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Abstract

We say that a graph F strongly arrows (G, H) and write F �
(G, H) if for every edge-coloring of F with colors red and blue a red
G or a blue H occurs as an induced subgraph of F . Induced Ram-

sey numbers are defined by r∗(G, H) = min{|V (F )| : F � (G, H)}.
The value of r∗(G, H) is finite for all graphs, and good upper bounds
on induced Ramsey numbers in general, and for particular families
of graphs are known. Most of these results, however, use the proba-
bilistic method, and therefore do no yield explicit constructions. This
paper provides several constructions for upper bounds on r∗(G, H)

including r∗(Cn) = r∗(Cn, Cn) ≤ c(log n)2 , r∗(T, Kn) ≤ |T |n|T | log |T |,
r∗(B, Cn) ≤ |B|dlog ne+4, where T is a tree, B is bipartite, Kn is the
complete graph on n vertices and Cn a cycle on n vertices. We also
have some new upper bounds for small graphs: r∗(K3 + e) ≤ 21, and
r∗(K4 − e) ≤ 46.

1 Introduction

Any edge-coloring of a K5 with red and blue will contain a monochromatic
P4 (path on four vertices). The proof is a standard Ramsey theory argu-
ment: fix one vertex u of the K5. There are at least two neighbors v and w
of u such that uv and uw have the same color, say red. Consider the four
edges leaving v and w other than uv and uw. If one of these edges is red it
forms a red P4 with uv and uw, otherwise the four edges are blue and form
a blue C4 (cylce on four vertices) which, obviously, contains a blue P4.

What happens if we require the monochromatic P4 subgraph to be in-
duced? The complete graph will no longer do, since it does not contain P4
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as an induced subgraph at all, but the graph in Figure 1 will work, as we
will show in Section 6.1.

Figure 1: Graph with monochromatic, induced P4 in every two-coloring

It is not at all obvious that given graphs G and H there will always
be a graph F which for all two-colorings will either contain a red induced
G or a blue induced H (in this case we say that F strongly arrows G and
H , and write F � (G, H)). This result is known as the Induced Graph
Theorem and was proved independently by Deuber, by Erdős, Hajnal and
Pósa, and by Rödl in the seventies [Die97]. In a later analysis, Erdős and

Hajnal showed that the graph F can be assumed to have at most 22n1+ε

vertices [KPR98], where n is the numer of vertices in G and H . The smallest
order |F | (number of vertices) of a graph F for which F � (G, H) is called
r∗(G, H), or r∗(G) in the diagonal case G = H . If we omit the condition
that subgraphs must be induced, we get the ordinary Ramsey numbers
r(G, H) which are well investigated [Rad99, GRS90].

Erdős and Rödl conjectured r∗(G) ≤ c|G|, where c is a constant [CG98].
A recent paper by Kohayakawa, Prömel, and Rödl established r∗(G) ≤

2|G|(log |G|)2 [KPR98].
While this result tells us something about the order of induced Ramsey

graphs F for G, it does not allow us to construct F explicitly. Most con-
structions in Ramsey theory are randomized, using the probabilistic method
for proving existence. However, there are situations in which one needs
explicit constructions: fault-tolerant networks, for example [AC88], or the
study of the computational complexity of �, the arrowing relation [Sch99].

A look at the proofs of the Induced Graph Theorem shows that most
of them have relied on the probabilistic method. The exceptions are the
proofs by Deuber and by Nešetřil and Rödl [Die97].1 However, both proofs

1Diestel [Die97] includes both proofs. Deuber’s is the first proof of Theorem 9.3.1,
and Nešetřil’s and Rödl’s is the second proof.
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construct graphs of enormous size (worse than taking repeated exponents,
but better than Ackermann’s function). Perhaps we cannot expect better
results for the general case. In this paper we concentrate on explicit con-
structions for special families of graphs: complete graphs, bipartite graphs,
cycles, and trees. We conclude the introduction with a survey of our re-
sults in comparison to previously known constructive and nonconstructive
results in the area.

Let us start with small graphs. We restrict ourselves to connected
graphs on four vertices. Smaller graphs are trivial, and we do not know of
any results for particular larger graphs that are not either trivial (stars) or
belong to noninduced Ramsey theory (complete graphs). P4 is the path on
four vertices, K1,3 a star with three edges, C4 the cycle on four vertices,
K3 + e a triangle with an additional edge attached to one of the vertices,
and K4−e a complete graph on four vertices with one of its edges removed.
Figure 2 collects the known results.

G r∗(G) Reference

P4 8 Harary, Nešetřil, Rödl [HNR83], Section 6.1
K1,3 6 Harary [HNR83]
K3 6 Gleason and Greenwood [GRS90]
C4 ≤ 10 Harary, Nešetřil, Rödl [HNR83]
K3 + e 21 Section 6.2
K4 − e 46 Section 6.3
K4 18 Gleason and Greenwood [GRS90]

Figure 2: Induced Diagonal Ramsey Numbers for Small Graphs

We also show that r∗(K3+e, K3) ≤ 18 (Section 6.2), r∗(K4−e, K3) ≤ 16
(Section 6.3), and r∗(C3, C4) ≤ 14 (Section 6.4). These are the only bounds
for nondiagonal Ramsey numbers we are aware of (excluding trivial cases
and pairs of complete graphs).

The only true lower bound for induced Ramsey numbers we know of is
r∗(P4) ≥ 8 from the paper by Harary, Nešetřil, and Rödl [HNR83]. And
this is not only true for small graphs, but for the asymptotic case as well.
All available lower bounds simply use r∗(G, H) ≥ r(G, H).

Let us now turn to the asymptotic results. As we mentioned earlier,
there are several proofs of the Induced Graph Ramsey Theorem. The
current best upper bound is given in a paper by Kohayakawa, Prömel,
Rödl [KPR98]:

r∗(G, H) ≤ |H |c|G| log χ(H),

where c is a constant, χ(H) is the chromatic number of H , and |G| ≤ |H |.
This comes close to the Erdős and Rödl conjecture that r∗(G) ≤ c|G|.
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The Erdős and Rödl conjecture is true for bipartite graphs by a result
of Rödl from his 1973 master’s thesis.2 If one of the graphs is a tree, then
r∗ behaves polynomially: r∗(T, H) ≤ c|T |2|H |4(log |T ||H |2)2 [KPR98] (the
actual bound is slightly better, but more complicated). If both graphs are
trees, then r∗(T ) ≤ |T |3(log |T |)4 as Beck showed [Bec90]. The case of
induced paths and induced cycles was settled by a result of Haxell, Ko-
hayakawa,  Luczak [HK L95] who showed that r∗(Cn) ≤ cn, where Cn is
the cycle on n vertices. As a matter of fact they showed more: even the
size Ramsey number (counting the number of edges rather than vertices) is
linear in n. Furthermore the result is true for any number of colors (only
the constant c depends on the number of colors).  Luczak and Rödl [ LR96]
showed that for graphs of bounded maximum degree r∗(H) ≤ |H |c (where
c depends on the degree bound).

The only construtive result in the preceding list is Rödl’s result for bi-
partite graphs. It is also tight in the sense that there is an exponential
lower bound to match it (for complete bipartite graphs, even in the non-
induced case). Figure 3 sums up our result while comparing them to the
randomized results. In the table T is a tree, B a bipartite graph.

G H r∗(G, H) References
constructive random

T Kn |T |n|T | log |T | c|T |2n4(log |T |n2)2 Theorem 3.1, [KPR98]
T Kn,n |T |2n c|T |2(2n)4(log |T |(2n)2)2 Theorem 3.2, [KPR98]

Pn B |B|dlog ne cn2|B|4(log n|B|2)2 Corollary 4.8, [KPR98]

T B |B|(6|T | log |T |)1/2

c|T |2|B|4(log |T ||B|2)2 Theorem 4.10, [KPR98]

T T 6|T |1/2 log3/2 |T | |T |3(log |T |)4 Corollary 4.11, [Bec90]

B Cn |B|dlog ne+4 ? Theorem 5.2

T Cn |T |dlog ne+1 c|T |2n4(log |T |n2)2 Corollary 5.3, [KPR98]

Cn Cm 4(log(n)+log(m))2 cn (for m ≈ n) Theorem 5.4, [HK L95]

Figure 3: Asymptotic Induced Ramsey Numbers

2 Definitions

A graph F = (V, E) consists of a vertex set V and an edge set E. The
order of F (written |F |) is the number of vertices, |V |, the size of F is
the number of edges, |E|. For the purposes of this paper, all graphs are
finite, undirected, and simple (without loops or multiple edges). We say

2The only published version of this result we could locate is in Diestel’s book [Die97,
Lemma 9.3.3].
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F ′ = (V ′, E′) is a subgraph of F = (V, E) if V ′ ⊆ V and E′ ⊆ E. We call
F ′ an induced subgraph of F if E ′ = {uv ∈ E : u, v ∈ V ′}.

A graph F = (V, E) is bipartite, if its vertex set can be partitioned
into two sets such that all edges of F are between the two sets that is
V = V1

.
∪ V2, and E ⊆ {uv : u ∈ V1, v ∈ V2}.

We use the following notation for particular graphs: Kn is the complete
graph on n vertices, Kn,m the complete bipartite graph on n and m vertices
(and similarly Kn,m,o the complete tripartite graph on n, m and o vertices),
Cn the cycle on n vertices, and Pn the path on n vertices (of length n− 1).
We will call K1,n a star. The star K1,n has one center and n outer vertices.

Connected, acyclic graphs are called trees. A rooted tree is a tree with
one of its nodes designated as a root. We think of the edges as being
oriented away from the root, and, therefore, will talk about parents and
children with regard to nodes in a rooted tree. A rooted tree is called full if
all its vertices (with the exception of the leaves) have the same number of
children and all the leaves are at the same level. If the number of children
is d and the leaves are at level h, we speak of the full d-ary tree of height h.

Definition 2.1 We say that a graph F arrows (G, H) and write F →
(G, H) if for every edge-coloring of F with colors red and blue, a red G or
a blue H occurs as a subgraph. We say F strongly arrows (G, H) and write
F � (G, H) if the subgraph is induced (as a subgraph of F ). We define the
generalized Ramsey numbers

r(G, H) = min{n : Kn → (G, H)},

r∗(G, H) = min{|V (F )| : F � (G, H)}.

The (induced) size Ramsey numbers are defined as

re(G, H) = min{|E(F )| : F → (G, H)},

r∗e (G, H) = min{|E(F )| : F � (G, H)}.

Definition 2.2 The composition F [G] of two graphs F = (V, E) and G =
(V ′, E′) is a graph on V ×V ′ with edges between points (v1, v

′
1) and (v2, v

′
2)

if v1v2 ∈ E or v1 = v2 and v′1v
′
2 ∈ E′, i.e. the vertices of F are replaced

with copies of G and the edges of F with complete bipartite graphs (or
conversely).

As references we use Diestel [Die97] for graph theory, and Graham,
Rothschild, Spencer [GRS90] for Ramsey theory.

3 Trees versus Complete Graphs

Theorem 3.1 Given a tree T and n ≥ 2 we can construct a graph F of
order at most |T |n2|T | log |T | such that F � (T, Kn).
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Proof. Let T be a tree of order t. We will construct graphs Fn induc-
tively such that Fn � (T, Kn).

For n = 2 we can let F2 = T which serves as the base of the construction.
For the inductive step we assume that we have built a graph Fn such that
Fn � (T, Kn). Consider the graph F = T [Fn], the composition of T and
Fn. We will show that F � (T, K(1+β)n) for some β > 0 depending on T
only.

Fix a coloring of F in which F does not contain a red induced subgraph
T . Then each copy of Fn will contain a blue clique of order at least n.
Restrict F and its coloring to the union of these vertices, i.e. we get a
graph of the form F ′ = T [Kn] where each copy of Kn is colored blue and
F ′ does not contain a red T . Let us call the different copies of Kn the
layers of F ′ and call these layers adjacent if the corresponding vertices in T
they replace are adjacent. For a vertex v of T let L(v) denote the vertices
of F ′ which belong to the layer associated with v. We claim that there are
subsets A and B of vertices of some two adjacent layers such that all edges
between A and B are blue and |A| + |B| ≥ (1 + β)n (we will determine β
later). Then the vertices in A and B form a blue clique of order (1 + β)n,
hence F itself contains a blue clique of this order. That means we can
increase the order of cliques by a factor of (1 + β) by multiplying the order
of the graph by t. Hence r∗(T, Kn) ≤ t1+log1+β n ≤ tn1/(logt(1+β)).

We still have to prove the claim, so assume for a contradiction that
for any two adjacent layers and any two subsets A and B of these layers
with |A|+ |B| ≥ (1 + β)n there is a red edge between A and B. Consider a
vertex v in T with children v1, . . . , vd for each of which there is a set R(vi) of
vertices from the layer associated with vi in F ′ such that |R(vi)| ≥ (1−kβ)n
for some k ≥ 0. We claim that there is a subset R(v) of the layer associated
with v such that each vertex w ∈ R(v) is connected by a red edge to some
vertex in R(vi) for each 1 ≤ i ≤ d and |R(v)| ≥ (1 − d(k + 1)β)n. The
basic observation is that if R is a subset of a layer and L a subset of an
adjacent layer, then L contains a subset of at least |L| − (n(1 + β) − |R|)
vertices each of which is connected by a red edge to a vertex in R; this
follows by taking subsets A of L of order n(1 +β)−|R|. Letting R = R(v1)
and L = L(v) we obtain a set R′ of (1 − (k + 1)β)n vertices in L(v) all of
which are connected by a red edge to some vertex in R(v1). Repeating this
argument with L = R′ and R = R(v2), etc. will give us the set R(v) we
were looking for.

Now traverse the graph T in a breadth-first way, letting R(v) = L(v) for
all the leaves v of T and using the procedure described above to compute
R(v) for inner nodes. An easy computation shows that if v is the root of
the tree then |R(v)| ≥ (1 − (t − 1)β)n. Hence choosing β = 1/t, we know
that there is a red subtree isomorphic to T in F which contradicts the
assumption thereby establishing the claim.
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Hence F � (T, K(1+β)n), and |F | ≤ |T | ∗ |Fn|. This implies that in

general |Fn| ≤ |T |dlog1+β ne ≤ |T |n2|T | log |T | where we use the fact that
logt(1 + 1/t) ≥ 1/(2t log t). 2

We can use the construction of the Theorem 3.1 to obtain results for
trees versus complete bipartite graphs. Remember that the induced size
Ramsey number r∗e (G, H) is the smallest number of edges of a graph F
fulfilling F � (G, H).

Theorem 3.2 If T is a tree, the following hold (constructively):

• r∗(T, Kn,n) ≤ |T |2n.

• r∗e (T, Kn,n) ≤ |T |3n2.

• r∗(T, C4) ≤ 2|T |2.

The theorem follows from the following lemma.

Lemma 3.3 Given a tree T of order t and an integer n we can construct
a graph F of order at most t2n and size at most t(tn)2 such that F �

(T, Kn,n) for every n.

Proof. Use F = T [Ktn]. As in the proof above one can show that there
is either a red T or a complete bipartite graph on 2tn/t vertices. We do not
need an inductive construction here since we can force the absence of edges
within the two partitions of Kn,n by using the complement of a complete
graph. Note that F has at most t2n vertices and t(tn)2 edges. 2

4 Bipartite Graphs versus Trees

Rödl showed in his master’s thesis that r∗(G) ≤ 2c|G| for a bipartite graph G
using an explicit construction [Die97, Lemma 9.3.3]. Since r∗(G) ≥ r(G) ≥
2|G| by a result of Chvátal and Harary [GRS90], this is a reasonably tight
bound. In this section we consider the restricted version in which one of
the graphs is a tree. We will give explicit constructions showing that

• r∗(G, Pn) ≤ |G|dlog ne if G is bipartite,

• r∗(G, T ) ≤ |G|d(d−1) log |T |e, where d is the maximum degree of T , and
G is bipartite,

• r∗(G, T ) ≤ |T | ∗ |G|log |T | for a full tree T and bipartite G,

• r∗(G, T ) ≤ |G|(2|T | log |T |)1/2

if G is bipartite.
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Note that the last result implies an upper bound of 4|T |1/2 log3/2 |T | for r∗(T ).
To simplify the presentation in this section we introduce an extension

of the composition notation.

Definition 4.1 Let F = (V1

.
∪ V2, E) be a bipartite graph, F1 = (W1, E1),

F2 = (W2, E2) two graphs, and A1 ⊆ W1, A2 ⊆ W2. We define F [V1 →
F1|A1, V2 → F2|A2] with vertex set V1 × W1

.
∪ V2 × W2 to include the

following edges:

(i) an edge between (v, w) and (v, w′) for each ww′ ∈ Ei and v ∈ Vi

(where i = 1, 2),

(ii) an edge between (v, w) and (v′, w′) for vv′ ∈ E, v ∈ V1, v′ ∈ V2,
w ∈ A1, w′ ∈ A2.

We will drop A1, A2, or both in the notation if they are maximal (V1, or
V2). We will drop V1 → F1|A1 or V2 → F2|A2 if no substitution on V1 or
V2 takes place (i.e. F1 or F2 is a single vertex).

That is, we build F [V1 → F1|A1, V2 → F2|A2] from F by substituting
each vertex of F by a copy of F1 or F2 (depending on whether it is from
V1 or V2) and include complete bipartite graphs between the vertices from
A1 and A2.

The next two results will show two ways to build trees (versus a fixed
bipartite graphs). For these (and later results) we will need a notion of
locating vertices of an arrowed tree in a coloring.

Definition 4.2 If F � (G, T ) we call T located in F , if for each v ∈ V (T )
there is a Av ⊆ V (F ), such that the Av are pairwise disjoint, and if a
coloring of F does not contain a red induced G, then it contains a blue
induced copy of T with the copy of v in the set Av (we will also say: v is
located in F ).

The first lemma allows us to build trees along an edge.

Lemma 4.3 Let T be a tree, and T1, T2 be two subtrees of T obtained by
removing one edge from T . If F1 � (G, T1), and F2 � (G, T2) such that
Ti is located in Fi, then we can build an F such that F � (G, T ), T is
located in F , and |F | ≤ |G| ∗ max{|F1|, |F2|}.

Proof. Let G = (V1

.
∪ V2, E). Fix v1 ∈ T1, and v2 ∈ T2 such that v1v2 is

the edge removed from T to obtain T1 and T2. Since T1 and T2 are located
in F1 and F2, rsp., there are sets A1 and A2 such that the copies of v1 and
v2 in F1 and F2 will occur in these sets. Consider an arbitrary coloring
of the graph F = G[V1 → F1|A1, V2 → F2|A2]. We can assume that all
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the copies of Fi contain a blue induced Ti with vi in Ai (otherwise we are
done). More precisely for each v ∈ Vi there is a blue, induced tree Tv,i in
F , its vertices from {v}×Fi, containing the vertex {v, vi} in {v}×Ai. The
graph F restricted to these {v, vi} (v ∈ V ) is isomorphic to G. Hence this
restricted graph it has to contain a blue edge (otherwise we have a copy
of a red induced G) which (by construction) connects a blue induced T1 to
a blue induced T2. Again, more precisely, there are u ∈ V1, and w ∈ V2

such that the edge {{u, v1}, {w, v2}} is blue. Together with Tu,1, and Tw,2

this completes a blue induced T . The bound on the size of F is immediate.
Furthermore T is located in F . This follows from the assumption about T1

and T2 and the construction. 2

The second lemma deals with vertices.

Lemma 4.4 Let T be a tree rooted in v and F be a graph such that F �

(G, T ) and v is located in F . Given d, define a tree T ′ by taking d copies
of T and identifying their roots v with the outer vertices of a K1,d. Then
we can construct F ′ such that F ′

� (G, T ′) and the center of the K1,d is
located in F ′. Furthermore |F ′| ≤ d|G|2 ∗ |F |.

Before we prove the lemma we need to establish the following claim.

Claim 4.5 For every bipartite graph G there is a bipartite graph G′ =
(V1

.
∪ V2, E) of order at most d|G|2 such that every coloring of G′ either

contains a red induced G or a blue induced star K1,d with its root in V1,
and its children in V2.

Proof. Let G = (W1

.
∪ W2, E

′) be a bipartite graph. Construct G′

by substituting every vertex in W2 by n := |W1|(d − 1) + 1 new vertices,
that is V1 = W1, V2 = W2 × {1, . . . , n}, and E = {a(b, i) : a ∈ V1, b ∈
V2, ab ∈ E, and 1 ≤ i ≤ n}. Assuming that there is no blue induced
K1,d with center in V1 one easily constructs a red induced G. Furthermore
|G′| ≤ |W1| + |W2|n = |W1| + |W2| + |W2||W1|(d − 1) ≤ |G|2d. 2

Proof of Lemma 4.4. Fix G, F , v, T , d and T ′ as in the assumption
of the lemma, and select A ⊆ V (F ) such that v will lie in A if a coloring of
F contains a blue induced T . Choose G′ = (V1

.
∪ V2, E) as constructed in

the preceding claim. Let F ′ = G′[V2 → F |A]. Each copy of F contains a
blue induced copy of T with v in A (otherwise we are done). If we restrict
F ′ to the copies of these v we get a graph isomorphic to G′. Hence we can
assume that F ′ contains a blue induced K1,d with center in V1 and all of its
children copies of v vertices. This completes a blue induced T ′. We have
|F ′| ≤ |G′| ∗ |F | ≤ d|G|2|F |, and the center of the star is located in F ′. 2
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Let us see how to apply these lemmas. The first lemma gives us a good
handle on trees of small maximum degree. The reason is the following
well-known result.

Lemma 4.6 For every tree T of maximum degree d there is a node of the
tree such that the subtree rooted in that node is of order between (|T |−1)/d
and (|T | − 1)(d − 1)/d.

Proof. Root the tree in one of its leaves. Starting from there keep
selecting a child v of the current node such that the subtree Tv rooted in
v has more than (|T | − 1)(d − 1)/d vertices (the unique child of the root
certainly fulfills this property). Eventually we find a vertex v for which
there is no such child, i.e. for all children w of v the subtree Tw rooted in
w has at most (|T | − 1)(d − 1)/d vertices. Since |Tv| ≥ (|T | − 1)(d − 1)/d
we know that one of the (at most d − 1) children has at least (|T | − 1)/d
vertices, completing the proof. 2

Theorem 4.7 Let G be a bipartite graph, and T a tree on n vertices with
maximum degree d (d ≥ 2). Then we can construct a graph F of order at
most |G|d(d−1) log ne such that F � (G, T ) (and T is located in F ).

Proof. We use Lemma 4.6 to split T into two parts each of size at most
(d − 1)/d(|T | − 1). Recursively we can build T from these subtrees using
Lemma 4.3. If V (T ) = {v}, we let F be the graph on a single vertex, and
Av contain that single vertex. This will do as a base for the recursion. If
k ≥ (d − 1) log n we have (d/(d − 1))k = (1 + 1/(d − 1))k ≥ 2log n ≥ n,
hence the construction will take at most d(d− 1) log(n)e steps, hence |F | ≤
|G|d(d−1) log ne. 2

One specific result seems worth mentioning.

Corollary 4.8 For every bipartite graph G we can build a graph F of order
at most |G|dlog ne such that F � (G, Pn) (and Pn is located in F ).

Lemma 4.4 works well with full trees. Suppose T is a full d-ary tree
of height h. Then we can apply the lemma recursively to get an F with
F � (G, T ) and |F | ≤ dh ∗ |G|2h ≤ |T ||G|2 logd |T |.

Theorem 4.9 For every full d-ary tree T and every bipartite graph G we
can construct a graph F of order at most |T | ∗ |G|2 logd |T | such that F �

(G, T ).

The previous best constructive upper bound on bipartite graphs versus
trees is given by Rödl’s construction for bipartite graphs. We can im-
prove that bound by combining the two ideas above: we use Lemma 4.4
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for vertices of high degree, and Lemma 4.3 for vertices of low degree.
Suppose we are given a tree T on n vertices with a vertex v of degree
d ≥ n/(n log n/3)1/2. Let T1, . . . , Td be the trees rooted in the children
v1, . . . , vd of v. There is a single tree T ′ with root v′ such that every Ti

is a subgraph of T ′ where vi is mapped to v′, and the degree sequence
of T ′ is a subsequence of the degree sequence of T − {v}. (To see this,
consider all trees T ′ with root v′ such that every Ti is a subgraph of T ′

and vi is mapped to v′. Assume every node in T ′ has smallest possible
degree, where we minimize the degrees of the vertices in a breadth-first
order. Any vertex in that tree T ′ which does not coincide with a vertex
of the same degree from one of the Ti could be substituted by a vertex
of smaller degree all of whose grandchildren are the same tree, namely
the tree obtained from identifying the roots of all the grandchildren of the
original vertex.) Hence if we take d copies of T ′ and identify the satellite
vertices of a K1,d with the roots of the copies of T ′, the resulting graph
will contain T as a subgraph. Therefore we can apply the construction
of Lemma 4.4 for vertex v. We now repeat the construction recursively
with T ′ until all vertices have degree at most n/(n log n/3)1/2. This will
take at most (n log n/3)1/2 steps (by the condition on the degree sequence
of T ′ we are not introducing new vertices of high degree, and we are re-
moving at least one vertex of high degree at each step). At this point we
apply the construction from Theorem 4.7 which will give us a graph of size

|G|(n/(n log n/3)1/2) log n = |G|(3n log n)1/2). This graph we now use as the base
for the (n log n/3)1/2 steps of the Lemma 4.4 construction which gives us an

upper bound of (|G| ∗ |G|2)(n/(n log n/3)1/2)|G|(3n log n)1/2) = |G|(6n log n)1/2)

which is what we set out to prove.

Theorem 4.10 Given a bipartite graph G and a tree T we can construct

a graph F of order at most |G|(6|T | log |T |)1/2) such that F � (G, T ).

Corollary 4.11 Given a tree T we can build a graph F of order at most

6|T |1/2 log3/2 |T | such that F � (T, T ).

5 Cycles

This section contains constructions showing the following bounds:

• r∗(G, Cn) ≤ |G|dlog ne+4 if G is bipartite.

• r∗(T, Cn) ≤ |T |dlog ne+1 if T is a tree.

• r∗(Cn, Cm) ≤ 4(log(n)+log(m))2 .

There does not currently seem to be a randomized result better than
our upper bound on r∗(G, Cn).
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5.1 Cycles and Bipartite Graphs

Lemma 5.1 If G has maximum degree d, then G[Kd+1] � (G, K1,2).

Proof. Let F = G[Kd+1] and fix a coloring in which F does not have a
blue induced K1,2. We will show how to recursively embed a red induced G
in F . Each vertex of G has d+1 possible representatives to choose from. We
start with any vertex, and choose any of its representatives. Assume now
that we have built a part of G in F and now want to add vertex v ∈ V (G).
We have d + 1 choices. However we might have already embedded some of
the neighbors of v. Since v has at most d neighbors, and each representative
chosen for one of these neighbors is incident to at least d red edges to the
representatives of v (otherwise there would be a blue K1,2) there is one
representative of v which is connected by red edges to all representatives of
neighbors of v chosen so far. 2

Theorem 5.2 Given a bipartite graph G and a cycle Cn (n ≥ 3) we can
construct a graph F of order at most |G|dlog ne+4 such that F � (G, Cn).

Proof. Fix G = (V1

.
∪ V2, E) with maximum degree d. Construct a

tree T from a K1,d+1 by replacing each edge with a Pn−1. Combining the
ideas from Corollary 4.8 and Lemma 4.4, we obtain a graph H of order
at most (d + 1)|G|2 ∗ |G|dlog ne ≤ |G|3+dlog ne and a set A ⊆ V (H) such
that H � (G, T ). Furthermore if H does not contain a red induced G,
it contains a blue induced T with its d + 1 leaves in the set A (since T
is induced this in partiular means that there are no edges between those
leaves).

Consider the graph F = G[V1 → H |A, V2 → H |A]. Fix a coloring of F
without a red induced G subgraph. Then each copy of H contains a blue
induced H with its d + 1 leaves in A. Restrict F and its coloring to these
(d + 1)|G| leaves. By Lemma 5.1 this graph has to contain a blue induced
K1,2. This blue induced K1,2, however, completes a blue induced Cn in F ,
and we are done. 2

The use of Lemma 5.1 in the last theorem was necessary to deal with
cycles in the graph G. If G is acyclic, we can obtain slightly better bounds.

Corollary 5.3 For every tree T and every n ≥ 3 we can build a graph F
of order at most |T |dlog ne+1 such that F � (T, Cn).

5.2 Cycles versus Cycles

Theorem 5.4 For every Cn and Cm we can construct a graph F of order
at most 4(log(n)+log(m))2 such that F � (Cn, Cm).

12



We split the proof into two cases: one of n and m is even (Lemma 5.5),
or both are odd (Lemma 5.7). The case that one of the cycles is even is
covered by Theorem 5.2, but we improve the construction to get a slightly
better bound.

Lemma 5.5 For every m and every even n we can build a graph F of order
at most 3/2ndlog me+1 such that F � (Cm, Cn).

Proof. Since n is even we can apply Corollary 4.8 to obtain a graph
Fm,n of order at most ndlog me such that F � (Cn, Pm).

Construct a graph G by taking two points and connecting them by three
three vertex-disjoint paths of length n/2 (see Figure 4).

Figure 4: The three paths of G

Consider an arbitrary coloring of F = G[Fm,n]. If none of the copies of
Fm,n contain a red Cn, they all contain a blue induced path of length m−2.
For every vertex v of G fix the two endpoints av and bv of such a path.
Let v and w be adjacent in G. If we restrict F to the K2,2 on the vertices
{av, bv, aw, bw} we see that either both avaw and bvbw or both avbw and
bvaw are red (otherwise one of the blue induced paths is extended to a blue
induced Cm). In the second case we say that the edge vw in G switches
(meaning that the red edges switch from the a to the b vertices, and vice
versa). Of the three paths of length n/2 that connect the two special points
in G we can select two such that the parity of the total number of switching
edges on the resulting cycle is even. Following this cycle of length n in F
(starting with an arbitrary a on the cycle) and switching from av to bw or
bv to aw whenever the corresponding edge is switching, or remaining on the
a or b side if the edge is not switching, yields a red induced cycle of length
n in F . 2

For the following lemma and theorem let Th,` be the following tree: take
a full ternary tree of height h, and 3h paths of length `. Pair up the paths
with the leaves of the ternary tree, and identify one end of each path with
the corresponding leaf of the ternary tree. Note that Th,` contains 3h paths
of length h + ` from its root to its leaves.

13



Lemma 5.6 For every n, m, h (with n odd) we can build a graph F of
order at most (nm)2h+dlog `e and pairwise disjoint Av ⊆ V (F ) such that F
contains either a red induced Cn, a blue induced Cm, or a blue induced Th,`

with each leaf v in Av (for all 3h leaves).

Proof. Fix n (odd) and m. If we could apply Lemma 4.3, we could
build a graph strongly arrowing (Cn, Th,`, however, Cn is not bipartite.
Fortunately, it is nearly bipartite.

Consider the graph G obtained by linking a central point to each point
of a Cm by a path of length (n−1)/2. If a coloring of G does not contain a
red induced Cm, one of the edges of the Cm has to be blue, which forces one
of the edges on the two paths from that edge to the central point to be red.
Splitting up the vertices of G into sets V1 and V2 according to whether their
distance from the central point is odd or even gives us a graph G which in
any coloring either contains a red induced Cm, a blue induced Cn, or a blue
edge between the two disjoint sets V1 and V2. We can now use G, V1, and V2

in the construction from Lemma 4.3 to build a graph which in any coloring
either contains a red induced Cm, a blue induced Cn, or a blue induced
Th,`. We first apply the lemma dlog `e many times to obtain a graph such
that any coloring of that graph contains either a red induced Cn, a blue
induced Cn, or a path of length ` whose endpoints are located. It now takes
us another 2h steps to complete the ternary structure connecting the paths
(two steps for each level of the full ternary tree). Hence |F | ≤ |G|2h+dlog `e,
implying, together with |G| ≤ nm, the upper bound. 2

We need to take a closer look at the construction. Suppose v and w
are two leaves of Th,` in Lemma 5.6, and Av and Aw their associated sets
in F . Consider a coloring of F without a blue induced Th,`. F either
contains a red induced Cn, or a blue induced Cm. This does not change if
we add edges between Av and Aw (since they belong to different stages of
the construction).

Lemma 5.7 Suppose n and m are odd, then we can build a graph F of
order at most (nm)2 log(n)+log(m) such that F � (Cn, Cm).

Proof. Fix n ≤ m, both odd. Let h = dlog3(n)e, ` = (m − 1)/2 − h,
and choose F and Av be as in Lemma 5.6. We can choose a sequence
v0, . . . , vn−1 of n (distinct) leaves of Th,` such that the path from vi to
vi+1 mod n in Th,` has length precisely 2((m− 1)/2−h) + 2h = m− 1 for all
i (we only have to make sure that vi and vi+1 are not children of the same
child of the root; since n is odd we need three children of the root to achieve
this). To F we add complete bipartite graphs between Avi and Avi+1 mod n

for all i. Call the resulting graph F ′. Fix a coloring of F ′ without a red
induced Cn, or a blue induced Cm. By Lemma 5.6 there is a blue induced
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Th,` with endpoint vi in Avi . Restrict F ′ to {v0, . . . , vn−1}. The resulting
graph is an (induced) Cn. If all of its edges are red, we are done. Hence
at least one edge, vivi+1 say, is blue. This edge, however, completes a blue
induced Cm, because we already have a blue Pm from vi to vi+1 which as
a subgraph of F (rather than F ′) is induced.

We get the upper bound on F by observing that 2h ≤ log n, and
dlog `e ≤ log m. 2

6 Small Graphs

A fair amount of research effort has been directed towards determining
Ramsey numbers precisely. Currently all the numbers r(Ki, Kj) for i+j ≤ 9
are known, and we also know that 43 ≤ r(K5) ≤ 49 [Rad99]. It seems as
if mathematicians want to prepare for the invasion of Erdös’s hypothetical
alien force which will come down to earth and ask us for the value of r(K5).
They will be quite surprised if the aliens ask for induced Ramsey numbers
instead. It appears there has been only one paper so far that investigates
induced Ramsey numbers for small graphs [HNR83]. The paper shows that
r∗(C4) ≤ 10, since both K3,7 � C4 and K5,5 � C4, and that r∗(P4) ≥ 8.
The proof of r∗(P4) ≤ 8 is wrong, but we manage to get the same result
here. We show upper bounds for r∗(K3 + e), r∗(K4 − e), r∗(K3, K3 + e),
r∗(K3, K4 − e), and r∗(C3, C4). Although all of these seem to be rather far
away from what we would expect the actual numbers to be, there have not
been any previous upper bounds for these problems at all, so they should
be considered as a challenge rather than the last word.

6.1 P4

In this section we will show that r∗(P4) ≤ 8. It was claimed earlier that
the Möbius ladder M8 strongly arrows P4 [HNR83], but this is not the case
(color the outer edge alternatingly red and blue, and two of the spokes red,
and the other two blue such that a blue induced C4 results).

We claim that the graph in Figure 5 contains a monochromatic P4 in
every two-coloring. For a contradiction assume there is a coloring in which
it does not. Fix this coloring. At least two of the edges 1, 2, and 3 have to
have the same color, say red. If 1 and 2 are red, then 4, 5, and 10 have to
be blue. Now 8, 9 and 11 are forced to be red (8, and 9 because 4 and 5
are blue, and 11 because 10 and 5 are blue) completing a red induced P4.
In case that 1 and 3 are red we know that 4, 5, 6, and 7 all have to be blue.
This in turn forces 8 and 9 to be red. If 11 is red, then 8, 11,9 form a red
induced P4, otherwise 5,11,6 is a blue induced P4. Finally, we can assume
that 2 and 3 are red, and 1 is blue. This forces 7 to be blue. Then 6 has to
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Figure 5: Graph strongly arrowing P4

be red (otherwise 8, 10, and 2 are a red induced P4), forcing 8 and 11 to
be blue which in turn forces 4, 5 and 9 to form a red induced P4.

6.2 K3 + e

We will prove the following two upper bounds involving K3 + e:

(i) r∗(K3 + e) ≤ 21,

(ii) r∗(K3 + e, K3) ≤ 18.

The best lower bounds are given by r(K3 + e, K3) = r(K3 + e) = 7
(Chvátal, Harary [Rad99]).

Let us start with the first result, the second will be an easy modification.
Let the graph H consist of a K3 + e together with an isolated vertex. Take
three copies H1, H2, and H3 of H , and a copy of a K6 on vertices a, b, c, d, e
and f . Include complete bipartite graphs between {a, b} and H1, {c, d}
and H2, and {e, f} and H3. Call the resulting graph F . We claim that
F � K3+e. Fix a coloring of F . The central K6 contains a monochromatic
triangle, say in red. At least one of the sets {a, b}, {c, d}, or {e, f} intersects
the triangle in exactly one vertex, suppose it is {a, b}, and the vertex is a.
Now all edges between a and the vertices of H1 have to be blue, since
otherwise we would have completed a red induced K3 + e. Within H1 is
an induced copy of K3 + e. If all the edges red, we are done, hence we can
assume that one of the edges is blue. This edge, together with a, and the
isolated vertex of H1 form a blue induced K3 + e.

For the second result we can save three vertices by letting H be K3 + e
without an additional isolated vertex.
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6.3 K4 − e

We will show two upper bounds involving K4 − e in this section:

(i) r∗(K3, K4 − e) ≤ 16,

(ii) r∗(K4 − e) ≤ 46.

We note that the best lower bounds are through r(K3, K4− e) = 7, and
r(K4 − e) = 10 (both by Chvátal, Harary [Rad99]).

To prove (i), take a K1,3,4,4 and a copy of K4 − e and include all edges
between them. For a contradicion assume that there is a coloring of the
resulting graph which has neither a red triangle nor a blue, induced K4−e.
Because of the later the copy of K4−e will contain at least one red edge, call
it f with endpoints u and v. Consider the following situation: u is incident
to two red edges leading to one partition (with endvertices x1, x2), and one
red edge leading to another partition (with endvertex y) of the K1,3,4,4.
Since we do not have any red triangle the following edges are forced to
be blue: yv, yx1, yx2, vx1, vx2 completing a blue induced K4 − e (since
there is no edge x1x2). Hence this cannot occur, and we get one of the
following two cases: u is incident to two red edges to one partition, and no
red edge to any other partition, or u is incident to at most one red edge in
each partition. In either case, the graph contains a blue K1,7 (not induced)
centered in u the edges of which split up as 1 + 3 + 3 among the partitions.
Call the single vertex w, and the groups of three vertices A and B. If there
were two blue edges from w to either A or B this would complete a blue
induced K4 − e, hence w is incident to at least two red edges to each of A
and B. Let A′ be the red neighbors of w in A, and B′ be the red neighbors
of w in B. As before all edges between A′ and B′ are forced to be blue.
Since all the vertices in A′ and B′ are connected to u by blue edges, this
again completes a blue induced K4 − e.

For (ii) we first note that K1,3,6 � (K4 − e, K1,3). Suppose this was
false. Let the partitions of K1,3,6 be A, B and C with |A| = 1, |B| = 3,
|C| = 6. Then there is a red edge uv from A to B (since there is no blue
induced K1,3). Again the absence of a blue induced K1,3 forces at least
four red edges from u to C and four red edges from v to C. Hence u and
v have at least two common red neighbors in C completing a red induced
K4 − e.

Construct a graph F as follows: take a K6 and four copies of K1,3,6 and
include all edges from the K6 to the other four graphs. Consider a coloring
which contains neither a red, nor a blue induced K4 − e. Now K6 contains
a monochromatic triangle, say in red. Suppose that every copy of K1,3,6

contains a vertex which has at least two red edges leading to that triangle.
Then for two such vertices the red neighbors in the red triangle must be
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identical (since there are four copies, and only three two element subsets of
the three vertices) completing a red induced K4 − e. Hence in one of the
copies of K1,3,6 all vertices have at most one red edge to the red triangle.
Since K1,3,6 does not contain a red induced K4 − e it does contain a blue
induced K1,3. Each of its four vertices is connected by at least two blue
edges to the red triangle. It follows that one of the triangle points has at
least three outgoing blue edges, one to the center of the K1,3 and two to
outer vertices of the K1,3. This, however, would complete a blue induced
K4 − e.

6.4 C3 versus C4

We show that r∗(C3, C4) ≤ 14. The best lower bound is through r(C3, C4) =
7 (by Faudree, Schelp, Rosta [Rad99]). To show the upper bound construct
a graph F as follows: take a K4,4,4 together with two isolated vertices u and
v, and include a complete bipartite graph between {u, v} and the K4,4,4.
We claim that F � (C3, C4). Fix a coloring of F . If there are two paths
(of length two) consisting of blue edges only from u to v whose midpoints
belong to the same partition of the K4,4,4 we get a blue induced C4. Hence
there is at most one blue path from u to v through each partition. We
can therefore restrict F to u, v, and a K3,3,3 such that there is no blue
path from u to v. Hence each vertex of the K3,3,3 has a red neighbor in
{u, v}. Label each vertex in K3,3,3 with such a neighbor. In each partition
of the K3,3,3 one of the labels occurs at least twice, and since we have three
partitions, there are two partitions in which the same label occurs at least
twice. Hence we have four vertices from the K3,3,3 with the same label (say
u) which split across partitions as 2 + 2 + 0. If any of the edges between
these four vertices is red it completes a red C3 (with u). Otherwise the four
vertices induce a blue C4.
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[Bec90] József Beck. On size ramsey number of paths, trees, and circuits.
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