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1 Introduction

Roland Fräıssé [?, ?, ?] proved theorems about logical expressibility using a back-and-forth method.
Andrzej Ehrenfeucht [?] formalized Fräıssé’s method by invented Duplicator-Spoiler Games1.

In this exposition we will define Duplicator-Spoiler games for linear orderings and prove the
connection to logical expressible for these games. We follow the treatment of [?] which is out of
print.

2 Duplicator-Spoiler Games For Linear Orderings

Definition 2.1 A linear ordering L is defined as a set L paired with an ordering <, denoted
L = (L,<), such that

1. (∀ x, y ∈ L) [x < y or x ≥ y, but not both].

2. (∀ x, y, z ∈ L)[x < y ∧ y < z =⇒ x < z].

We now define Duplicator-Spoiler Games played with linear orderings.

Definition 2.2 Let L1 = (L1, <), L2 = (L2, <). The m-round Duplicator-Spoiler Game on
(L1,L2) is defined as follows.

1. There are two players: the Spoiler and the Duplicator.

2. There are m rounds. During round i (1 ≤ i ≤ m) the Spoiler selects an element from either
set and the Duplicator selects an element from the other set. The element selected from L1

is called ai and from L2, bi.

3. If (∀ i, j, 1 ≤ i, j ≤ m) [ai < aj ⇐⇒ bi < bj ], then the Duplicator wins. Otherwise, the
Spoiler wins.

Definition 2.3 Let L1 and L2 be two linear orderings. Let m ∈ N. If Duplicator wins the m-
round Duplicator-Spoiler game on (L1,L2) then L1 and L2 are m-game equivalent which we denote
L1≡GmL2.

Geometrically, we imagine lines being drawn from elements of one set to another, each line
representing a pair of inequalities. If two lines cross, the inequalities are not consistent from set to
set and the Spoiler wins. Because of this, a line, or round, reduces any game into two new ones.

Convention 2.4 Unless otherwise specified, we will assume the Spoiler and the Duplicator play
optimally. In other words, if one player can implement a strategy that wins every time then the
player is assumed to implement said strategy.

1Duplicator-Spoiler games are also referred to as Ehrenfeucht-Fräıssé games.
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Notation 2.5 The following notations will be used throughout.

• Let Fm be the finite linear ordering of m elements.

• Let ω be the linear ordering {1 < 2 < 3 < · · · }. Note that this is equivalent to {2 < 4 < · · · }.
The base set is unimportant.

• Let ω∗ be the linear ordering {· · · < −3 < −2 < −1}.

• Let Z be the linear ordering {· · · < −2 < −1 < 0 < 1 < 2 · · · }.

• Let Q be the natural ordering of the rational numbers.

• Let R be the natural ordering of the real numbers.

Definition 2.6 Let L1 = (L1, <1),L2 = (L2, <2). The linear ordering L1+L2 is formed as follows.
We can assume that L1 ∩L2 = ∅ by changing the elements’ labels. Let the base set for L1 +L2

be L1 ∪ L2. Let the total order be as follows.

1. (∀ x, y ∈ L1) [x < y ⇐⇒ x <1 y].

2. (∀ x, y ∈ L2) [x < y ⇐⇒ x <2 y].

3. (∀ x ∈ L1)(∀ y ∈ L2) [x < y].

BILL-DO EXAMPLES LEADING UP TO N and N+Z.

3 The Connection to Logic

We first define formulas and two notions of the complexity of formulas: quantifier depth and number
of free variables.

We will now define formulas and quantifier depth (qd) rigorously.

Definition 3.1 Our language contains the symbols ∧,∨,¬,∃,∀,=, < and variables x1, x2, . . .. We
may use x, y, z for notational convenience.

1. A variable is free if it is not quantified over. When we write (say) φ(x) the x is a free variable.
There may be other variables; however, they are quantified over.

2. An atomic formula is any formula of the form xi < xj or xi = xj . If φ(xi, xj) is an atomic
formula then qd(φ(xi, xj)) = 0.

3. If φ(~x) is a formula then ¬φ(~x) is a formula and qd(¬(φ(~x))) = qd(φ(~x)).

4. If γ(~x) and θ(~y) are formulas then

• γ(~x) ∧ θ(~y) is a formula and qd(γ(~x) ∧ θ(~y)) = max{qd(γ(~x)), qd(θ(~y))}.
• γ(~x) ∨ θ(~y) is a formula and qd(γ(~x) ∨ θ(~y)) = max{qd(γ(~x)), qd(θ(~y))},
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5. If φ(~x, x) is a formula then (∃x)[φ(~x, x)] is a formula and qd((∃x)[φ(~x, x)]) = qd(φ(~x, x)) + 1.
Note that (∃x)[φ(~x, x)] has one less free variable then φ(~x, x).

Definition 3.2 A sentence is a formula with no free variables.

Let φ be a sentence like (∃x)(∀y)[x ≤ y]. Is this sentence true or false? This is a stupid question:
you need to know which linear order is being talked about. The next definition gives a succinct
way of saying this.

Definition 3.3 Let L = (L,<) be a linear ordering.

1. Let φ be a sentence. L |= φ means that φ is true when interpreted in L.

2. L1 and L2 are m-truth-equivalent, denoted L1≡TmL2, if, for all φ with qd(φ) ≤ m

L1 |= φ iff L2 |= φ.

We want to prove the following theorem:

Theorem 3.4 Let L1 and L2 be two linear orderings. Let m ∈ N. The following are equivalent:

1. L1≡GmL2.

2. L1≡TmL2.

However, this is one of those cases where it is easier to prove a harder theorem. We will (1)
extend Duplicator-Spoiler games to the case where some of the moves are already specified, and
(2) extend the definition of |= to formulas with parameters. We will then show that those notions
are equivalent.

Definition 3.5 Let L1 = (L1, <), L2 = (L2, <), ~a ∈ Lk1, and ~b ∈ Lk2. The m-round Duplicator-
Spoiler Game on ((L1,~a), (L2,~b)), is defined as follows.

1. There are two players: The Spoiler and The Duplicator.

2. There are m rounds. During round i (1 ≤ i ≤ m) Spoiler selects an element from either set
and Duplicator selects an element from the other set. The element selected from L1 is called
ak+i and from L2, bk+i.

3. If (∀ i, j, 1 ≤ i, j ≤ m+ k) [ai < aj ⇐⇒ bi < bj ], then Duplicator wins. Otherwise, Spoiler
wins.

Definition 3.6 If Duplicator wins the m-round game then (L1;~a)≡Gm(L2;~b).

The game is essentially the same as the original Duplicator-Spoiler game; however, the first k
rounds have already been played.

Note the following
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Fact 3.7

1. (L1;~a)≡G0 (L2;~b) iff ~a and ~b are of the same order type.

2. Assume (L1;~a)≡Gm+1(L2;~b). If Spoiler plays a and Duplicator’s winning response is b then
(L1;~a, a)≡Gm(L2;~b, b).

Let φ(~x) be a formula with k free variables. For example, if k = 1 then (∃x)[x ≤ y] would be
such a formula. Is this sentence true or false? This is an even stupider question than the one about
sentences: you need to know which linear order L = (L,<) is being talked about AND you need
to know the k elements of L that you intend to plug into φ. The next definition gives a succinct
way of saying this.

Did I say succinct? If by succint I mean long and boring inductive definition then yes, it is
succint. All we really want to say is

(L;~a) |= φ(~x) iff the statement φ(~a) is true in L.
Why don’t we just say that? Because we need the inductive definition in order to prove things

about |=. Alas, in order to prove things rigorously we must be a bit pedantic.

Definition 3.8 Let L = (L,<) and ~a ∈ Lk. Let φ(~x) have k free variables. We define (L;~a) |= φ(~x)
inductively.

1. (L; a1, a2) |= (x < y) holds iff a1 < a2).

2. (L; a1, a2) |= (x = y) holds iff a1 = a2).

3. (L;~a) |= ¬φ(~x) holds iff it is NOT the case that (L,~a) |= φ(~x).

4. (L;~a) |= φ1(~x) ∧ φ2(~x) holds iff (L,~a) |= φ1(~x) and (L,~a) |= φ2(~x).

5. (L;~a) |= φ1(~x) ∨ φ2(~x) holds iff (L,~a) |= φ1(~x) or (L,~a) |= φ2(~x).

6. (L,~a) |= (∃x)[φ(~x, x)] holds iff there is an a ∈ L such that (L;~a, a) |= φ(~a, a).

7. To summarize: If φ(~x) has k free variables and ~a ∈ Lk then (L;~a) |= φ(~x) means that φ(~a) is
true in L.

Definition 3.9 Let ~a ∈ Lk1 and ~b ∈ Lk2. (L1;~a)≡Tm(L2;~b) if, for all φ(~x) with qd(φ) ≤ m and k
free variables,

(L1;~a) |= φ(~x) iff (L2;~b) |= φ(~x).

Definition 3.10 Let m ≥ 1. A formula is m-simple if it is of the form (∃x)[ψ(~x, x)] where
qd(ψ(~x, x)) ≤ m− 1.

We leave the proof of the following easy lemma to the reader.

Lemma 3.11 Let m ≥ 1. If qd(φ(~x)) = m then φ(~x) can be written as a boolean combination of
m-simple formulas.
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The following is our main theorem.

Theorem 3.12 Let L1 = (L1, <) and L2 = (L2, <) be two linear orderings. For all m ∈ N, for all
k ∈ N, for all ~a ∈ Lk1 and ~b ∈ Lk2. The following are equivalent:

1. (L1;~a)≡Gm(L2;~b)).

2. (L1;~a)≡Tm(L2;~b).

Proof: We prove this by induction on m.
Base Case: m = 0. Assume ~a and ~b are k-tuples. We prove two implications.

First Implication:
(L1;~a)≡G0 (L2;~b) =⇒ (L1;~a)≡T0 (L2;~b).

Assume (L1;~a)≡G0 (L2;~b)). Then, for all 1 ≤ i, j ≤ k

ai < aj iff bi < bj .

Hence (L1;~a) and (L2,~b) have the same order type.
We need to show, for all φ(~x) of quantifier depth 0 that have |~a| free variables, (L1;~a) |= φ(~x)

iff (L2;~b) |= φ(~x). This means that they agree on all formulas of quantifier depth 0. Formulas of
quantifier depth 0 are Boolean combinations of atomic formulas. One can easily show but induction
on formation that since (L1;~a) and (L2,~b) have the same order type they will agree on any boolean
combination of atomic formulas on |~a| free variables.

Second Implication:
(L1;~a)≡T0 (L2;~b) =⇒ (L1;~a)≡G0 (L2;~b).

Assume (L1;~a)≡T0 (L2;~b). Then for all 1 ≤ i, j ≤ k

(L1;~a) |= xi < xj iff (L2;~b) |= xi < xj .

Hence ai < aj iff bi < bj . Therefore (L1;~a)≡G0 (L2;~b).
Induction Step:
Induction Hypothesis: The statement of the theorem. However, we state it with the parameters
that we need: For all ~a ∈ Lk1, a ∈ L1, ~b ∈ Lk2, b ∈ L2 the following are equivalent:

• (L1;~a, a)≡Tm(L2;~b, b).

• (L1;~a, a)≡Gm(L2;~b, b).

Let k ∈ N, ~a ∈ Lk1, ~b ∈ Lk2. We need to prove two implications.
First Implication:
(L1;~a)≡Gm+1(L2;~b) =⇒ (L1;~a)≡Tm+1(L2;~b).

Assume (L1;~a)≡Gm+1(L2;~b). (We won’t use this until later.) We need to show that (L1;~a)≡Tm+1(L2;~b).
Now we need to show, for all formulas φ(~x) with |~a| free variables, of quantifier depth ≤ m+ 1,

(L1;~a) |= φ(~z) iff (L2;~b) |= φ(~z). We prove this by induction on the formation of φ(~x).
CASE 1: If φ(~x) has quantifier depth ≤ m then, by (L1;~a)≡Gm(L2;~b) =⇒ (L1;~a)≡Tm(L2;~b). (a
weaker statement than we have) and the induction hypothesis we have (L1;~a) |= φ(~z) iff (L2;~b) |=
φ(~z).
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CASE 2: (This is the main case of interest.) φ(~x) is m-simple. φ(~x) = (∃x)[ψ(~x, x)].

(L1;~a) |= φ(~x)

iff

(L1;~a) |= (∃x)[ψ(~x, x)]

iff
there is an a ∈ L1 such that

(L1;~a, a) |= ψ(~x, x).

KEY: We call a WITNESS TO THE TRUTH! of (∃x)[ψ(~x, x)]. We need to find an analogous
witness in L2. We use the game to find WITNESS TO THE TRUTH!. Duplicator’s winning move
is an analog of a and is used to locate the WITNESS TO THE TRUTH!.

Recall that (L1;~a)≡Gm+1(L2;~b). Hence Duplicator has a winning strategy. If Spoiler were to
make the move a ∈ L1 as his first move then Duplicator has a response. Let b be that response.
Note that by Fact 3.7 (L1;~a, a)≡Gm+1−1(L2;~b, b). By the induction hypothesis applied to ψ(~x, x)

(L1;~a, a) |= ψ(~x, x) iff (L2;~b, b) |= ψ(~x, x).

Hence

(L1;~a, a) |= ψ(~x, x)

iff

(L2;~b, b) |= ψ(~x, x)

iff

(L2;~b) |= (∃x)[ψ(~x, x)].

iff

(L2;~b) |= φ(~x).

Therefore we have

(L1;~a) |= φ(~x) iff (L2;~b) |= φ(~x).

CASE 3: φ(~x) is a boolean combination of m-simple formulas. This is an easy induction of
formation.

By Lemma 3.11 we have covered all of the cases.
Second Implication:
(L1;~a)≡Tm+1(L2;~b) =⇒ (L1;~a)≡Gm+1(L2;~b)

We need to find a winning strategy for Duplicator.
Assume that Spoiler plays a ∈ L1 (the case where he plays b ∈ L2 is similar). Duplicator needs

to find a b ∈ L2 that is analogous to a ∈ L1.
Let F be the set of all formulas ψ(~x, x) such that
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• qd(ψ) ≤ m.

• |~x| = |~a|.

• (L1;~a, a) |= ψ(~x, x).

KEY: There are only a finite number of formulas in F .
Note that

(L1;~a, a) |=
∧
ψ∈F

ψ(~x, x).

Hence

(L1;~a) |= (∃x)[
∧
ψ∈F

ψ(~x, x)].

KEY: qd((∃x)[
∧
ψ∈F ψ(~x, x))] = m+ 1. Hence, since (L1;~a)≡Tm+1(L2;~b)

(L2;~b) |= (∃x)[
∧
ψ∈F

ψ(~x, x)].

Let b be the witness. Hence

(L2;~b, b) |=
∧
ψ∈F

ψ(~x, x)].

KEY: We use the logical equivalence to get the witness which will give us the winning move for
Duplicator.

We claim that if Duplicator plays b then he can win the game. Note that we now need to show

(L1;~a, a)≡Gm(L2;~b, b).

By the induction hypothesis it will suffice to show

(L1;~a, a)≡Tm(L2;~b, b).

Let φ(~x, x) be a formula such that qd(φ(~x, x)) = m and |~x| = |~a|. Assume

(L1;~a, a) |= φ(~x, x).

Then φ ∈ F .
Since

(L2;~b, b) |=
∧
ψ∈F

ψ(~x, x)].

We have that

(L2;~b, b) |= φ(~x, x)].
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4 Genearlization

Section 2 was about the Duplicator-Spoiler Game on a linear order. However, this can be general-
ized.

Exercise 1 Define Duplicator-Spoiler games on pairs of graphs. State and prove an analog of
Theorem 3.4.

Exercise 2 Define Duplicator-Spoiler games on pairs of hypergraphs. State and prove an analog
of Theorem 3.4.
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