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at-coloring puzzles  (or hat problems) have been  
around at least s ince 1961 (Gardner  1961), and  prob- 
ably longer. They gained wider  public at tention with 

a quest ion posed  and answered  by  Todd Ebert in his 1998 
Ph.D. dissertation (Ebert 1998). The problem was presented 
by  Sara Robinson in the April 10, 2001, Science section of 
The New York Times as follows: 

Three players  enter  a room and a red or  b lue  hat is 
p laced  on each pe r son ' s  head. The color  of  each  hat is 
de te rmined  by  a coin toss, with the ou tcome of  one  coin 
toss having no effect on the others. Each pe r son  can see 
the other  players '  hats but  not his own. 

No communica t ion  of  any sort is a l lowed excep t  for an 
initial strategy sess ion before  the game begins.  Once  they 
have had  a chance  to look at the other  hats, the play- 
ers must s imul taneously  guess the color of  their own 
hats or pass. The group  shares a hypothet ical  $3 mill ion 
prize if at least one  p layer  guesses correctly and  no play- 
ers guess incorrectly. 

The same game can be  p layed  with any number  of play- 
ers. The general  p rob l em is to find a strategy for the 
group that maximizes  its chances  of winning  the prize. 

If one player  guesses  randomly and the others  pass, the 
probabi l i ty  of a win is 1/2. But Ebert 's th ree-p layer  solu- 

tion is better:  pass if the two visible hats are different col- 
ors, and  guess  the missing color  if they are the same. This 
strategy yields  a win, on average,  3/4 of the time: of  the 
eight poss ib le  hat assignments,  it fails only on the two in 
which all three hats are the same color. Elwyn Ber lekamp 
genera l ized  this to n = 24 - 1  players,  using Hamming 
codes  to show the existence of a strategy that yields a win  
with probabi l i ty  n/(n + 1). Joe  Buhler  gives an account  of  
this, and  further variations, in Buhler  (2002), 

In Spring 2004, Yuval Gabay  and Michael O'Connor,  then 
graduate  students at Cornell University, p roduced  a num- 
ber  of  hat  p rob lems  involving infinitely many players, one  
of  which  was  (an equivalent  of) wha t  we  will call the Gabay-  
O 'Connor  hat problem: 

Infinitely many players  enter  a room and a red or  b lue  
hat is p laced  on each player 's  head  as before.  Each p layer  
can see the other  players '  hats but  not his own. Again, 
no communica t ion  of  any sort is a l lowed except  for an 
initial strategy session before  the game begins.  But this 
time, passing is not  a l lowed and each player  receives $1 
mil l ion if all but  finitely many  players  guess correctly. 

There are simple strategies ensur ing that infinitely many  
players  will guess correctly. For example ,  let a player  guess  
red if he sees infinitely many red  hats, and guess blue oth- 
erwise. If there are infinitely many . r ed  hats, everyone  will 
guess red, and  the players  with red  hats will be  correct; if 

20 THE MATHEMATICAL INTELLIGENCER �9 2008 Springer Science+Business Media, Inc 



there  are finitely many red hats, everyone  will guess  blue, 
and  the infinitely many p layers  with b lue  hats will be cor- 
rect. 

The problem,  however ,  seeks  a strategy ensuring that all 
but  finitely m a n y - - n o t  just infinitely m a n y - - a r e  correct, and 
this is what  Gabay  and O 'Connor  ob ta ined  using the ax- 
iom of  choice. The special  case in which  the set of  play- 
ers is countable  follows from a 1964 result of Fred Galvin 
(1965); see also Thorp (1967). Although Galvin's argument  
and the Gabay-O 'Connor  argument  are similar, they are dif- 
ferent  enough that nei ther  subsumes  the other; a compar-  
ison will appea r  elsewhere.  

As the title suggests, this p a p e r  is meant  to be  only  an 
introduct ion to infinite hat problems,  and  as such proceeds  
in a somewha t  exposi tory  manner .  We have made  no at- 
t empt  here to say anything of  the re levance of  hat  prob-  
lems to other  areas of mathematics ,  but  the reader  wishing 
to see  some of this can begin  with Galvin and Prikry (1976), 
George  (2007), and Hardin and  Taylor (2008). 

The rest of  the paper  is organized  as follows. In "The 
Formalism and the Finite," we  set up  a general  f ramework  
for hat p roblems  of the Gabay-O 'Connor  type, and  present  
a few results in the finite case. "Theorems of  Gabay-  
O 'Connor  and Lenstra" concerns  the infinite case, which  is 
our  pr imary interest; we  present  the Gabay-O 'Connor  The- 
orem, and a theorem of Lenstra involving strategies that ei- 
ther  make  every player  correct  or  every player  incorrect.  In 
"The Necessity of the Axiom of  Choice," we  discuss the ne- 
cessity of the axiom of choice  in the Gabay-O 'Connor  The- 
o rem and Lenstra's Theorem; this sect ion requires some  ba- 
sic facts about  the proper ty  of  Baire, so a short a p p e n d i x  
on the proper ty  of Baire appea r s  afterward. 

Our  set-theoretic notat ion and terminology are standard.  
If A is a set, then ]A t is the cardinali ty of  d and A c is the 
complemen t  of A. If f is a function, t h e n f l A  is the restric- 
t ion of  f to A, and PC is the set of functions mapp ing  the 
set P into the set C If x is a real number ,  then LxJ is the 
greatest  integer that is less than or equal  to x. We let  N = 
{0, 1, 2 , . . .  1. 

The authors thank James Guilford, John Guilford, Hen- 
drik Lenstra, Michael O'Connor ,  and Stan Wagon  for al- 

lowing us to include unpubl i shed  proofs  that are in who le  
or in part due to them. Their  specific contr ibut ions will be  
noted at the appropr ia te  places. We  also thank Andreas  
Blass for br inging Galvin's work  to our  attention, and thank 
the referee for many  helpful  suggestions. 

The Formalism and the Finite 
The problems  w e  consider  will resemble  the Gabay-O'-  
Connor  hat problem,  but  w e  allow more  generality: the set 
of  players  can be  any set, there can be  any number  of  hat 
colors, players  do  not necessari ly see  all o ther  hats, and  
the criterion for winning is not necessar i ly  that all but  fi- 
nitely many players  guess correctly. So, a part icular hat 
p rob lem will be  descr ibed  by (i) the set of  players,  (ii) the 
set of  poss ible  hat  colors, (iii) which  hats each  player  can 
see, and  (iv) a rule that indicates, given the set of players  
who  guess correctly, whe ther  or not  they win the game.  
We formally def ine  a hat problem to be  a tuple  (P, C, V,~/') 
with the fol lowing properties.  

(i) The set of  players P is any set. 
(ii) The set of  colors C is any set. 

(iii) The visibility graph V is a d i rected graph with P as the 
set of vertices.  When  there is an edge  from a to b 
(which w e  denote  by  aVb or b EVa), w e  interpret  this 
as meaning  that a can see (the hat  worn  by)  b. In par-  
ticular, V, is the set of  players  visible to a. We are only  
interested in cases where  players cannot  see their own 
hats, so w e  require that V has no  edges  from vertices 
to themselves.  

(iv) The winning family ~ is a family of  subsets  of P. The 
players  win iff the set of  players  who  guess  their own  
hat color  correctly is in ~ 

A function g E PC assigns a hat color  to each player; we  
call g a coloring. Given a hat p rob lem (P, C, V,~ a strat- 
egy is a funct ion S : (P  X *C) --+ C such that for any a E P 
and colorings g,h E PC, 

gl v .  = bl v .  ~ S(a, g) = S(a, h). (1) 

We think of S(a, g) as the color guessed  by  player  a under  
coloring g. Condit ion (1) ensures that this guess only depends  
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on the hats that a can see, since gl Va = h I Va means  that the 
colorings g and h are indistinguishable to player  a. We will 
frequently consider strategies player  by player; for a E P and 
a strategy S, we  define Sa : PC--+ C by S~(g) - S(a, g), and 
call Sa a strategy for player a. We say that p layer  a guesses 
correctly if S~(g) = g(a). 

We call S a winning strategy if it ensures that  the set of  
players  who  guess correct ly is in the winning family, re- 
gardless of the coloring; that is, {a E P : Sa(g) = g(a)} E 
for any coloring g. 

To illustrate the kinds  of  quest ions and answers  that arise 
within this framework,  w e  present  two results in the con- 
text of finitely many players.  For the first, say that a hat 
p rob lem is a minimal hat problem if it asks for a strategy 
ensuring that at least one  player  guesses correctly, and call 
such a strategy a minimal solution. Our first result  (the sec- 
ond  half of which is due,  in part, to James Guilford and 
John Guilford) answers  the following question. 

With k players and  2 colors, how much visibility is 
needed  to guarantee  the existence of  a minimal  solu- 
tion? What  if there  are k players and k colors? 

THEOREM 1 A k-player, 2-color hatproblem has a minimal 
solution iff the visibility graph has a cycle. A k-player, k-color 
hat problem has a minimal solution iff the visibility graph is 
complete. 

To prove  Theorem 1, it will he lp  to have a l emma that 
confirms an intuition about  how many players  guess  cor- 
rectly on average. 

LEMMA 2 In a k-player, n-color hat problem, for any par- 
ticular strategy, the average number of players who guess cor- 
rectly is k/n. (The average is taken over all colorings.) 

Proof Suppose  there are k players and n colors. Let S be 
any strategy. It suffices to show that any part icular  player  
a is correct  in 1 out  of  n colorings. Given any assignment  
of  hat colors to all p layers  o ther  than a, p laye r  a 's  guess 
will be determined;  of  the n ways to ex tend  this hat as- 
s ignment  to a, exact ly one  will agree with a 's  guess .  []  

Proof of Theorem 1. Suppose  first that there are 2 colors. 
The right-to-left di rect ion is easy; assuming that the visibil- 
ity graph has a cycle, the  strategy is for a des igna ted  player  
on  the cycle to guess  that  his hat is the same color  as that 
of  the p layer  immedia te ly  ahead  of  him on the cycle, while  
all the others  on the cycle  guess  that their hat  co lor  is the 
oppos i te  of the p layer  immedia te ly  ahead of  them. To see 
that this works,  assume that the first p layer  on the cycle 
has a red hat and  that everyone  on the cycle guesses  in- 
correctly using this strategy. Then the second p layer  on the 
cycle has a blue  hat, the  third p layer  on the cycle has a 
b lue  hat, and  so on until we ' re  forced to conc lude  that the 
first p layer  on the cycle has a blue hat, which  w e  assumed 
not  to be the case. 

For the other  direction, we  show that if there  is no cy- 
cle in the visibility graph V, then for every strategy there is 
a coloring for which everyone  guesses incorrectly. To do 

this, we  first note that because  V has no cycles, we can as- 
sign each player  a rank as follows: a has rank k if there is 
a d i rec ted  path of length k beginning  at a, but  none  of  
length k + 1. Now, if there is a d i rec ted  edge  from vertex 
a to ver tex  b, then the rank of  p layer  a is strictly greater 
than the rank of p layer  b. Thus, a p layer  can only see hats 
of players  of  strictly smaller rank. Hence,  given any strat- 
egy, we  can assign hat colors in order  of rank to make  
everyone wrong:  once we have co lored  the hats of players  
of rank < k, the guesses of players  of  rank k are determined,  
and we  can then color their hats to make them wrong. 

Now s u p p o s e  there are k colors. For the right-toqeft di- 
rection, assuming the visibility g raph  is complete,  the strat- 
egy is as follows. Number  the p layers  0, 1 , . . .  , k - 1, and  
the colors  0, 1, . . . , k -  1, and  for each i, let & be the 
rood k sum of the hats seen by  p layer  i. The plan is to 
have p layer  i guess i - s, (mod  k) as the color  of  his hat. 
If the colors  of all the hats add  to i (mod k), then p layer  
i will be  the  one who  guesses  correctly. That is, if Co + 
�9 " " -}- Ck-1 - ~  i (mod  k) then c, --- i - s, (mod  k). 

For the other  direction, assume that there are k players 
and  k colors,  and assume the visibility graph is not  com- 
plete. Let S be any strategy. We must  show that there is a 
coloring in which every player  guesses  incorrectly. Suppose  
player  a does  not see p layer /~s  hat  (with a ~ b), and  p ick  
a color ing in which  player  a guesses  correctly. If we change  
the color  of  p layer  b's hat to match  p layer  b's guess, p layer  
a will not  change  his guess, and  w e  will have a color ing 
in which  a and b guess correctly. By Lemma 2, the aver- 
age n u m b e r  of players  who  guess  correctly is k/k = 1; be-  
cause w e  have a coloring with at least 2 players  guessing 
correctly, there must be another  coloring in which fewer  
than 1 (namely,  zero) players guess  correctly. []  

Our  s econd  result a long these  same lines is also due,  in 
part, to James  Guilford and John  Guilford (the n = 2 case 
appears  in Winkler  2001). It answers  the fol lowing ques-  
tion. 

With k players  and n colors, h o w  many correct guesses  
can a strategy guarantee,  assuming the visibility graph is 
complete? 

Lemma 2 shows us that, regardless  of  strategy, the num- 
ber  w h o  guess  correctly will on average be  k/n. But this is 
very different from ensuring that a certain fraction will guess 
correctly regardless of luck or  the part icular coloring at 
hand. Nevertheless,  the fraction k /n  is essentially the cor- 
rect answer.  

THEOREM 3 Considerthe hatproblem with [PI = k, 14 = n, 
and a complete visibility graph V. Then there exists a strat- 
egy ensuring that kk/nJ players guess correctly, but there is 
no strategy ensuring that Lk/nJ+ 1 players guess correctly. 

Proof. The strategy ensuring that Lk/nJ players guess cor- 
rectly is ob ta ined  as follows. Choose  n • Lk/nJ of the play- 
ers ( ignor ing the rest) and divide them into Lk/nJ pairwise 
disjoint g roups  of size n. Regarding each of the groups  as 
an n-player,  n-color hat problem,  w e  can apply  the previ- 
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ous theorem to obtain a strategy for each group ensuring 
that (precisely)  one in each group  guesses correctly. This 
yields  Lk/n] correct guesses altogether,  as desired. 

For the second part, we  use Lemma 2. For any strategy, 
the average number  of players who  guess correctly will be 
Lk/n], and I_k/n_] < Lk/nJ + 1, so no strategy can guarantee at 
least I_k/n] + 1 players guess correctly for each coloring. []  

Theorem 3, and most of  Theorem 1, were  ob ta ined  in- 
dependen t ly  by  Butler, Hajiaghay, Kleinberg, and Leighton 
(2008; see this for a cons iderably  more  detai led investiga- 
t ion of  the finite context). 

With  two colors and an even number  of  players,  Theo-  
rem 3 says tha t - -wi th  collective s t ra tegiz ing-- the  on-aver-  
age result  of  50% guessing correct ly can, in fact, be ach ieved  
with each and every coloring. But it also says that this is 
the bes t  that can be  done  by  collective strategizing. In the 
finite case, this latter observat ion  does  little more  than pro-  
vide  p roof  for what  our intuit ion suggests: collective strate- 
gizing notwithstanding,  the on-average  result of 50% can- 
not  be  improved  in a context  where in  guesses  are 
s imultaneous.  The infinite, however ,  is very different, and  
it is to this that we next turn. 

Theorems of Gabay-O'Connor and Lenstra 
We begin with a statement and  proof  of what we will call 
the Gabay-O'Connor  Theorem. As stated, this result is strong 
enough to solve the Gabay-O'Connor  hat problem and to al- 
low us to derive Lenstra's Theorem (below) from it. (One can 
use an arbitrary filter in place of  the collection of cofinite sets, 
with essentially the same proof, to generalize the result.) 

THEOREM 4 ( G A B A Y - O ' C O N N O R )  Consider the situa- 
tion in which the set P of  players is arbitrary, the set C o f  col- 
ors is arbitrary, and  every player sees all but finitely many  of  
the other hats. Then there exists a strategy under which all but 

finitely many  players guess correctly. Moreov~, the strategy is 
robust in the sense that each player's guess is unchanged i f  the 
colors of  finitely many  hats are changed. 

Proof. For h, g E PC, say h ~ g if {a E P : h(a) ~ g(a)} is 
finite; this is an equivalence  relat ion on PC By the ax iom 
of  choice,  there exists a function �9 : PC--+ PC such that 
�9 (h) ~ h, and  if h ~ g, then ~ (h )  = ~(g).  Thus, qb is choos-  
ing a representat ive from each equivalence class. Notice that 
for each coloring h, each p layer  a knows the equivalence 
class [hi, and thus qb(h), because  the player  can see all but  
finitely many hats. The strategy is then to have the players  
guess their hat colors according to the chosen representa-  
tive of  the equivalence class of  the coloring; more formally, 
we  are letting &(h) = ap(h)(a). For any coloring h, since this 
representat ive ~ (h )  only differs from h in finitely many 
places, all but  finitely many players  will guess correctly. Also, 
if finitely many hats change colors, the equivalence class re- 
mains the same and players keep  the same guesses. []  

Theorem 4 is sharp in the sense that even with count-  
ably  many  players  and two colors, no strategy can ensure  
that, for a fixed k, all' but  k players  will guess correctly, 
even if everyone  sees everyone  else 's  hat. The reason is 

that any such strategy w o u l d  immediate ly  yield a strategy 
for 2k + 1 p layers  in which  more than 50% wou ld  guess  
correctly each time, contradicting Lemma 2. 

The fol lowing theorem was originally ob ta ined  by Hen- 
drik Lenstra using techniques (descr ibed be low)  quite dif- 
ferent from our  derivat ion of  it here from Theorem 4. 

THEOREM 5 (LENSTRA) Consider the situation in which 
the set P of  players is arbitrary, [C I = 2, and  every player sees 
all o f  the other hats. Then there exists a strategy under which 
everyone's guess is right or everyone's guess is wrong. 

Proof. Let S be a strategy as in Theorem 4. A useful conse- 
quence of  the robustness of  S is that, for a given coloring h, 
a player a can determine Sb(h) for every player  b. Since we  
are assuming players can see all other hats, a also knows the 
value of  h(b) for every b ~ a. So, we  may define a strategy 
Tby  letting Ta(h) = Sa(h) iff ]{b ~ P :  b ~ a and S#.h) --/= h(b)}] 
is an even number.  That is, the players take it on faith that, 
when playing S, an even number  of  players are wrong: if 
they see an even number  of  errors by others, they keep the 
guess given by S, and otherwise they switch. 

To see that T w o r k s ,  let h be a g iven coloring. When  
[{b E P : Sb(h) --/: h(b)} I is even, every  guess  given by  T 
will be  correct: the p layers  who  were  a l ready correct  
under  S will see  an even number  of  errors (under  S), 
and  keep  their  guess;  the players  w h o  were  wrong  under  
S will see an o d d  number  of  errors and  will switch. W h e n  
]{b @ P : Sb(h) g= h(b)}] is odd,  the oppos i t e  occurs, and  
every guess  given by Twi l l  be incorrect:  the players  w h o  
wou ld  be correct  under  S will  see an o d d  number  of errors 
and will switch (to the incorrect  guess);  the players  w h o  
wou ld  be  wrong  under  S will see an even  number  of er- 
rors and will stay (with the incorrect  guess).  []  

The assumption that everyone can see everyone else's hat 
in Theorem 5 is necessary. That is, if p layer  a could not see  
player  ~s  hat, then changing player  /~s hat would  change 
neither his nor p layer  a's guess, but p layer  b would  go from 
wrong to right or  vice-versa, and player  a would  not. 

Lenstra's Theorem can be  genera l ized  from two colors 
to the case in which  the set of colors is an arbitrary (even 
infinite) Abelian group. The conclusion is then that, for a 
given coloring, everyone ' s  guess will differ from his true 
hat color  by the same e lement  of the group.  Intuitively, the 
strategy is for everyone  to take it on  faith that the (finite) 
group sum of  the differences be tween  the true coloring and 
the guesses p rov ided  by the Gabay-O 'Connor  Theorem is 
the identity of the group. (Variants of this observat ion were  
made independen t ly  by a number  of  people . )  

Lenstra's original proof  is certainly not  wi thout  its charms, 
and goes  as follows. If we  identify the color  red with the 
number  zero and the color blue with the number  one, then 
we  can regard the collection of  all color ings as a vector  
space over  the two-e lement  field. The collect ion W of  all 
colorings with only  finitely many red  hats is a subspace,  
and  the function that takes each such color ing to zero if 
the number  of  red  hats is even, and  one  otherwise,  is a 
linear functional def ined on W. The ax iom of choice guar- 
antees that this l inear functional can be  ex tended  to the 
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whole vector space. Moreover, a coloring is in the kernel 
iff the changing of one  hat yields a coloring that is not in 
the kernel. Hence, the strategy is for each player to guess 
his hat color assuming that the coloring is in the kernel. If 
the coloring is, indeed, in the kernel, then everyone guesses 
correctly. If not, then everyone guesses incorrectly. 

Another proof of Lenstra's Theorem, at least for the case 
where the set of players is countably infinite, was found 
by Stan Wagon. It uses the existence (ensured by  AC) of a 
so-called non-principal ultrafilter on P-- tha t  is, a collection 
~ of subsets of P that contains no finite sets, that is closed 
under  finite intersections, and that contains exactly one of 
X and X c for every X C_ P. Wagon's  proof goes as follows. 
Label the players by natural  numbers  and call an integer a 
"red-even" if the n u m b e r  of red hats among players 0, 1, 
�9 . . , a is even. Player a's hat color affects which integers 
h > a are red-even in the sense that changing player a's 
hat color causes the set of red-even numbers  greater than 
a to be complemented.  The strategy is for player a to make 
his choice so that, if this choice is correct, then the set of 
red-even numbers  is in the ultrafilter OR. The strategy works 
because either the set of red-even numbers  is in OR (in 
which case everyone is right) or the set of red-even num- 
bers is not in OR (in which case everyone is wrong).  

The Necessity of the Axiom of Choice 
Some nontrivial version of the axiom of choice is needed 
to prove Lenstra's Theorem or the Gabay-O'Connor  Theo- 
rem. Specifically, if we take the standard axioms of set the- 
ory (ZFC) and replace the axiom of choice with a weaker 
principle known  as dependent  choice, the resulting system 
ZF + DC is not strong enough  to prove Lenstra's Theorem 
or the Gabay-O'Connor  Theorem, even when  restricted to 
the case of two colors and countably many players. His- 
torically, the precursor to our results here is a slightly 
weaker observation (in a different but related context) of 
Roy O. Davies that was announced  in Silverman (1966). 
The reader does not need  any familiarity with ZF + DC; all 
that must be unders tood is that, as an axiom system, ZF + 
DC is weaker  than ZFC, and somewhat  stronger than ZF 
(set theory with the axiom of choice removed altogether). 

To follow our argument,  some basic facts about  the prop- 
erty of Baire are needed;  to this end, the appendix  gives a 
short introduction to the property of Baire. As an aid to in- 
tuition, having the property of Baire is somewhat  analo- 
gous to being measurable,  whereas being meager  (see ap- 
pendix) is somewhat  analogous to having measure 0. (The 
two notions should not  be conflated too much, however: 
the real numbers  can be written as the disjoint un ion  of a 
measure 0 set and a meager  set.) 

Let BP be the assertion that every set of reals has the 
property of Baire. It is known  (assuming ZF is consistent) 
that ZF + DC cannot  disprove BP (Judah and Shelah 1993). 
(This was established earlier, assuming the existence of a 
large cardinal, in [Solovay 1970].) It follows that ZF + DC 
cannot  prove any theorem that contradicts BP, as any such 
proof could be turned into a proof that BP fails. We will 
show that Lenstra's Theorem and the Gabay-O'Connor  The- 
orem contradict BP, and thus ZF + DC cannot  prove 
Lenstra's Theorem or the Gabay-O'Connor  Theorem. AI- 

though BP is useful for establishing results such as these, 
one should note that BP is false in ZFC (for instance, ZFC 
can prove Lenstra's Theorem, which contradicts BP). 

Throughout  this section, we take the set P of players to 
be the set IN of natural numbers ,  and  we take the two col- 
ors to be  0 and 1. The topology and measure on ~{0, 1} 
are the usual  ones. That is, if s is a finite sequence of 0s 
and ls, then the set [s] of all infinite sequences of 0s and  
ls  that extend s is a basic open  set whose measure is 2 --n, 
where n is the length of s. Identifying N{0, 1} with the bi- 
nary expansions  of reals in [0, 1], this is Lebesgue measure. 
The topology is that of the Cantor set. 

Let T~ be the measure-preserving homeomorphism from 
•{0, 1} to itself that toggles the kth bit in a sequence of 0s 
and Is. Call a set D C_C_ N{0, 1} a toggle set if there are infi- 
nitely many  values of k for which Tk(D) n D = O. 

The next  iemma is key to the results in this section; its 
proof makes use of the following observation. If a set D 
has the property of Baire but  is not  meager, then there ex- 
ists a nonempty  open  set V such that the symmetric dif- 
ference of D and V is meager. Hence,  if we take any ba- 
sic open  set [s] C_ V, it then follows that Is] - D is meager. 

LEMMA 6 Every toggle set with the property of Baire is mea- 
ger. 

Proof  Assume for contradiction that D is a nonmeager  tog- 
gle set with the property of Baire, and  choose a basic open  
set [s] such that Is] - D is meager. Because D is a toggle 
set, we can choose k greater than the length of s such that 
rk(D) n D = O. It now  follows that [s] N D C [s] - Tk(D). But 
T~[s]) = Is], because k is greater than the length of s. Hence, 
[s]n D C [s] - Tk(D) = Tk([s]) - Tk(D) = Tk(ls] -- D). Thus, 
Is] n D is meager, as was [s] - D. This means that Is] itself 
is meager, a contradiction. [] 

With these preliminaries, the following theorem (of ZF + 
DC) shows that Lenstra's Theorem contradicts BP, and 
hence it cannot  be proven without  some nontrivial version 
of the axiom of choice. 

THEOREM "7 Consider the situation in which the set P o f  
players is countably infinite, there are two colors, and  each 
player sees all o f  the other hats. Assume BP. Then f o r  every 
strategy there exists a coloring under  which someone guesses 
correctly and  someone guesses incorrectly. 

Proof  Assume that S is a strategy and let D denote the set 
of colorings for which S yields all correct guesses, and let 
I denote  the set of colorings for which S yields all incor- 
rect guesses. Notice that both D and  I are toggle sets, since 
changing the hat on one player causes his (unchanged)  
guess to switch from right to wrong or vice versa. If D and 
I both have the property of Baire, then both are meager. 
Choose h E ~{0, 1} - (D U I) .  Under  h, someone guesses 
correctly and someone guesses incorrectly. []  

In ZFC, nonmeager  toggle sets do exist: as seen in the 
previous proof, if all toggle sets are meager, then Lenstra's 
Theorem fails, but Lenstra's Theorem is valid in ZFC. 
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We derived Lenstra's Theorem from the Gabay-O'Con- 
nor  Theorem, so Theorem 7 also shows that some non-  
trivial version of the axiom of choice is needed to prove 
the Gabay-O'Connor Theorem. However, the Gabay- 
O 'Connor  Theorem, even in the case of two colors and 
countably  many players, is stronger than the assertion that 
the Gabay-O'Connor  hat p roblem has a solution: the theo- 
rem does not require that players can see all other hats, 
and it produces not just a strategy, but  a robust strategy. 
The following theorem (of ZF + DC) shows that any solu- 
tion to the Gabay-O'Connor  hat problem, even in the count-  
able case, contradicts BP and  hence requires some non-  
trivial version of the axiom of choice. 

THEOREM 8 Consider the case of the Gabay-O'Connor hat 
problem in which the set of players is countably infinite. As- 
sume BP. Then for every strategy there exists a coloring under 
which the number of players guessing incorrectly is infinite. 

Proof. Assume that S is a strategy and, for each k, let Dk 
denote  the set of colorings for which S yields all correct 
guesses from players numbered  k and higher. Notice that 
each Dk is a toggle set, since changing the hat on a player 
higher than k causes his (unchanged)  guess to switch from 
right to wrong. If all the DR have the property of Baire, 
then all are meager. Let D be the un ion  of the DR, and 
choose h E ~{0, 1} - D. Under  h, the number  of people  
guessing incorrectly is infinite. [] 

Theorems 7 and 8 can be recast in the context  of 
Lebesgue measurability to show that both Lenstra's Theo- 
rem and the Gabay-O'Connor  Theorem imply the existence 
of nonmeasurable  sets of reals. However, to show that ZF + 
DC cannot  prove the existence of nonmeasurable  sets of 
reals, one  must assume the consistency of ZFC plus the ex- 
istence of a large cardinal (Solovay 1970, Shelah 1984). Al- 
though this is not a particularly onerous assumption, it is 
why we favored the presentat ion in terms of the property 

of Baire. 
It turns out that with infinitely many colors, some non-  

trivial version of the axiom of choice is needed to obtain 
a strategy ensuring even one correct guess; this will appear  

elsewhere. 

Appendix: The Property of Baire 
DEFIm'nON 9 A subset N of a topological space is nowhere 
dense if the interior of its closure is empty. A set is meager 
if it is the union of countably many nowhere dense sets. 

A set B has the property of Baire if it differs from an 
open  set by a meager  set; that is, there is an open  set V 
and a meager  set M such that BAV= M (equivalently, B = 
VAM), where  A denotes symmetric difference. 

A topological space is a Baire space if its nonempty  open  
sets are nonmeager .  

THEOREM 10 (BAIRE CATEGORY THEOREM) Every 
nonempty complete metric space is a Baire space. 

We do not show the proof here, but  it can be carried 
out in ZF + DC. For the special cases of the reals and Can- 
tor space, the proof  can be carried out in ZF. 
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