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Abstract. We say that a graph F strongly arrows a pair of graphs

(G,H) and write F
ind−→(G,H) if any colouring of its edges with

red and blue leads to either a red G or a blue H appearing as
induced subgraphs of F . The induced Ramsey number, IR(G,H) is

defined as min{|V (F )| : F ind−→(G,H)}. We consider the connection
between the induced Ramsey number for a pair of two connected
graphs IR(G,H) and the induced Ramsey number for multiple
copies of these graphs IR(sG, tH), where xG denotes the pairwise
vertex-disjoint union of x copies of G. It is easy to see that if

F
ind−→(G,H) then (s + t− 1)F

ind−→(sG, tH). This implies that

IR(sG, tH) ≤ (s + t− 1)IR(G,H).

For all known results on induced Ramsey numbers for multiple
copies, the inequality above holds as equality. We show that there
are infinite classes of graphs for which the inequality above is strict
and moreover, IR(sG, tH) could be arbitrarily smaller than (s +
t−1)IR(G,H). On the other hand, we provide further examples of
classes of graphs for which the inequality above holds as equality.

1. Introduction

We say that a graph F strongly arrows a pair of graphs (G,H) and

write F
ind−→(G,H) if any colouring of its edges with red and blue leads

to either a red copy of G or a blue copy of H appearing as induced
subgraphs of F . We call the graph F strongly arrowing graph. Here,
a graph G is an induced subgraph of a graph F , denoted by G ≺ F , if
G is a subgraph of F and two vertices of G form an edge in G if and
only if they form an edge in F . A copy of a graph is an isomorphic
image of the graph. When it is clear from context, we simply write
F instead of a copy of F . For graphs G and H, the induced Ramsey

number, IR(G,H) is defined as min{|V (F )| : F
ind−→(G,H)}. It is a

generalization of classical Ramsey numbers R(G,H), where we color
the edges of a complete graph and do not require the monochromatic
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copies to be induced, i.e., R(G,H) is the smallest integer n such that
any edge coloring of Kn, a complete graph on n vertices, in red and blue
contains either a red copy of G and a blue copy of H as a subgraph.
It is a corollary of the famous theorem of Ramsey that these numbers
are always finite.

The existence of the induced Ramsey numbers is not obvious and it
was a subject of an intensive study. Finally it was proved independently
by Deuber [8], Erdős, Hajnal, and Pósa [12], and Rödl [23, 24]. Since
in case of complete graphs the induced subgraph is the same as the
subgraph it is obvious that IR(Km, Kn) = R(Km, Kn). When at least
one of the graphs in the pair is not complete these functions may differ.

The known results on induced Ramsey numbers are mostly of as-
ymptotic type and mostly concern the upper bounds. Erdős conjec-
tured [11] that there is a positive constant c such that every graph G
with n vertices satisfies IR(G,G) ≤ 2cn. The most recent result in
that direction is that of Conlon, Fox, and Sudakov [5] who showed that
IR(G,G) ≤ 2cn logn improving the earlier result of Kohayakawa, Prömel

and Rödl [20] that stated that IR(G,G) ≤ 2cn(logn)
2
. The known up-

per bounds are obtained either by probabilistic ([2, 19, 20, 22]) or by
constructive methods [25]. A comparision of results of both types can
be found in the paper of Shaefer and Shah [25]. Fox and Sudakov in
[13] present a unified approach to proving Ramsey-type theorems for
graphs with a forbidden induced subgraph which can be used in find-
ing explicit constructions for upper bounds on various induced Ramsey
numbers.

Simple lower bounds on induced Ramsey numbers follow from classi-
cal Ramsey numbers: IR(G,H) ≥ R(G,H). Another general approach
for the lower bounds on IR(G,H), where H has chromatic number
k is to partition the vertex set of a given graph in k − 1 parts such
that each part does not induce G, color all edges within the parts red
and all edges between the parts blue. The number of such parts is
dictated by generalized chromatic numbers, see among others a paper
by Albertson, Jamison, Hedetniemi, and Locke [1] and the references
therein.

Unfortunately these lower bounds are not strong enough and the
best lower bounds are obtained by a careful structural analysis of a
given graph. Recently a step in that direction was done by Gorgol in
[15]. She showed that the lower bound for the induced Ramsey num-
ber for a connected graph G with an independence number α versus a
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graph H with the clique number ω can be expressed as (α−1)ω(ω−1)
2

+ω.

We focus on induced Ramsey numbers for multiple copies of con-
nected graphs. The ordinary Ramsey numbers for multiple copies of
connected graphs were considered by Burr, Erdős, and Spencer in [4].

Let t be a positive integer and F be a graph. Recall that tF denotes a
graph that is a pairwise vertex-disjoint union of t copies of F . Consider

graphs G and H such that F
ind−→(G,H). Consider s + t − 1 vertex

disjoint copies of F and color the edges of the resulting graph in red
and blue. Then each copy of F will either have a red induced copy of
G or a blue induced copy of H. The pigeonhole principle implies that
there will be either a red copy of sG or a blue copy of tH. This gives
the following.

Observation 1. Let G, H be graphs. If F
ind−→(G,H) then

(s+ t− 1)F
ind−→(sG, tH).

Thus

(1) IR(sG, tH) ≤ (s+ t− 1)IR(G,H).

For all known so far results on induced Ramsey numbers for multiple
copies, the inequality above holds as equality. We raised the following
question: Does there exist a pair of graphs (G,H) and a graph X such
that

|V (X)| < (s+ t− 1)IR(G,H) and X
ind−→(sG, tH)?

We answer this question in a positive by showing that there are infi-
nite classes of graphs where the inequality above is strict and moreover,
IR(sG, tH) is arbitrarily smaller than (s+t−1)IR(G,H). On the other
hand, we provide further examples of classes of graphs for which the
inequality above holds as equality.

Already in the case when H = 2K2, we observe a different behavior
of IR(G,H) depending on G.

Theorem 6. Let G be a connected graph, s be an integer, s ≥ |V (G)|.
Then IR(sG, 2K2) = (s+ 1)IR(G,K2) = (s+ 1)|V (G)|.

I.e., in this case the inequality (1) holds as an equality. Let Pn denote
a path on n vertices.

Theorem 8. (1) For an integer n ≥ 5, IR(Pn, 2K2) = n + 2 < 2n =
2IR(Pn, K2).



4 MARIA AXENOVICH AND IZOLDA GORGOL

I.e., in this case the inequality (1) is strict and provides an arbitrarily
large gap between IR(sG, tH) and (s+ t−1)IR(G,H). We prove these
theorems and more results on paths and matchings in Section 3.

We find bounds on induced Ramsey numbers for short paths and
complete graphs in Section 5. Finally, we prove the following result in
Section 6.

Theorem 12. Let k be an integer, k ≥ 2. Then IR(K3, kK3) = 6k.

We give known results on induced Ramsey numbers of multiple copies
of graphs in Section 2. In the last section we state some general obser-
vations.

2. Known results on induced Ramsey numbers for
multiple copies

First we introduce some basic notation. For a graph F and subsets of
vertices S and S ′, F [S] denotes a graph induced by S, F [S, S ′] denotes
a bipartite subgraph of F containing all edges with one endpoint in S
and another in S ′, F [{x}, S] is denoted F [x, S]. We denote the vertex
and the edge sets of F by V (F ) and E(F ), respectively.

For graphs G, H, the vertex-disjoint union of G and H is denoted
G∪H, G\H denotes a graph obtained from G by removing V (H). The
independence number of a graph G, i.e. the size of the largest set of
mutually nonadjacent vertices, is denoted α(G). The symbols Pn, Kn,
and Sn stand for a path on n vertices, a complete graph on n vertices,
and a star with n edges. For all other graph theoretic notions we refer
the reader to the books of West [26] and Diestel [9].

For any n-vertex graph G, IR(K2, G) = n. Gorgol and  Luczak [16]
obtained the exact value of induced Ramsey number for a matching
versus a complete graph and Grünewald for two matchings [17].

Theorem 1. [16] Let s ≥ 1 and n ≥ 2 be integers. Then IR(sK2, Kn) =
sn.

Theorem 2. [17] Let s, t ≥ 1 be integers. Then IR(sK2, tK2) = 2(s+
t− 1).

Kostochka and Sheikh [21] considered the case when one graph in a
pair is a P3.

Theorem 3. [21] For any positive integers n1, . . . , nm,

IR(P3,

m⋃
i=1

Kni
) =

m∑
i=1

(
ni + 1

2

)
=

m∑
i=1

IR(P3, Kni
).
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Corollary 1. For any positive integer t, IR(P3, tKn) = tIR(P3, Kn) =
t
((
n
2

)
+ n
)
.

Theorem 4. [21] Let Hi, i = 1, 2, . . . ,m be a complete multipartite
graph. Then IR(P3,

⋃m
i=1Hi) =

∑m
i=1 IR(P3, Hi).

Corollary 2. Let H be a complete multipartite graph and t be a positive
integer. Then IR(P3, tH) = tIR(P3, H).

Theorem 5. [21] For any positive integer s, 7s ≥ IR(P3, sP4) ≥ 6.1s.

3. Induced Ramsey numbers G versus 2K2

Obviously IR(G,K2) = |V (G)|. We consider IR(sG, 2K2). The next
theorem shows that if s is large enough, the equality in (1) holds.

Theorem 6. Let G be a connected graph and s ≥ |V (G)|. Then
IR(sG, 2K2) = (s+ 1)|V (G)| = (s+ 1)IR(G,K2).

Proof. The inequality IR(sG, 2K2) ≤ (s + 1)|V (G)| follows from (1).
We shall show next that IR(sG, 2K2) ≥ (s+ 1)|V (G)| by proving that
any graph on (s + 1)|V (G)| − 1 vertices can be edge-colored red and
blue such that there is neither red induced copy of sG nor blue induced
copy of 2K2. Let F be an arbitrary graph on (s + 1)|V (G)| − 1 ver-
tices. We say that an induced subgraph of F isomorphic to sG is a
bundle. Assume that any red-blue edge coloring of F contains either a
red bundle of a blue 2K2 as an induced subgraph.

We see that F contains at least one bundle, otherwise we can color
all edges of F red. Let G1, . . . , Gs be copies of G forming a bundle,
with respective vertex sets X1, . . . , Xs, let Y be the set of remaining
vertices, i.e., Y = V (F ) − V (G1 ∪ · · · ∪ Gs). For any other bundle in
F , we say that this bundle intersects Xi nontrivially if it does not con-
tain Xi in is vertex set and thus does not contain respective induced
copy of G. Note that each bundle contains at least one vertex from
each Xi because otherwise the total number of vertices in the bundle
is at most s|G|+s−1−|G| < s|G|. Note that |Y | = |V (G)|−1 ≤ s−1.

For a fixed i ∈ {1, . . . , s}, color an edge of Gi blue and color all other
edges of F red. Then we see that there is a red bundle Hi. This bundle
intersects Xi nontrivially. Thus the bundle contains a copy of G with
vertices in Xi and Y . Since G is connected, there is an edge between
Xi and Y for each i = 1, . . . , s.
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Let Q be an auxiliary bipartite graph with one part Y and another
X = {X1, . . . , Xs} and Xiy ∈ E(Q) iff there is a bundle containing
a copy of G with an edge between y and Xi. By the previous re-
mark |NQ(Xi)| ≥ 1. Consider a smallest subset X ′ of X such that
|NQ(X ′)| < |X ′|. Note that X ′ is well defined since NQ(X) ⊆ Y and
|Y | < |X|. We see that |X ′| > 1.

Consider a bundle H intersecting the largest number t of Xi’s non-
trivially, for Xi ∈ X ′. Let X ′ = X ′′ ∪ X ′′′, where for each Xi ∈ X ′′,
H intersects Xi nontrivially, and for each Xi ∈ X ′′′, Xi ⊆ V (H), i.e.
Gi ⊆ H. Let H ′′ be a union of copies of G from H that intersect
members of X ′′. Observe that H ′′ = t′G for t′ ≥ t = |X ′′|. Indeed,
otherwise

| ∪Xi∈X′′ Xi − V (H)| ≥ t|G| − t′(|G| − 1) ≥ t|G| − (t− 1)|G| ≥ |G|.
Thus the number of vertices of F not in H is at least |G|, a contra-
diction. Since each copy of G in H ′′ has a vertex in Y , we see that
|V (H ′′) ∩ Y | ≥ |X ′′|. Consider X ′′′. Since there are no edges of F
between ∪Xi∈X′′′Xi and V (H) ∩ Y and there are no edges of Q be-
tween X ′ and Y − N(X ′), NQ(X ′′′) ⊆ N(X ′) − (V (H ′′) ∩ Y ). Thus
|NQ(X ′′′)| ≤ |N(X ′)| − |X ′′| < |X ′| − |X ′′| = |X ′′′|, a contradiction to
minimality of X ′. �

In the next theorem we show the lower bound on the induced Ramsey
number for a pair (G, 2K2).

Theorem 7. Let G be a graph without isolated vertices. Then

IR(G, 2K2) ≥ |V (G)|+ 2.

Proof. Let G have n vertices. Consider an arbitrary graph F on n+ 1
vertices. We shall show that F can be edge-colored so that there is no
induced red G and no induced blue 2K2 in F . If there is no induced
G in F , color all edges of F red. So assume there is an induced copy
G′ of G. Consider the vertex v of F not in G′. Let u be a vertex
of G′ incident to v if such exists, let u be an arbitrary vertex of G′

otherwise. Color all edges incident to v blue and color one edge of G′

incident to u blue; color all other edges red. This is a desired coloring,
so IR(G, 2K2) > n+ 1. �

Corollary 3. Let G be any graph on n vertices and no isolated vertices.
Then n+ 2 ≤ IR(G, 2K2) ≤ 2n. Moreover both bounds can be attained.

Proof. Theorem 7 gives the lower bound and Observation 1 implies
IR(G, 2K2) ≤ 2IR(G,K2) = 2n, giving an upper bound. Since
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IR(K2, 2K2) = 4, both bounds are tight. We can see that the bounds
are tight for some graphs G with arbitrarily many vertices since
IR(Pn, 2K2) = n + 2, for n ≥ 5, as we shall see in the next section
and IR(Kn, 2K2) = 2n by [16]. �

In Theorem 8 we show that this lower bound is sharp for instance
when G is a path on at least five vertices.

4. Paths and matchings

Let for a, b positive integers the symbol rem(a, b) denotes the re-
minder of a division a by b.

Theorem 8. Let n, s, t be positive integers. Then

(1) IR(Pn, 2K2) =

{
n+ 3, n = 3, 4,

n+ 2, n ≥ 5,

(2) IR(sPn, 2K2) ≤ sn+ s+ 1, 2 ≤ s ≤ n− 1, n ≥ 4,
(3) IR(sPn, 2K2) = sn+ s+ 1, s = 2, 3, n ≥ 4,
(4) IR(sPn, 2K2) = (s+ 1)n, s ≥ n, n ≥ 4,
(5) IR(sP3, 2K2) = 3s+ 3 = (s+ 1)IR(P3, K2), s ≥ 1.
(6) IR(P3, tK2) = 3t, t ≥ 1,
(7) 3t+ 1 ≤ IR(P4, tK2) ≤ 7bt/2c+ 4 · rem(t, 2), t ≥ 1,
(8) IR(Pn, tK2) ≤ dt/2en+ t− rem(t, 2), n ≥ 5, t ≥ 1,
(9) IR(P3, tP3) = 4t, t ≥ 1.

Proof. (1) To show that IR(Pn, 2K2) ≤ n+ 2 for n ≥ 5, we shall prove

that Cn+2
ind−→(Pn, 2K2). Consider an edge-coloring of C in red and

blue. If there is a red Pn, we are done. Assume that there are no red
Pn’s. Since deleting any two consecutive vertices in C leaves Pn and
it is not red, we see using that fact that n + 2 ≥ 7 that there are two
blue edges at distance at least two in C. These edges form induced
2K2. Thus IR(Pn, 2K2) ≤ n+ 2. The lower bound comes directly from
Theorem 7.

We know that IR(P3, 2K2) = 6 (cf. Corollary 1). In turn for

(P4, 2K2) the argument above shows that C7
ind−→(P4, 2K2). Consider

a graph F on 6 vertices. We shall show that it can be colored with no
red induced P4 and no blue induced 2K2. We can assume that there
is an induced copy P of P4 in F , otherwise we can color all edges red.
Let P = (x1, x2, x3, x4) and let x, y be the vertices of F not in P .
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If xy ∈ E(F ), color xy, x1x2, and x3x4 red and all remaining edges
blue. Then there is no red P3 and any blue edge is incident to x2 or x3
that are adjacent, thus there is no induced blue 2K2.

If xy 6∈ E(F ) and x, y, x1, x4 induce a P4, say with x4 being an
endpoint of this P4, color all edges incident to x3 and all edges incident
to x4 blue, and the remaining edges red. Then the red edges form a
star, thus there is no red P4, each of the blue edges is incident to one
of two adjacent vertices, thus there is no blue induced 2K2.

If xy 6∈ E(F ) and x, y, x1, x4 does not induce a P4, color all edges
incident to x2 and all edges incident to x3 blue, and all other edges red.
As before we see that there is no induced blue 2K2. The red edges are
spanned by x, y, x1, x4, that does not induce a P4.

Thus IR(P4, 2K2) > 6. Together with the upper bound, we get
IR(P4, 2K2) = 7.

(2) Let 2 ≤ s ≤ n − 1. Note that sPn ≺ Psn+s−1. To see this,
delete every (n + 1)st vertex from Psn+s−1. Thus IR(sPn, 2K2) ≤
IR(Psn+s−1, 2K2). By item (1) we have that IR(Psn+s−1, 2K2) ≤ sn +
s+ 1. Therefore IR(sPn, 2K2) ≤ sn+ s+ 1.

(3) The upper bound follows directly from item (2).
As for the lower bound consider a graph F on ns + s vertices. It

contains a bundle B (induced copy of sPn). Let Y be the set of all
vertices of F not in B, i.e., |Y | = s.

Fix any component P in B and color any three consecutive edges on
it blue and all the remaining edges of F red. Then we see that there
must be a red bundle, otherwise we are done. Let this bundle be B1.
We see that B1 can use at most n − 2 vertices from P , so it uses at
least two vertices of Y .

Assume that there is exactly one vertex of Y adjacent to P . If
|V (P )−V (B1)| = 3, then s = 3 and Y is contained in V (B1). Moreover,
two other paths of B are components of B1, so they have no neighbors
in Y , a contradiction. If |V (P )−V (B1)| = 2, then the remaining n−2
vertices of P together with the only one vertex from Y can induce a
path on at most n− 1 vertices, so it could not be a component of B1.

So we can assume that there are at least two vertices in Y sending
edges to P . If B1 uses at most n−1 vertices from each of the remaining
s−1 components of B, we see that B1 omits at least 2+(s−1) = s+1
vertices of F , i.e., it contains at most ns− 1 vertices, a contradiction.
Thus, there is a component P ′ of B so that all its vertices are contained
in B1. Since B1 is an induced subgraph of F , P ′ is a component of B1

as well. Since P could be chosen to be an arbitrary component of B,



ON INDUCED RAMSEY NUMBERS FOR MULTIPLE COPIES OF GRAPHS 9

let P = P ′. We see that on one hand P ′ sends edges to at least two
vertices of Y , on the other hand, it does not send edges to Y ∩ B1.
Since |Y ∩B1| ≥ 2, there are at least two vertices of Y that send edges
to P ′ and at least two vertices of Y that do not send edges to P ′. So
|Y | ≥ 4, a contradiction to the fact that |Y | = s ∈ {2, 3}.

(4) By Theorem 6 IR(sPn, 2K2) = (s+ 1)n for s ≥ n.

(5) The upper bound IR(sP3, 2K2) ≤ 3s+3 follows from Observation
1. For the lower bound, consider a graph F on 3s+2 vertices. We shall
show that F can be edge-colored so that there is no induced red sP3

and no induced blue 2K2. We can assume that sP3 ≺ F otherwise we
can color all edges of F red. Let ai, bi, ci be the vertices of i-th path
P3 and x and y be the remaining vertices of F .

Assume first that for some i ∈ [s], there is an edge between {ai, ci}
and {x, y}, assume w.l.o.g., that a1x ∈ E(F ). Color all edges incident
to a1 and b1 blue, the rest of the edges red. Then there is no blue
2K2 and we must have a red copy B of sP3. We see that B could
contain at most 2 vertices from {x, a1, b1, c1} otherwise it would induce
a blue edge. Since |V (B)| = |V (F )| − 2, B contains exactly two ver-
tices from {x, a1, b1, c1} and thus contains y and all paths (ai, bi, ci),
i = 2, . . . , s. Thus there is a red P3 induced by {x, y, a1, b1, c1} and
containing y. Since all edges incident to a1 and b1 are blue, it must be
induced by {x, y, c1}. Then we see that F [{x, y, a1, b1, c1}] contains a
C4 with a pendant edge or a C5 and thus does not induce 2K2. Color
F [{x, y, a1, b1, c1}] blue and the rest red, it results in a desired coloring.

Now, we can assume that {x, y} sends edges only to vertices in
{b1, . . . , bs}. Assume w.l.o.g., that b1x ∈ E(F ). Color all edges in-
cident to x and to b1 blue, the rest red. This is a desired coloring.

(6) According to Corollary 1 IR(P3, tK2) = 3t.

(7) By item (1) we have that C7
ind−→(P4, 2K2).

Hence (t/2)C7
ind−→(P4, tK2) for t even and bt/2cC7 ∪ P4

ind−→(P4, tK2)
for t odd. This gives the upper bound.

As for the lower bound let F be an arbitrary graph on 3t vertices.
We shall prove that there is an edge coloring of F in two colors with no
red induced P4 and no blue induced tK2. First observe that tK2 ≺ F
otherwise we could color all edges of F blue. Let xiyi, i = 1, 2, . . . , t,
be the edges of this induced matching and zi, i = 1, 2, . . . , t be the
remaining vertices of F . Color all edges xiyi red. We can assume that
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there is another induced blue tK2 otherwise we color the remaining
edges blue and obtain the desired coloring. As we can take exactly one
vertex from each xiyi to construct this new matching M , vertices zi
form an independent set and all are involved in M . Without loss of
generality we can assume that xizi, i = 1, 2, . . . , t, are the edges of M .
We color all of them red. So again we can assume that there is one
more induced matching M1 = tK2. The only possibility is that each zi,
i = 1, 2, . . . , t has exactly one neighbor in {y1, y2, . . . , yt}. Therefore F
consists of induced cycles of length divisible by 3, i.e. F =

⋃
k C3tk . We

shall show that induced C = C3τ can be colored without red induced
P3 and blue induced τK2. If τ = 1, color C = C3 red. If τ > 1,
color C = C3τ so that the red subgraph forms matching on all but at
most one vertex of C. Then there is no red P3 and the blue subgraph
forms a disjoint union of edges and perhaps one P3. Since consecutive
blue edges on C do not form an induced 2K2, the largest induced blue
matching has at most b3τ+1

4
c < τ edges.

Let Mk be the largest induced blue matching in C3tk . Since F =⋃
k C3tk , the largest induced blue matching in F has the cardinality∑
k |Mk| <

∑
k tk = t, which completes the proof of the lower bound.

(8) From item (1) we have that Cn+2
ind−→(Pn, 2K2), n ≥ 5. Hence

(t/2)Cn+2
ind−→(Pn, tK2) for t even and bt/2cCn+2 ∪ Pn

ind−→(Pn, tK2) for
t odd. This gives the upper bound.

(9) This follows immediately from Theorem 4 since P3 = K2,1. �

5. Short paths and complete graphs

As we mentioned Kostochka and Sheikh showed that IR(P3, sKn) =
sIR(P3, Kn) = s

(
n
2

)
+sn. We consider the case when there are multiple

copies of P3 and one copy of Kn instead.

Theorem 9. Let s ≥ 1 and n ≥ 3. Then(
n+ 1

2

)
+ (2s−2)(n−1) ≤ IR(sP3, Kn) ≤ sIR(P3, Kn) = s

(
n

2

)
+ sn.

Proof. The upper bound follows from Observation 1.
For the lower bound, consider a graph F on the smallest number of

vertices such that F
ind−→(sP3, Kn). We see that there is a copy of Kn

in F , otherwise we can color all edges of F blue.
Let us denote this clique K0 and colour it red. We see that F \V (K0)

contains a clique Kn−1 otherwise color K0 red and the remaining edges
of F blue. Denote this clique K1 and colour F1 = F [V (K0) ∪ V (K1)]
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red. For s ≥ 2, F1 does not contain an induced copy of sP3, so there is
no red sP3. Similarly F \V (F1) contains a clique Kn−1 which we denote
K2 . Repeating the above consideration we conclude that apart from
K0 the graph F contains 2s − 1 pairwise vertex disjoint cliques Kn−1
denoted by K1, K2, . . . , K2s−2. Let F ′ = F [V (

⋃2s−2
i=0 Ki)]. Color all

edges of F ′ red and color the edges of K2s−1 red. Color the remaining
edges blue. We see that there is no red sP3, so there must be a blue
Kn. Thus there is a copy of Kn−2 induced by the vertices of F not
in
⋃2s−1
i=0 Ki. Similarly, we observe that F contains a vertex-disjoint

union of F ′ and a graph K that is a vertex disjoint union of copies
of Kn−1, Kn−2, . . . , K2. If V (F ) = V (F ′) ∪ V (K), we color all edges
F ′ red, all edges of K red and the remaining vertices blue. Note that
the blue color class forms an (n − 1)-partite graph and thus does not

contain Kn. So, F
ind9(sP3, Kn), a contradiction. Therefore, |V (F )| >

|V (F ′)| + |V (K)| = n + (2s− 2)(n− 1) + (n− 1) + (n− 2) + . . . + 2.
In particular |F | ≥

(
n+1
2

)
+ (2s− 2)(n− 1). �

A similar argument works for (sG,Kn) with G being a triangle free
graph.

We can improve the lower bound on IR(2P3, K3) from 10 as given in
Theorem 9 to 11.

Theorem 10. Then IR(2P3, K3) ≥ 11.

Proof. Let F be an arbitrary graph on 10 vertices. We shall prove that
there is an edge-coloring of F with no red copy of 2P3 and no blue copy

of K3, i.e. that F
ind9(2P3, K3).

We can assume that F contains a vertex disjoint union of K3 and
2K2. Indeed, K3 exists otherwise we can color all edges of F blue and

F
ind9(2P3, K3). Coloring the edges of a copy K of K3 red and all others

blue implies that there must be a blue K3, so there must be a copy
K ′ of K2 vertex-disjoint from K. Finally, coloring the subgraph of F
induced by vertices of K and K ′ red, and other edges blue, shows that
there is a blue K3, i.e., in particular a K2 vertex disjoint from K ∪K ′.
So, we indeed can assume that F contains a vertex-disjoint union of
K3 and 2K2. Note that any graph containing K3 ∪ 2K2 as a spanning
subgraph does not contain 2P3 as an induced subgraph.

Case 1. For some copy K ′′ of a vertex-disjoint union of K3 and 2K2,
F −V (K ′′) is not isomorphic to P3. In this case, color the edges of K ′′

and F − V (K ′′) red and the remaining edges blue. This results in no
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induced red 2P3 and no blue K3, so F
ind9(2P3, K3).

Case 2. For any copy K ′′ of a vertex-disjoint union of K3 and
2K2, F − V (K ′′) is isomorphic to P3. We have then that F contains a
spanning subgraph that is a union of K, K ′, and P , where P is a copy
of an induced P3, K is isomorphic to K3, and K ′ is isomorphic to 2K2.
By taking an edge e of K ′, an edge e′ of P , we see that the vertices of
F − V (K) not incident to e or e′ induce a copy of P3. Thus F − V (K)
contains a spanning subgraph that is a union of three copies of P3 that
share exactly one vertex that is an endpoint in each of these P3’s. Then
we see that F−V (K) does not contain a copy of an induced 2P3. Color
all edges of K and all edges of F − V (K) red and the remaining edges

blue. There is no induced red 2P3 and no blue K3, so F
ind9(2P3, K3).

�

6. Triangles

Ramsey numbers for multiple copies of graphs were considered by
Burr, Erdős and Spencer in [4]. Their paper contains, among others,
the following result.

Theorem 11. [4] Let t ≥ s ≥ 1 and t ≥ 2 be integers. Then
R(sK3, tK3) = 2s+ 3t.

We prove the following.

Theorem 12. Let t be a positive integer. Then IR(K3, tK3) = 6t.

Proof. The upper bound follows immediately from (1):

IR(K3, tK3) ≤ tIR(K3, K3) = tR(K3, K3) = 6t.

For the lower bound, we need a statement on induced matchings.

Claim If G is any graph on n vertices, then there is a partition V (G) =
V1 ∪ V2 such that any induced matching M in G contains at most n/3
edges with both endpoints in V1 or in V2, i.e., |E(M [V1]∪M [V2])| ≤ n/3.

Assume not, consider a partition and an induced matching M such
that M has more than n/3 edges with both endpoints in one part of
the partition. Let a new partition V ′1 , V ′2 be built so that each edge of
M has one endpoint in V ′1 and another in V ′2 , the rest of the vertices
are assigned to V ′1 or V ′2 arbitrarily. Then we see that V ′i has an in-
dependent set of size greater than n/3. Then any matching in V ′i has
strictly less than |V ′i | − n/3 edges, i = 1, 2. So, any induced matching
of G contains less than |V ′1 |+ |V ′2 | − n/3− n/3 = n/3 edges with both
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endpoint in the same part. This concludes the proof of Claim.

Let F be a graph, F → (K3, tK3). We shall show that |V (F )| ≥ 6k.
We can assume tK3 ≺ F otherwise we could color all edges of F blue.
Let ai, bi, ci, i = 1, 2, . . . , t be the vertices of these triangles and X be
the set of remaining vertices. Let X = X ′ ∪ X ′′ be a partition of X
such that any induced matching of F [X] has at most |X|/3 edges with
both endpoints in X ′ or in X ′′. Such a partition exists by Claim. Color
aibi, bici, F [ai, X

′], F [ci, X
′′], and F [X ′, X ′′] red, i = 1, . . . , t, and all

remaining edges blue. We see that there is no red triangle. Assume
that there is a blue induced copy of tK3, denote it H. Any blue triangle
has at most one vertex in {ai, bi, ci} for any i = 1, . . . , t. Thus H[X]
contains a blue induced matching on t vertices. This matching could
have its edges only with both endpoints in X ′ or both endpoints in X ′′

since all edges between X ′ and X ′′ are red. By the way we chose a
partition X ′, X ′′, there are at most |X|/3 such edges. Thus |X|/3 ≥ t,
i.e., |X| ≥ 3t. This implies that |V (F )| ≥ 6t. �

7. Further observations

While the structure of a graph F such that F
ind−→(G, tH) and |V (F )| =

IR(G, tH) = tIR(G,H) is clear, as it is simply a vertex disjoint union

of t copies of F ′ such that F ′
ind−→(G,H), the structure of such graphs

F so that |V (F )| < tIR(G,H) is not so clear. We claim that such a
graph must be connected.

Remark 1. Let G, H be arbitrary connected graphs and t be a positive
integer. Let for i = 1, . . . , t, fi = IR(G, iH) and Fi be a graph of order

fi such that Fi
ind−→(G, iH). Assume that ft < min∑

ti=t

∑
fti. Then Ft

is connected.

Proof. Assume to the contrary that Ft consists of m > 1 components
S1, S2, . . . , Sm. For j = 1, . . . ,m, let tj be the largest integer such

that Sj
ind−→(G, tjH). Obviously 1 ≤ tj ≤ t. We have that |Sj| ≥ ftj ,

so ft ≥ ft1 + · · · + ftm . Moreover Ft
ind−→(G, (t1 + · · · + tm)H). Since

Ft is a graph of a smallest order such that Ft
ind−→(G, tH), we have

that t1 + · · · + tm = t. But we know that ft < ft1 + · · · + ftm since
t1 + · · · tm = t. A contradiction. �
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4. S. Burr, P. Erdős and J. Spencer, Ramsey theorems for multiple copies of graphs
Transactions of the American Mathematical Society, 209 (1975), pp. 87–99.

5. D. Conlon, J. Fox and B. Sudakov, On two problems in graph Ramsey theory,
Combinatorica 32(2012), 513-535.
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17. A. Grünewald, Induced Ramsey Numbers of Graphs, Bsc. thesis, Karlsruher
Institut für Technologie, 2016.
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