we mean a sequen
e (g1, g2, . . . , gn), where gi is the guessinginstru
tion of player vi. The family of all strategies for the hat problem with nplayers and q 
olors we denote by F(n, q).If S ∈ F(n, q), then the set of 
ases for whi
h the team wins using the strategy
S we denote byW (S). Consequently, by the 
han
e of su

ess of the strategy S wemean the number p(S) = |W (S)|

|C(n,q)| . We de�ne h(n, q) = max{p(S) : S ∈ F(n, q)}.We say that a strategy S is optimal for the hat problem with n players and q
olors if p(S) = h(n, q).By solving the hat problem with n players and q 
olors we mean �nding thenumber h(n, q).3. Hat problem with three players and three 
olorsIn this se
tion we solve the hat problem with three players and three 
olors.We say that a strategy is symmetri
 if every player makes his de
ision on thebasis of only numbers of hats of ea
h 
olor seen by him, and all players behave inthe same way. A strategy is nonsymmetri
 if it is not symmetri
.The authors of [18℄ solved the hat problem with three players and three 
olorsby giving a symmetri
 strategy found by 
omputer, and proving that it is optimal.We solve this problem by proving the optimality of a nonsymmetri
 strategy foundwithout using 
omputer.Let us 
onsider the following strategy for the hat problem with three playersand three 
olors.Strategy 1Let S = (g1, g2, g3) ∈ F(3, 3) be the strategy as follows:
g1(s1) =

{

s1(v3), if s1(v2) 6= s1(v3),
∗, otherwise;

g2(s2) =

{

s2(v3), if s2(v1) 6= s2(v3),
∗, otherwise;
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in Krzywkowski
g3(s3) =

{

s3(v1), if s3(v1) = s3(v2),
∗, otherwise.It means that players pro
eed as follows.

• The player v1. If v2 and v3 have hats of di�erent 
olors, then he guesseshe has a hat of the 
olor v3 has, otherwise he passes.
• The player v2. If v1 and v3 have hats of di�erent 
olors, then he guesseshe has a hat of the 
olor v3 has, otherwise he passes.
• The player v3. If v1 and v2 have hats of the same 
olor, then he guesseshe has a hat of the 
olor they have, otherwise he passes.All 
ases we present in table, where the symbol + means 
orre
t guess (su

ess),

− means wrong guess (loss), and blank square means passing.No The 
olor of the hat of The guess of Result
v1 v2 v3 v1 v2 v3

1 1 1 1 + +
2 1 1 2 − − − −
3 1 1 3 − − − −
4 1 2 1 + +
5 1 2 2 + +
6 1 2 3 − − −
7 1 3 1 + +
8 1 3 2 − − −
9 1 3 3 + +
10 2 1 1 + +
11 2 1 2 + +
12 2 1 3 − − −
13 2 2 1 − − − −
14 2 2 2 + +
15 2 2 3 − − − −
16 2 3 1 − − −
17 2 3 2 + +
18 2 3 3 + +
19 3 1 1 + +
20 3 1 2 − − −
21 3 1 3 + +
22 3 2 1 − − −
23 3 2 2 + +
24 3 2 3 + +
25 3 3 1 − − − −
26 3 3 2 − − − −
27 3 3 3 + +
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olorful hat problem [71℄For example, in the �rst 
ase the player v1 sees two hats of the same 
olor, sohe passes. By the same reason the player v2 also passes. The player v3 sees twohats of the �rst 
olor, so he guesses he has a hat of the �rst 
olor. Sin
e v3 hasa hat of the �rst 
olor, the guess is 
orre
t, and the result of the 
ase is a win.In the se
ond 
ase the player v1 sees two hats of di�erent 
olors, so he guesseshe has a hat of the 
olor v3 has. Sin
e v1 and v3 have hats of di�erent 
olors,the guess is wrong, and the result of the 
ase is a loss. Additionally, the player v2guesses his hat 
olor wrong by the same reason as v1. Moreover, the guess of v3is also wrong. The player v3 sees two hats of the �rst 
olor, so he guesses he hasa hat of the �rst 
olor. The guess is wrong, as v3 has a hat of the se
ond 
olor.In the fourth 
ase the player v1 sees two hats of di�erent 
olors, so he guesseshe has a hat of the 
olor v3 has. Sin
e v1 and v3 have hats of the same 
olor,the guess is 
orre
t. The player v2 sees two hats of the same 
olor, so he passes.The player v3 sees two hats of di�erent 
olors, so he passes. This implies that theresult of the 
ase is a win.In the sixth 
ase the player v1 sees two hats of di�erent 
olors, so he guesseshe has a hat of the 
olor v3 has. Sin
e v1 and v3 have hats of di�erent 
olors,the guess is wrong, and the result of the 
ase is a loss. Additionally, the player v2guesses his hat 
olor wrong by reasons similar as v1. The player v3 passes, as hesees two hats of di�erent 
olors.Counting the plusses in the last 
olumn, we get the following observation.Observation 2Using Strategy 1 the team wins for 15 of 27 
ases.Now, we solve the hat problem with three players and three 
olors.Fa
t 3
h(3, 3) = 5

9 .Proof. Sin
e using Strategy 1 the team wins for 15 of 27 
ases, we have h(3, 3)
≥ 15

27 = 5
9 . Suppose that h(3, 3) > 5

9 , that is, there exists a strategy su
h that theteam wins for more than 15 
ases. Let S be any strategy for the hat problem withthree players and three 
olors. Any guess made by any player in any situationis wrong in exa
tly two 
ases, be
ause to any situation of any player 
orrespondthree 
ases, and in exa
tly two of them this player has a hat of a 
olor di�erentthan the one he guesses. In the strategy S every player guesses his hat 
olorin at most 5 situations, be
ause if some player guesses his hat 
olor in at least
6 situations, then the team loses for at least 12 
ases, and wins for at most 15
ases, a 
ontradi
tion. Any guess made by any player in any situation is 
orre
tin exa
tly one 
ase, be
ause to any situation of any player 
orrespond three 
ases,and in exa
tly one of them this player has a hat of the 
olor he guesses. There arethree players, every one of them guesses his hat 
olor in at most �ve 
ases, andevery guess is 
orre
t in exa
tly one 
ase. Therefore using the strategy S the teamwins for at most 15 
ases, a 
ontradi
tion.



[72℄ Mar
in Krzywkowski4. Hat problem with n players and q 
olorsNow we 
onsider the generalized hat problem with n players and q 
olors.Noga Alon [2℄ has proven that for this problem there exists a strategy su
h thatthe 
han
e of su

ess is greater than or equal to
1−

1 + (q − 1) logn

n
−

(

1−
1

q

)n

.First we prove an upper bound on the number of 
ases for whi
h the team winsusing any strategy for the problem.Theorem 4If S is a strategy for the hat problem with n players and q 
olors, then
|W (S)| ≤ n

⌊

qn − |W (S)|

q − 1

⌋

.Proof. Any guess made by any player in any situation is wrong in exa
tly q−1
ases, be
ause to any situation of any player 
orrespond q 
ases, and in exa
tly
q − 1 of them this player has a hat of a 
olor di�erent than the one he guesses.Let us 
onsider any player. The number of situations in whi
h he guesses his hat
olor in the strategy S 
annot be neither greater than nor equal to

⌊

qn − |W (S)|

q − 1

⌋

+ 1,otherwise the number of 
ases in whi
h he guesses his hat 
olor wrong is greaterthan or equal to
(q − 1)

(⌊

qn − |W (S)|

q − 1

⌋

+ 1

)

.It is more than
(q − 1)

(

qn − |W (S)|

q − 1

)

= qn − |W (S)|.This implies that the team loses for more than qn − |W (S)| 
ases, and thereforethe number of 
ases for whi
h the team wins is less than
|C(n, q)| − (qn − |W (S)|) = qn − qn + |W (S)| = |W (S)|.This is a 
ontradi
tion, as |W (S)| is the number of 
ases for whi
h the team wins.Any guess made by any player in any situation is 
orre
t in exa
tly one 
ase,be
ause to any situation of any player 
orrespond q 
ases, and in exa
tly one ofthem this player has a hat of the 
olor he guesses. This implies that the numberof 
ases for whi
h the team wins using the strategy S is at most

n

⌊

qn − |W (S)|

q − 1

⌋

.



A more 
olorful hat problem [73℄Now we give an equivalent upper bound on the 
han
e of su

ess of any strategyfor the hat problem with n players and q 
olors, whi
h is easy to prove.Theorem 5Let S be any strategy for the hat problem with n players and q 
olors. Then
p(S) ≤

n

qn

⌊

qn − qn · p(S)

q − 1

⌋

.Now we see that Fa
t 3 follows from Theorem 4, as well as from Theorem 5.We show that it follows from Theorem 4.Proof of Fa
t 3. Sin
e using Strategy 1 the team wins for 15 of 27 
ases, byde�nition we get h(3, 3) ≥ p(S) = 15
27 = 5

9 . Now we prove that h(3, 3) ≤ 5
9 . Let

S be an optimal strategy for the hat problem with three players and three 
olors.By Theorem 4 we have
|W (S)| ≤ 3

⌊

27− |W (S)|

2

⌋

.This implies that
|W (S)| ≤ 3 ·

27− |W (S)|

2
= 40.5−

3|W (S)|

2
.Now we easily get |W (S)| ≤ 81

5 = 16.2. Sin
e |W (S)| is an integer, we have
|W (S)| ≤ 16. If |W (S)| = 16, then 16 ≤ 3⌊ 27−16

2 ⌋ = 3 · 5 = 15, a 
ontradi
tion.This implies that |W (S)| ≤ 15. Sin
e |C(3, 3)| = 27, we get p(S) ≤ 15
27 = 5

9 . Sin
e
S is an optimal strategy for the hat problem with three players and three 
olors,by de�nition we get h(3, 3) = p(S) ≤ 5

9 .The next result proven in [20, Proposition 3℄ is a 
orollary from Theorem 4or 5.Corollary 6 ([20, Proposition 3℄)If S is a strategy for the hat problem with n players and q 
olors, then
p(S) ≤

n

n+ q − 1
.Proof. By Theorem 4 we have

|W (S)| ≤ n

⌊

qn − |W (S)|

q − 1

⌋

.This implies that
|W (S)| ≤ n ·

qn − |W (S)|

q − 1
=

nqn

q − 1
− |W (S)|

( n

q − 1

)

.
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|W (S)|

(

1 +
n

q − 1

)

≤
nqn

q − 1
⇐⇒ |W (S)| ≤

q − 1

n+ q − 1
·
nqn

q − 1

⇐⇒ p(S) =
|W (S)|

qn
≤

n

n+ q − 1
.Now we show that the previous 
orollary is weaker than Theorem 4, that is,Theorem 4 does not follow from Corollary 6. Let S be any strategy for the hatproblem with three players and three 
olors. By Theorem 4 we have |W (S)| ≤ 15(it is shown in the proof of Fa
t 3 using Theorem 4). Thus

p(S) =
|W (S)|

|C(3, 3)|
≤

15

33
=

5

9
.By Corollary 6 we get

p(S) ≤
n

n+ q − 1
=

3

5
.Sin
e 3

5 > 5
9 , Corollary 6 is weaker than Theorem 4.Now let us 
onsider the hat problem with two 
olors (q = 2), and any strategy

S for this problem. By Corollary 6 we get the upper bound
p(S) ≤

n

n+ 1previously given in [15℄, whi
h is sharp for n = 2k−1, where k is a positive integer.5. Number of strategies that suffi
e to be examinedIn this se
tion we 
onsider the number of strategies the examination of whi
hsu�
es to solve the hat problem, and the generalized hat problem with q 
olors.First, we 
ount all possible strategies for the hat problem. We have n players,there are 2n−1 possible situations of ea
h one of them, and in ea
h situation thereare three possibilities of behavior (to guess the �rst 
olor, to guess the se
ond
olor, or to pass). This implies that the number of possible strategies is equal to
(

32
n−1)n

.Now we prove that it is not ne
essary to examine every strategy to solve theproblem.Fa
t 7To solve the hat problem with n players, it su�
es to examine
(

32
n−1−2

)n
=

(

32
n−1)n

·
1

9nstrategies.



A more 
olorful hat problem [75℄Proof. Let S be an optimal strategy for the hat problem with n players. Ifin this strategy no player guesses his hat 
olor, then obviously p(S) = 0. This isa 
ontradi
tion to the optimality of S. Thus in the strategy S some player guesseshis hat 
olor. Without loss of generality we assume that this player is v1, andhe guesses his hat 
olor in the situation 011 . . .1. Additionally, without loss ofgenerality we assume that in this situation he guesses he has a hat of the se
ond
olor. This guess is wrong in the 
ase 11 . . . 1, 
ausing the loss of the team. Thusthe result of this 
ase 
annot be made worse. If some player other than v1, say
vi, guesses he has the se
ond 
olor when he sees only hats of the �rst 
olor, thenhis guess is wrong in the 
ase 11 . . .1, and is 
orre
t in the 
ase when vi has these
ond 
olor and all the remaining verti
es have the �rst 
olor. Sin
e it 
annotmake worse the 
han
e of su

ess, we may assume that every player ex
luding viguesses he has a hat of the se
ond 
olor when he sees hats only of the �rst 
olor.Assume that some player, say vi, guesses his hat 
olor when he sees one hat of these
ond 
olor and n − 2 hats of the �rst 
olor. If in this situation he guesses hehas a hat of the �rst 
olor, then in the 
ase 
orresponding to that situation, andin whi
h he has a hat of the �rst 
olor, his guess is 
orre
t, as well as the guess ofthe player who has a hat of the se
ond 
olor. Sin
e it 
annot improve the 
han
eof su

ess, we may assume that in this situation vi does not guess he has a hatof the �rst 
olor. If in that situation he guesses he has a hat of the se
ond 
olor,then in the 
ase 
orresponding to that situation, and in whi
h he has a hat of the�rst 
olor, his guess is wrong, while at the same time the guess of the player whohas a hat of the se
ond 
olor is 
orre
t. Sin
e it makes the guess of this playerpointless, we may assume that in that situation vi does not guess he has a hat ofthe se
ond 
olor. This implies that we may assume that every player who sees onehat of the se
ond 
olor and n− 2 hats of the �rst 
olor, passes. Now we 
on
ludethat for ea
h player we 
an assume his behavior in two situations. This impliesthat for ea
h player there are two situations less to 
onsider. In this way we getthe desired number.Now, we 
ount all possible strategies for the generalized hat problem with q
olors. We have n players, there are qn−1 possible situations of ea
h one of them,and in ea
h situation there are q+1 possibilities of behavior (to guess one of the q
olors, or to pass). This implies that the number of possible strategies is equal to

(

(q + 1)q
n−1)n

.Now we prove that it is not ne
essary to examine every strategy to solve theproblem.Fa
t 8To solve the hat problem with n players and q 
olors, it su�
es to examine
(

(q + 1)q
n−1−1

)n
=

(

(q + 1)q
n−1)n

·
1

(q + 1)nstrategies.
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in KrzywkowskiProof. Let S be an optimal strategy for the hat problem with n players and q
olors. If in this strategy no player guesses his hat 
olor, then obviously p(S) = 0.This is a 
ontradi
tion to the optimality of S. Thus in the strategy S some playerguesses his hat 
olor. Without loss of generality we assume that this player is v1,and he guesses his hat 
olor in the situation 011 . . .1. Additionally, without loss ofgenerality we assume that in this situation he guesses he has a hat of the se
ond
olor. Let vi be any player other than v1. If in this situation vi guesses he has a hatof the �rst 
olor, then in the 
ase 
orresponding to that situation, and in whi
hhe has a hat of the �rst 
olor, his guess is 
orre
t, as well as the guess of v1. Sin
eit 
annot improve the 
han
e of su

ess, we may assume that in this situation vidoes not guess he has a hat of the �rst 
olor. If in that situation vi guesses hehas a hat of any 
olor other than the �rst, then in the 
ase 
orresponding to thatsituation, and in whi
h he has a hat of the �rst 
olor, his guess is wrong, while atthe same time the guess of v1 is 
orre
t. Sin
e it makes the guess of v1 pointless,we may assume that in that situation vi does not guess any 
olor other that the�rst. This implies that we may assume that every player other than v1 in thesituation in whi
h v1 has a hat of the se
ond 
olor, and all the remaining playershave hats of the �rst 
olor, passes. Now we 
on
lude that for ea
h player we 
anassume his behavior in one situation. This implies that for ea
h player there isone situation less to 
onsider. In this way we get the desired number.Referen
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A modified hat problem

Abstract. The topic of our paper is the hat problem in which each of n players is
randomly fitted with a blue or red hat. Then everybody can try to guess simultane-
ously his own hat color by looking at the hat colors of the other players. The team
wins if at least one player guesses his hat color correctly, and no one guesses his hat
color wrong; otherwise the team loses. The aim is to maximize the probability of
a win. There are known many variations of the hat problem. In this paper we consi-
der a variation in which there are n ­ 3 players, and blue and red hats. Players do
not have to guess their hat colors simultaneously. In this variation of the hat problem
players guess their hat colors by coming to the basket and throwing the proper card
into it. Every player has got two cards with his name and the sentence “I have got
a red hat” or “I have got a blue hat”. If someone wants to resign from answering,
then he does not do anything. The team wins if at least one player guesses his hat
color correctly, and no one guesses his hat color wrong; otherwise the team loses. Is
there a strategy such that the team always succeeds? We give an optimal strategy for
the problem which always succeeds. Additionally, we prove in which step the team
wins using the strategy. We also prove what is the greatest possible number of steps
that are needed for the team to win using the strategy.

2000 Mathematics Subject Classification: 91A12.

Key words and phrases: hat problem, variation of hat problem.

1. Introduction. In the hat problem, a team of n players enters a room and
a blue or red hat is randomly placed on the head of each player. Each player can
see the hats of all of the other players but not his own. No communication of any
sort is allowed, except for an initial strategy session before the game begins. Once
they have had a chance to look at the other hats, each player must simultaneously
guess the color of his own hat or pass. The team wins if at least one player guesses
his hat color correctly and no one guesses his hat color wrong; otherwise the team
loses. The aim is to maximize the probability of a win.

The hat problem with seven players, called the “seven prisoners puzzle”, was
formulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was also the
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subject of articles in The New York Times [21], Die Zeit [6], and abcNews [20]. It
is also a one of subjects of the webpage [4].

The hat problem with 2k−1 players was solved in [14], and for 2k players in [11].
The problem with n players was investigated in [7]. The hat problem and Hamming
codes were the subject of [8].

There are known many variations of the hat problem. For example the generali-
zed hat problem with n people and q colors was investigated in [19]. In the papers
[1, 10, 18] there was considered a variation in which passing is not allowed, thus
everybody has to guess his hat color. The aim is to maximize the number of correct
guesses. The authors of [16] investigated several variations of the hat problem in
which the aim is to design a strategy guaranteeing desired number of correct gu-
esses. In [17] there was considered a variation in which the probabilities of getting
hats of each colors do not have to be equal. The authors of [2] investigated a pro-
blem similar to the hat problem. There are n players which have random bits on
foreheads, and they have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science, for example: information technology [5], linear program-
ming [16], genetic programming [9], economy [1, 18], biology [17], approximating
Boolean functions [2], and autoreducibility of random sequences [3, 12–15].

In this paper we consider a variation in which there are n ­ 3 players, and blue
and red hats. Players do not have to guess their hat colors simultaneously. In this
variation of the hat problem players guess their hat colors by coming to the basket
and throwing the proper card into it. Every player has got two cards with his name
and the sentence “I have got a red hat” or “I have got a blue hat”. If someone wants
to resign from answering, then he does not do anything. The team wins if at least
one player guesses his hat color correctly, and no one guesses his hat color wrong;
otherwise the team loses. Is there a strategy such that the team always succeeds?
We give an optimal strategy for the problem which always succeeds. Additionally,
we prove in which step the team wins using the strategy. We also prove what is
the greatest possible number of steps that are needed for the team to win using the
strategy.

2. Modified hat problem. Let us consider a modified hat problem which we
define as follows. There are n ­ 3 players and two colors (red and blue) in which
players do not have to guess their hat colors simultaneously. Players guess their hat
colors by coming to the basket and throwing the proper card into it. Every player
has got two cards with his name and the sentence “I have got a red hat” or “I have
got a blue hat”. If someone wants to resign from answering, then he does not do
anything. The team wins if at least one player guesses his hat color correctly, and
no one guesses his hat color wrong; otherwise the team loses. Is there a strategy
such that everybody wins?

We give an optimal strategy for the problem which always succeeds. Additionally,
we prove in which step the team wins using the strategy. We also prove what is the
greatest possible number of steps that are needed for the team to win using the
strategy.

Let us consider the following strategy for the modified hat problem.
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Strategy 1 Players proceed as follows.

Step 1 (one minute after the beginning)
Only these players who see the hats of one color only come to the basket. There are
three possibilities:

∙ Only one player comes to the basket. Then he guesses he has a hat of the
color differing from the one he sees.

∙ More than one player come to the basket. Then every one of them guesses he
has a hat of the color which he sees.

∙ No player comes to the basket. Then we execute Step 2.

Let i be a positive integer.

Step 2i (2i minutes after the beginning)
Only these players who see exactly i blue hats come to the basket. There are two
possibilities:

∙ At least one player comes to the basket. Then every one of them guesses he
has a blue hat.

∙ No player comes to the basket. Then we execute Step 2i+ 1.

Step 2i+ 1 ((2i+ 1) minutes after the beginning)
Only these players who see exactly i red hats come to the basket. There are two
possibilities:

∙ At least one player comes to the basket. Then every one of them guesses he
has a red hat.

∙ No player comes to the basket. Then we execute Step 2i+ 2.

Now we prove that this strategy always succeeds.

Theorem 2.1 Strategy 1 always succeeds for the modified hat problem.

Proof If all players have hats of the same color, then in Step 1 every player guesses
his hat color correctly. Thus the team wins. If one player has a hat of some color,
while the remaining n − 1 players have hats of another color, then in Step 1 only
the player which has a hat of the unique color guesses its color, and the guess is
correct. Therefore the team wins.

If there are n = 3 players, then the team wins in Step 1, as there is no other
possibility.

Now assume that there are n ­ 4 players, and at least two of them have red
hats and at least two of them have blue hats. Let i be a positive integer. Now we
prove that if i is odd (even, respectively), then if in the executed Step i no player
comes to the basket, then every player sees at least (i+1)/2 red hats ((i/2+1) blue



124 A modified hat problem

hats, respectively). We prove that by induction. First, assume that i = 1. Since no
player sees hats only of the one color (as no player comes to the basket in Step 1),
every player sees at least one hat of each color. Now assume that i = 2. Since every
player sees at least one blue hat (as no player has come to the basket in Step 1) and
no player sees exactly one blue hat (as no player comes to the basket in Step 2),
it follows that every player sees at least two blue hats. Let k be a positive integer.
Assume that if no player comes to the basket in Step 2k− 1, then every player sees
at least k red hats, and if no player comes to the basket in Step 2k, then every player
sees at least k + 1 blue hats. First, we prove that if in the executed Step 2k + 1
no player comes to the basket, then every player sees at least k + 1 red hats. Since
every player sees at least k red hats (as no player has come to the basket in Step
2k − 1) and no player sees exactly k red hats (as no player comes to the basket in
Step 2k+ 1), it follows that every player sees at least k+ 1 red hats. Now, we prove
that if in the executed Step 2k+ 2 no player comes to the basket, then every player
sees at least k + 2 blue hats. Since every player sees at least k + 1 blue hats (as no
player has come to the basket in Step 2k) and no player sees exactly k+ 1 blue hats
(as no player comes to the basket in Step 2k + 2), it follows that every player sees
at least k + 2 blue hats.

Now we prove that if some player guesses his hat color in any Step i, then his
guess is correct. First assume that i = 2. Since every player sees at least one blue
hat (as no player has come to the basket in Step 1), there are at least two blue hats
(as particularly the player who has a blue hat also sees at least one blue hat). Some
player comes to the basket in Step 2, thus he sees exactly one blue hat. This implies
that he has a blue hat, and therefore his guess that he has a blue hat is correct. Now
assume that i ­ 4 is an even integer, that is i = 2k+2, where k is a positive integer.
First, assume that some player comes to the basket in the executed Step 2k+ 2. No
player has come to the basket in Steps 2k and 2k+1, thus every player sees at least
k+1 blue hats and at least k+1 red hats. Since every player who has a blue hat sees
at least k + 1 blue hats, there are at least k + 2 blue hats. The person who comes
to the basket in Step 2k + 2 sees exactly k + 1 blue hats. This implies that he has
a blue hat, and therefore his guess that he has a blue hat is correct. Now, assume
that some player comes to the basket in the executed Step 2k+1. Since every player
sees at least k red hats (as no player has come to the basket in Step 2k − 1), there
are at least k+ 1 red hats. The person who comes to the basket in Step 2k+ 1 sees
exactly k red hats. This implies that he has a red hat, and therefore his guess that
he has a red hat is correct. ■

Let us consider the numbers of red and blue hats on the heads of players. If there
are less red hats than blue hats, then let x mean the number of red hats. Otherwise
let it mean the number of blue hats.

Now we prove in which step the team wins using Strategy 1.

Fact 2.2 If there are less than two blue hats or less than two red hats, then Stra-
tegy 1 succeeds in Step 1. Otherwise, for x defined above, Strategy 1 succeeds in
Step 2x− 1 if there are more blue hats than red hats, and otherwise in Step 2x− 2.
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Proof If there are less than two blue hats or less than two red hats, then from
the proof of Theorem 2.1 we know that the team wins in Step 1. Now assume that
there are at least two hats of each color. First, let us assume that there are more
blue hats than red hats. Thus there are exactly x red hats and more than x blue
hats. From the proof of Theorem 2.1 we know that some player having a red (blue,
respectively) hat would guess his hat color correctly in Step 2x− 1 (2x or further,
respectively). This implies that the team wins in Step 2x−1. Now, assume that the
number of blue hats is smaller than or equal to the number of red hats. Thus there
are exactly x blue hats and at least x red hats. From the proof of Theorem 2.1 we
know that some player having a blue (red, respectively) hat would guess his hat
color correctly in Step 2x−2 (2x−1 or further, respectively). This implies that the
team wins in Step 2x− 2. ■

Now we prove what is the greatest possible number of steps that are needed for
the team to win using Strategy 1.

Corollary 2.3 The greatest possible number of step in which the team wins using
Strategy 1 is n− 2.

Proof Let n mean the number of players. From Fact 2.2 we know that if there
are less than two blue hats or less than two red hats, then the team wins in Step 1.
Since n ­ 3, we have n− 2 ­ 1. Now assume that there are at least two blue hats
and at least two red hats. If there are more blue hats than red hats, then obviously
x < n/2, that is, x ¬ (n− 1)/2. By Fact 2.2, the team wins in Step 2x− 1. We have
2x − 1 ¬ n − 1 − 1 = n − 2. Now assume that the number of blue hats is smaller
than or equal to the number of red hats. Obviously, x ¬ n/2. By Fact 2.2, the team
wins in Step 2x− 2. We have 2x− 2 ¬ n− 2. ■
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[7] M. Breit, D. Deshommes, and A. Falden, Hats required: perfect and imperfect strategies for
the hat problem, manuscript.

[8] E. Brown, K. Mellinger, Kirkman’s schoolgirls wearing hats and walking through fields of
numbers, Mathematics Magazine 82 (2009), 3–15.



126 A modified hat problem

[9] E. Burke, S. Gustafson, and G. Kendall, A Puzzle to challenge genetic programming, Genetic
Programming, 136–147, Lecture Notes in Computer Science, Springer, 2002.

[10] S. Butler, M. Hajianghayi, R. Kleinberg, and T. Leighton, Hat guessing games, SIAM Journal
on Discrete Mathematics 22 (2008), 592–605.

[11] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North Holland, 1997.

[12] T. Ebert, Applications of recursive operators to randomness and complexity, Ph.D. Thesis,
University of California at Santa Barbara, 1998.

[13] T. Ebert and W. Merkle, Autoreducibility of random sets: a sharp bound on the density of
guessed bits, Mathematical foundations of computer science 2002, 221–233, Lecture Notes in
Computer Science, 2420, Springer, Berlin, 2002.

[14] T. Ebert, W. Merkle, and H. Vollmer, On the autoreducibility of random sequences, SIAM
Journal on Computing32 (2003), 1542–1569.

[15] T. Ebert and H. Vollmer, On the autoreducibility of random sequences, Mathematical foun-
dations of computer science 2000 (Bratislava), 333–342, Lecture Notes in Computer Science,
1893, Springer, Berlin, 2000.

[16] U. Feige, You can leave your hat on (if you guess its color), Technical Report MCS04-03,
Computer Science and Applied Mathematics, The Weizmann Institute of Science, 2004, 10
pp.

[17] W. Guo, S. Kasala, M. Rao, and B. Tucker, The hat problem and some variations, Advances
in distribution theory, order statistics, and inference, 459–479, Statistics for Industry and
Technology, Birkhäuser Boston, 2007.
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Mar
in KrzywkowskiOn the hat problem, its variations, and theirappli
ationsAbstra
t. The topi
 of our paper is the hat problem in whi
h ea
h of n playersis randomly �tted with a blue or red hat. Then everybody 
an try to guesssimultaneously his own hat 
olor by looking at the hat 
olors of the otherplayers. The team wins if at least one player guesses his hat 
olor 
orre
tly,and no one guesses his hat 
olor wrong; otherwise the team loses. The aimis to maximize the probability of a win. There are known many variationsof the hat problem. In this paper we give a 
omprehensive list of variations
onsidered in the literature. We des
ribe the appli
ations of the hat problemand its variations, and their 
onne
tions to di�erent areas of s
ien
e. We givethe full bibliography of any papers, books, and ele
troni
 publi
ations aboutthe hat problem.1. Introdu
tionIn the hat problem, a team of n players enters a room and a blue or red hatis randomly pla
ed on the head of ea
h player. Ea
h player 
an see the hats of allof the other players but not his own. No 
ommuni
ation of any sort is allowed,ex
ept for an initial strategy session before the game begins. On
e they have hada 
han
e to look at the other hats, ea
h player must simultaneously guess the 
olorof his own hat or pass. The team wins if at least one player guesses his hat 
olor
orre
tly and no one guesses his hat 
olor wrong; otherwise the team loses. Theaim is to maximize the probability of a win.The hat problem with seven players, 
alled the �seven prisoners puzzle�, wasformulated by T. Ebert in his Ph.D. Thesis [20℄. The hat problem was also thesubje
t of arti
les in The New York Times [46℄, Die Zeit [9℄, and ab
News [44℄.It is also a one of subje
ts of the webpage [7℄.The hat problem with 2k − 1 players was solved in [22℄, and for 2k playersin [17℄. The problem with n players was investigated in [11℄. The hat problem andHamming 
odes were the subje
t of [12℄.AMS (2000) Subje
t Classi�
ation: 91A43.Volumes I-VII appeared as Annales A
ademiae Paedagogi
ae Cra
oviensis Studia Mathemati
a.



[56℄ Mar
in KrzywkowskiThere are known many variations of the hat problem. For example the gen-eralized hat problem with n players and q 
olors was investigated in [40℄. In thepapers [1, 15, 35℄ there was 
onsidered a variation in whi
h passing is not allowed,thus everybody has to guess his hat 
olor. The aim is to maximize the numberof 
orre
t guesses. The authors of [25℄ investigated several variations of the hatproblem in whi
h the aim is to design a strategy guaranteeing desired numberof 
orre
t guesses. In [30℄ there was 
onsidered a variation in whi
h the proba-bilities of getting hats of ea
h 
olors do not have to be equal. The authors of [5℄investigated a problem similar to the hat problem. There are n players whi
h haverandom bits on foreheads, and they have to vote on the parity of the n bits. Thehat problem on a graph is as follows. There is a graph, where verti
es 
orrespondto players and a player 
an see ea
h player to whom he is 
onne
ted by an edge.This variation of the hat problem was �rst 
onsidered in [38℄. There were provensome general theorems about the hat problem on a graph, and the problem wassolved on trees. Additionally, there was 
onsidered the hat problem on a graphsu
h that the only known information are degrees of verti
es. In [39℄ the problemwas solved on the 
y
le C4. Further results about the hat problem on a graphwere established by Uriel Feige [24℄. For example, there the problem was solvedfor bipartite graphs, and planar graphs 
ontaining a triangle. Based on these andsome other results, the author 
onje
tured that for every graph there is an optimalstrategy in whi
h all verti
es whi
h do not belong to the maximum 
lique alwayspass.The hat problem and its variations have many appli
ations and 
onne
tionsto di�erent areas of s
ien
e, for example: information te
hnology [8℄, linear pro-gramming [25℄, geneti
 programming [14℄, e
onomy [1, 35℄, biology [30℄, approxi-mating Boolean fun
tions [5℄, and autoredu
ibility of random sequen
es [6, 20�23℄.In this paper we give a 
omprehensive list of variations of the hat problem
onsidered in the literature. We also present what is already known about ea
hvariation. For some variations we give a strategy whi
h solves the problem. Nextwe des
ribe the appli
ations of the hat problem and its variations, and their 
on-ne
tions to di�erent areas of s
ien
e. We give the full bibliography of any papers,books, and ele
troni
 publi
ations about the hat problem.2. Appli
ations of the hat problemIn this se
tion we present appli
ations of the hat problem and its variations.We also 
onsider their 
onne
tions to di�erent areas of s
ien
e.Information te
hnology. The paper [8℄ shows the strong 
onne
tion betweenthe hat problem and the following problem. In storing or transmitting digitaldata, there is always some risk of distortion: a 0 might a

identally �ip to 1 orvi
e versa. One way to deal with this problem is to introdu
e some redundan
yinto the transmission � for instan
e, by sending ea
h bit multiple times. However,transmitting too many extra bits is 
ostly and ine�e
tive. We need to prote
t
k bits of data against the possibility of an error by using the minimal numberof additional �
he
k bits�. Note that the method must not only dete
t the error,



On the hat problem, its variations, and their appli
ations [57℄but also determine its pre
ise lo
ation, so that the user 
an re
over the originalmessage every time. This problem has been solved using Hamming 
odes � 
odeswhi
h dete
t and 
orre
t errors. So 
alled 
overing 
odes are strongly relatedto Hamming 
odes. The website [41℄ 
ontains up-to-date data on the best known
overing 
odes. The 
oding theory (for more information, see [47℄) was inauguratedby Ri
hard Hamming. He realized that there is a way to use as few bits as possibleand still re
eive the 
orre
t message, but he was unable to expli
itly prove it [42℄.The work of Hamming piqued the interest of other mathemati
ians, su
h as ClaudeShannon who worked on the information theory aspe
ts of 
oding to a
hieve 
leardata transmission. Some of work of Shannon provides us with high sound qualityof 
ompa
t dis
s. Even though 
ompa
t dis
s may have visible s
rat
hes and thumbprints, a 
ompa
t dis
 player still reads the song a

urately. This is be
ause of theerror-
orre
ting 
apabilities built into the 
ompa
t dis
s. The hat problem with
2k − 1 or 2k players has been solved using the Hamming 
odes. The hat problemwith n /∈ {2k − 1, 2k} players, and the generalized hat problem with any numberof players and at least three 
olors are unsolved. These hat problems may havefurther 
onne
tions to and appli
ations in information te
hnology.Geneti
 programming. In [14℄ the authors try to solve the hat problem with
n /∈ {2k − 1, 2k} players using geneti
 programming. The aim is not only to solvethe hat problem, but also to learn the way in whi
h the geneti
 programmingworks, and what is its e�e
tiveness, be
ause the hat problem seems to be a typi
alone to solve using geneti
 programming. As a result it 
an help us in solvinganother, even pra
ti
al problems using geneti
 programming.Biology. In [30℄ it is shown that one of the most important problems in 
ell bi-ology is to understand fun
tionality of ea
h and every gene of any living organism.A mammoth proje
t, 
alled the Deletion Proje
t, is underway to study the DNAof the yeast organism. The genome of yeast organism has been 
ompletely mappedout. It has about 6000 genes. Experiments on yeast 
ells, under the proje
t, havethe following basi
 operations:1. removal of a gene from the 
ell;2. pla
ement of the 
ell in a 
hamber at a set temperature;3. examination of every one of the remaining 
ells to determine whether or notit is a
tive.The data ve
tor generated is of order 1× 6000. Every entry in the ve
tor, ex
eptone, is 0 (ina
tive) or 1 (a
tive). The missing entry 
orresponds to the deletedgene. Steps 1, 2, and 3 should be repeated with respe
t to every gene. Thus, atthe set temperature, we will have 6000 binary data ve
tors, ea
h ve
tor havingexa
tly one blank spa
e. The whole 
ell is also pla
ed in the 
hamber withoutremoving any of its genes. The data ve
tor generated will not have any blanks.Using all these data ve
tors, one has to guess what would have been the role of thedeleted gene had it been present in the 
ell. It 
an be hoped that the hat problemmight have some pointers.



[58℄ Mar
in KrzywkowskiMathemati
s: the autoredu
ibility of random sequen
es. In the Ph.D.Thesis of Todd Ebert [20℄ and in [23℄ it 
an be read that the autoredu
ibilityof random sequen
es is the problem of dedu
ing a property of a random binarysequen
e when some of the bits of the sequen
e upon whi
h the property dependsare not known. This o

urs quite often in pra
ti
e when, due to time and otherresour
e 
onstrains, a de
ision is made using only partial information. This 
on-sideration is 
losely related to 
omplexity theory sin
e a de
ision must be madebefore a limited resour
e su
h as time has been exhausted. In [22, 23℄ the authorsuse the hat problem to investigate the autoredu
ibility of random sequen
es. Theproblem of autoredu
ibility of random sets, whi
h is strongly 
onne
ted to theproblem of autoredu
ibility of random sequen
es, was investigated in [6, 21℄.Cellular automata. It 
an be seen that a similarity exists between the hatproblem on a graph and so 
alled 
ellular automata.First, let us 
onsider asyn
hronous threshold networks studied by Noga Alonin [2℄. There is a graph G with an initial sign s(v) ∈ {−1, 1} for every vertex v.When v be
omes a
tive, it 
hanges its sign to s′(v) whi
h is the sign of majorityof its neighbors (we de�ne s′(v) = 1 if there is a tie). We say that G is in a stablestate if s(v) = s′(v) for every vertex v. The timing is syn
hronus if all verti
esbe
ome a
tive simultaneously. The timing is asyn
hronous when only one vertexbe
omes a
tive at a time. Alon has proven that for every threshold network withall positive edge weights there is an asyn
hronous run with at most one sign 
hangeper vertex whi
h leads the network to a stable state.The problem above is 
onne
ted to so
ieties with symmetri
 in�uen
es intro-du
ed by Svatjopluk Poljak and Miroslav Sura [43℄. The authors proposed a simplemodel of so
iety with a symmetri
 fun
tion w(u, v) measuring the in�uen
e of theopinion of member v on that of member u. The opinions are 
hosen from the set
{0, 1, . . . , p} for some positive integer p. At ea
h step everyone a

epts the ma-jority opinion (with respe
t to w) of the other members (if there are two or moremajority opinions, then he a

epts the highest one). Obviously, the behavior ofsu
h a so
iety is periodi
 after some initial time. The authors have proven that thelength of the period is either one or two. They also 
on
luded that if the in�uen
efun
tion w is not symmetri
, then the period 
an be arbitrarily large.Another model of so
ial in�uen
es was introdu
ed by Fren
h [26℄ and Harary [31℄.The main di�eren
es between their model and the one of Poljak and Sura are thatthe �opinions� of the members u ∈ V are real numbers, in�uen
es w(u, v) betweenmembers are nonnegative real numbers, and the opinion of a member u is theaverage opinion of the others. For a survey on this topi
, see the book [45℄.For more information about 
ellular automata, see [18℄.From now to the end of this se
tion we 
onsider variations of the hat problem.Linear programming. One of the theorems about the hat problem provedin [25℄ 
an be represented as a spe
ial 
ase of the well known fa
t that linear pro-grams with integer 
onstraints and a totally unimodular 
onstraint matrix alwayshave integer optimal solutions. The 
onne
tion between total unimodularity and
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ations [59℄the solution of integer programs was apparently �rst shown in [34℄. It 
an behoped that the hat problem has further 
onne
tion to and appli
ation in linearprogramming.E
onomy. Ni
ole Immorli
a in her Ph.D. Thesis [35℄ and the authors of [1℄proje
t au
tions in whi
h the aim is to maximize the pro�t of the seller. Duringinvestigating this problem, they 
onsider a variation of the hat problem in whi
heverybody has to guess his hat 
olor and we are interested in guaranteeing asmu
h 
orre
t guesses as possible. This problem is related to the au
tion problemas follows. Consider the 
ase where are only two types of bidders, those with highvaluation for the item, h; and those with a low valuation for the item, l. Mapping
h to the 
olor red and l to the 
olor blue, a solution of the hat problem would o�erhalf of the h bids at a pri
e h and half of the l bids at a pri
e l, thus the pro�tof su
h an au
tion would be at least half of optimal revenue.Mathemati
s: approximating a Boolean fun
tion. The authors of [5℄ 
on-sider the problem of approximating a Boolean fun
tion f : {0, 1}n → {0, 1} by thesign of an integer polynomial p of degree k. We say that a polynomial p(x) pre-di
ts the value of f(x) if, whenever p(x) ≥ 0, f(x) = 1, and whenever p(x) < 0,
f(x) = 0. A low-degree polynomial p is a good approximator for f if it predi
ts
f at almost all points. Given a positive k, and a Boolean fun
tion f , the problemis how good is the best degree k approximator to f . To investigate this problem,the authors use the problem similar to the hat problem in whi
h every one froman odd number of players has 0 or 1 on his forehead. Everybody has to guess theparity of the bits. The game is won if more than half of all guesses are 
orre
t.3. Variations of hat problemNow, we give a 
omprehensive list of variations of the hat problem 
onsideredin literature. We also present what is already known about ea
h variation. Forsome variations we give a strategy whi
h solves the problem.(1) �The generalized hat problem with n players and q 
olors� was �rst inves-tigated in [40℄. Every one of n players has got a hat of one from q possible 
olors,and the probabilities of getting hats of all 
olors are equal. We say that a strat-egy is symmetri
 if every player makes his de
ision on the basis of only numbersof hats of ea
h 
olor seen by him, and all players behave in the same way. A strat-egy is nonsymmetri
 if it is not symmetri
. The authors of [30℄ solved the hatproblem with three players and three 
olors by giving a symmetri
 strategy foundby 
omputer, and proving that it is optimal. In [37℄ the problem was solved byproving the optimality of a nonsymmetri
 strategy found without using 
omputer.There were also proven some upper bounds on the e�e
tiveness of any strategyfor the generalized hat problem with n players and q 
olors. Additionally, therewere 
onsidered the numbers of strategies that su�
e to be veri�ed to solve thehat problem, or the generalized hat problem. N. Alon [3℄ proved a lower boundon the maximum 
han
e of su

ess for the generalized hat problem.



[60℄ Mar
in Krzywkowski(2) There are n players and two 
olors. Everybody has to guess his hat 
olor.The aim is to �nd a strategy guaranteeing as many 
orre
t guesses as possible.It is known that guaranteeing ⌊n/2⌋ 
orre
t guesses is the best possible. Thefollowing strategy is optimal. Have players paired up. If the number of players isodd, then the unpaired one always guesses he has, let us say, a blue hat. In ea
hpair one player guesses he has a hat of the same 
olor as the other player, whilethe other player guesses he has a hat of the 
olor another than the �rst player, see[13, 15, 32, 49, 50℄.(3) It di�ers from the previous problem only in that there are q ≥ 3 
olors. Ithas been proven that guaranteeing ⌊n/q⌋ 
orre
t guesses is the best possible. Thefollowing strategy is optimal. Number players 1 to n, and 
olors 1 to q. The ithplayer guesses as if the sum of 
olors of all hats (in
luding own) is 
ongruent to
i modulo q, see [15℄.(4) It di�ers from the previous problem only in that there is a dire
ted graph
G determining players seen by ea
h player � if there is an ar
 from u to v, thenthe player u 
an see the player v. Optimal strategy for this problem is not known.There exist some lower and upper bounds on the number t(G) whi
h means themaximum number of 
orre
t guesses that 
an be guaranteed. For a dire
ted graph
G, let c(G) denote the maximal number of vertex-disjoint 
y
les in G, and let
F (G) denote the minimum number of verti
es whose removal from G makes thegraph a
y
li
. Then c(G) ≤ t(G) ≤ F (G), see [15℄.(5) It di�ers from the previous problem only in that there is also a graph Hdetermining ea
h player to guess the hat 
olor of the parti
ular player (possiblyown) � if there is an ar
 from u to v, then the player u has to guess the hat 
olorof the player v. Let tq(G,H) mean the maximum number of 
orre
t guesses that
an be guaranteed when there are q 
olors. There is known only the fa
t that
tq(G,H) > 0 if and only if there is a vertex of H whose outdegree is greater than
1, or there is a dire
ted 
y
le in the union of G and H , see [15℄.(6) It di�ers from the previous problem only in that there are a1, a2, . . ., aq hatsof the 
olor 1, 2, . . . , q, respe
tively. There are few fa
ts known for the variation,one of them is as follows. By t(n; a1, a2, . . . , aq) let us denote the maximum numberof 
orre
t guesses that 
an be guaranteed when there are n players, and a1 hatsof the �rst 
olor, a2 hats of the se
ond 
olor, and so on up through aq hats of qth
olor. Of 
ourse, we need a1 + a2 + . . . + aq ≥ n to ensure that we have enoughhats. Without loss of generality we may assume that 0 < ai ≤ n for all i. It iseasy to noti
e that if a1 + a2 + . . .+ aq = n, then t(n; a1, a2, . . . , aq) = n, see [15℄.(7) There are n players standing in a line and two 
olors. Everybody 
an seethe hat 
olors of players before him, but neither his nor those of players behindhim. Players have to guess their hat 
olors sequentially, starting from the ba
kof the line. Everybody 
an hear the answer 
alled out by ea
h player. We areinterested in a strategy guaranteeing as many 
orre
t guesses as possible. Thefollowing strategy is optimal. If the last player sees an odd number of red hatsin front of him, then he guesses he has a red hat. Otherwise he guesses he hasa blue hat. Player n−1 will dedu
e his own hat 
olor from the information said by
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ations [61℄the last player. Similar reasoning applies to ea
h player going up the line. Player
i sums the number of red hats he sees and red guesses he hears. If the sum isodd, then he guesses he has a red hat. Otherwise he guesses he has a blue hat.Of 
ourse, it is not possible to guarantee the 
orre
tness of the guess of the playerwho guesses as �rst, thus guaranteeing n− 1 
orre
t guesses is the best possible,see [4, 19, 27, 49℄.(8) It di�ers from the previous problem only in that there are q ≥ 3 
olors.Now also the maximum number of 
orre
t guesses that 
an be guaranteed is n−1.By v1, v2, . . . , vn let us denote players, and by 1, 2, . . . , q let us denote 
olors. Let
yi represent the hat 
olor of player vi, and let us de�ne Yi =

∑n
j=i yj modq.The following strategy is optimal. Player v1 guesses he has a hat of the 
olor

Y2 =
∑n

i=2 yimodq. For ea
h i > 1 player vi 
an see the values yi+1, . . . , yn, andhas heard the values Y2 and y2, . . . , yi−1. As an e�e
t, he solves the expressionfor Y2 to get yi. As the result, n − 1 players guess their hat 
olors 
orre
tly, see[4, 19℄.(9) It di�ers from the two previous problems only in that the seeing radiusand/or the hearing radius are limited (there are q ≥ 2 
olors). The seeing radiusof a player is the maximum number of players that he 
an see ahead of him. Thehearing radius of a player is the maximum number of players ahead of him that
an hear him. We assume that the seeing (hearing, respe
tively) radius is thesame for all players, and we denote it by s (h, respe
tively). For this variation it isknown only that the maximum number of 
orre
t guesses that 
an be guaranteedis n− ⌈n/(min(s, h) + 1)⌉, see [4℄.(10) There are n players and two 
olors. There is also a 
lo
k and as everyminute elapses, everybody 
an guess his hat 
olor. Time elapses after n minutes,and everybody who has not tried to guess his hat 
olor loses. If some player guesseshis hat 
olor wrong, then all players lose. Is there a strategy su
h that everybodywins? No, although we 
an try to �nd a strategy su
h that as many players aspossible wins, see [27℄.(11) It di�ers from the previous problem only in that there is an additionalplayer who 
omes to the team and says �somebody has a blue hat� or �everybodyhas a red hat� or something else. Does it 
an help to guarantee that everybody willwin? Assume that the additional player says that somebody has a blue hat. Letus 
onsider the following strategy. Everybody 
ounts blue hats he sees. After kminutes, if nobody has tried to guess his hat 
olor, then everybody who sees k− 1red hats guesses he has a red hat. If at least two players have a red hat, then theinformation from the additional player that somebody has a red hat is a fa
t knownby everybody. Paradoxi
ally, it has a value. The information from the additionalplayer is 
alled 
ommon knowledge. That is, everybody knows it, and everybodyknows that everybody knows it, and everybody knows that everybody knows thateverybody knows it, et
. Players 
an use this meta-information to derive theirown hat 
olors, see [10, 27℄.(12) There are three players, A, B, and C. There are four green and four redstamps. Players are blindfolded, and two stamps are pasted on the head of ea
h
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in Krzywkowskiplayer. After removing the blindfolds, A, B, and C are asked in turn about 
olorsof own stamps. No player knows the answer. Now A is asked on
e more. Heagain does not know the answer. Now B is asked, and he replies �yes�. What arethe 
olors of the stamps of B? The answer is that he has one green, and one redstamp, see [29℄.(13) There are three players and two 
olors. Everybody has to simultaneouslyguess his hat 
olor or pass. The team wins if at least one player guesses his hat
olor 
orre
tly and nobody guesses his hat 
olor wrong. The probabilities of theeight 
ases whi
h 
an appear does not have to be the same. How does it in�uen
ethe strategy whi
h should be applied by the team? It has been proven (using
omputer) that to solve the problem it su�
es to 
al
ulate the 
han
e of su

essfor a family of twelve strategies, see [30℄.(14) It di�ers from the previous variation only in that there are n players and
q ≥ 2 
olors, see [40℄.(15) In the �Gabay � O'Connor hat problem� there are an in�nite number ofplayers numbered 1, 2, . . . , and two 
olors. Everybody has to guess his hat 
olor.The team wins if only �nite number of guesses are wrong. Is there a strategyguaranteeing that the team will win? Yes, but only if the Axiom of Choi
e holds,see [32, 33, 51℄.(16) The variation 
alled �All right or all wrong� di�ers from the previousproblem only in that the team wins if and only if all guesses are 
orre
t or allguesses are wrong. Similarly as for the previous variation, the win of the team 
anbe guaranteed if and only if the Axiom of Choi
e holds, see [51℄.(17) There are ten players and every one of them has a digit from 0 to 9 writtenon the forehead. Everybody has to guess his digit. The team wins if at least oneplayer does it 
orre
tly. The aim is to �nd a strategy guaranteeing that the teamwill win. Let us 
onsider the following strategy. Number players 0 to n − 1. Let
s be the sum of the numbers on the foreheads of all players, modulo n. Now letplayer k guess that s = k, that is, guess that his own number is k minus the sumof the numbers he sees, modulo n. This will ensure that player s will be 
orre
t,see [51℄.(18) The variation 
alled �The 
olor-blind prisoner� di�ers from the previousproblem in that numbers are written in red, one player has a green skin, and oneanother player does not distinguish green and red. Thus he de
ides about his guesson the basis of only eight digits. Now it is not possible to guarantee that the teamwill win, see [51℄.(19) In the variation 
alled �Numbers and hats� there are n players, and everyone of them has a distin
t real number written on the forehead. Everybody has to
hoose a blue or red hat for himself. The aim is for the hat 
olors to alternate inthe order determined by the real numbers. There is a strategy guaranteeing thatthe team will win, but it is very long and 
ompli
ated, see [51℄.(20) In the �Voting puzzle 1� there are an odd number of players, say n. Every
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ations [63℄one of them has a random bit written on the forehead. Players have to vote onthe parity of the bits (by voting 0 or 1).The result of the voting is the bit 
hosenmore often. Players win if the result of the voting is equal to the parity of the bits.The aim is to maximize the 
han
e of su

ess. Optimal strategy gives the 
han
eof su

ess equaling n/(n+ 1). For the strategy, see [5℄.(21) The �Voting puzzle 2� di�ers from the previous problem only in thateverybody 
an make as many votes as he wants. Optimal strategy gives the 
han
eof su

ess equaling (2n − 1)/2n. For the strategy, see [5℄.(22) The �Voting puzzle 3� is as follows. Let S be a set of randomly 
hosen nbits. There are (

n
k

) players, every one of them 
an see another k-element subsetof S. Players parti
ipate in a voting, the result of whi
h should be the parityof the bits. Everybody has to make an integer number of votes. If their sum ispositive, then the result of the voting is 0. If it is negative, then the result is 1.If the sum is zero, then the result of the voting is not de�ned. A strategy, basedon approximating a Boolean fun
tion, guarantees that the team will win, see [5℄.(23) In the variation 
alled �Not distinguishable players� there are n playersand q ≥ 2 
olors. Every player 
an see everybody ex
luding him, but 
annotdistinguish them. Thus everybody makes his guess on the basis of only numbersof hats of ea
h 
olor seen by him. Every player guesses his hat 
olor or passes.The team wins if at least one player guesses his hat 
olor 
orre
tly and nobodyguesses his hat 
olor wrong. It has been proven that for large n the maximum
han
e of su

ess is approximately (1 + (1/3)q−1)/2, for details see [28℄.(24) It di�ers from the previous variation only in that all players have to behavein the same way, see [40℄.(25) The variation 
alled �Players do not distinguish 
olors 1� is as follows.There are n 
olor-blind players and two 
olors. Before �tting players with hatssomebody says players what will be the probability of getting a blue hat, andwhat of a red hat. By q let us denote the probability of getting a blue hat.It is known that for large n the maximum 
han
e of su

ess is approximately
(1− q)(1−q)/q − (1 − q)1/q, see [28℄.(26) The variation �Players do not distinguish 
olors 2� di�ers from the previousproblem only in that later (after �tting with hats) somebody says what was theprobability of getting a blue hat, and what of a red hat (somebody says how manyblue and how many red hats were pla
ed). It is known that, 
omparing to theprevious variation, it does not 
hange the 
han
e of su

ess of optimal strategy,see [28℄.(27) In the variation 
alled �Crowns of the Minotaur� there are three playersand every one of them is �tted by the Minotaur with a blue or red 
rown. Everyplayer bets zero or more points on guessing his 
rown 
olor. A player wins or losesas many points as he has bet, depending on the a

ura
y of his guess. Then thewon and the lost points are added separately, and the team wins if there are morewon than lost points. It is known that the maximum 
han
e of su

ess is equalto 7/8. The following strategy is optimal. At �rst, number players who is �rst,



[64℄ Mar
in Krzywkowskise
ond, and third. The �rst player bets one point for red. If the se
ond playersees that the �rst has a blue 
rown, then he bets two points for red, otherwisepasses. If the third player sees that the �rst two have both blue 
rowns, then hebets four points for red, otherwise passes. Unless every player has a blue 
rown(
han
e 1/8), everybody wins, see [48℄.(28) In �The dis
arded hat variation� there are 4k− 1 players, and 2k blue and
2k red hats. Every player is �tted with a hat, and one hat is taken away. Theneverybody has to guess his hat 
olor. The aim is to guarantee as many 
orre
tguesses as possible. It is known that guaranteeing 3k − 1 
orre
t guesses is thebest possible. For an optimal strategy, involving 
y
li
 arrangement of players,see [25℄.(29) In �The everywhere balan
ed variation� there are n players and q ≥ 2
olors. Let {c1, c2, . . . , cq} be the set of 
olors, and let Hi mean the set of playershaving a hat of 
olor ci. Nobody knows neither to whi
h set he belongs nor whatare the 
ardinalities of sets Hi. The aim is to �nd a strategy guaranteeing thatin every set Hi the number of players guessing their hat 
olors 
orre
tly is between
⌊|Hi|/q⌋ and ⌈|Hi|/q⌉. For su
h strategy (a 
ompli
ated one), see [25℄.(30) The variation �Hat problem on a dire
ted graph asking for at least one
orre
t guess� is as follows. There are n players and two 
olors. We have a dire
tedgraph G determining players seen by ea
h player � if there is an ar
 from u to v,then the player u 
an see the player v. What subgraph has to have the visibilitygraph to ensure the existen
e of a strategy guaranteeing at least one 
orre
t guess?It has to have a 
y
le as a subgraph, for details see [32℄.(31) It di�ers from the previous problem in that there are n players and n
olors. It is known that now the visibility graph has to be 
omplete, see [32℄.(32) It di�ers from the two previous problems in that there are n players and q
olors. What is the maximum number of 
orre
t guesses that 
an be guaranteed?The answer is ⌊n/q⌋, see [32℄.(33) There are n players and q ≥ 2 
olors. Players are allowed more thanone round in whi
h to guess their hat 
olors. During ea
h round everybody mustsimultaneously say �My hat 
olor is i�, �My hat 
olor is not i�, or �Pass�, where
i is one of the 
olors. However, if everybody passes in any round, then the teamloses. The rounds 
ontinue, with ea
h player making a guess or passing, as long asno in
orre
t guess is made and at least one player guesses his hat 
olor 
orre
tly.Then the team wins. It has been proven that the maximum 
han
e of su

ess is
n(q − 1)/(1 + n(q − 1)), see [16℄.(34) In the variation 
alled �Zero-information strategies� there are n playersand two 
olors. Everybody has to simultaneously guess his hat 
olor or pass.The team wins if at least one player guesses his hat 
olor 
orre
tly and nobodyguesses his hat 
olor wrong. Every player makes his de
ision without a

ess toany information. Now a winning probability of 1/4 is asymptoti
ally attainableand optimal, see [40℄.
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ations [65℄(35) �The hat problem on a graph� is as follows. There is a graph, where verti
es
orrespond to players and a player 
an see ea
h player to whom he is 
onne
tedby an edge. This variation of the hat problem was �rst 
onsidered in [38℄. Therewere proven some general theorems about the hat problem on a graph, and theproblem was solved on trees. Additionally, there was 
onsidered the hat problemon a graph su
h that the only known information are degrees of verti
es. In [39℄the problem was solved on the 
y
le C4. Further results about the hat problemon a graph were established by Uriel Feige [24℄. For example, there the problemwas solved for bipartite graphs, and planar graphs 
ontaining a triangle. Based onthese and some other results, the author 
onje
tured that for every graph thereis an optimal strategy in whi
h all verti
es whi
h do not belong to the maximum
lique always pass.(36) �The modi�ed hat problem� is as follows. There are n ≥ 3 players. Ev-eryone of them is randomly �tted with a blue or red hat. Players do not have toguess their hat 
olors simultaneously. In this variation of the hat problem playersguess their hat 
olors by 
oming to the basket and throwing the proper 
ard intoit. Every player has got two 
ards with his name and the senten
e �I have gota blue hat� or �I have got a red hat�. If someone wants to resign from answering,then he does not do anything. The problem was investigated in [36℄. There wasgiven an optimal strategy for the problem whi
h always su
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