Euclidean Ramsey Theory
Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction
2 The Square is Ramsey
3 The set of Three Points is Not Ramsey

Let p =0, g =1, r = 2 on the real number line. Let S = {p,q,r}. We show that S is not Ramsey.
We want to show that, for all n, there is a 16-coloring of R™ such that, if 7' C R™ is a three

points set which is a copy of S then T is not monochromatic. We need to clarify copy. Fix n. Let

p=(0,...,0,0), = (0,...,0,1), and ¥ = (0,...,0,2) where there number of coordinates is n.

Definition 3.1 A copy of S is a set of the form {p+ 2,7+ Z,7+ Z}.
Hence we need a property of a copy that is independent of Z.
Theorem 3.2 There exists a,b,d such that, for all Z
a((F+2)- (F+2)=((+2) - ((+2)+b(F+2)- (F+2)— P+ 2)- P+ 7)) =d.

Proof:
We derive conditions for a, b, d and then give values that satisfy those conditions. We want

— —\ —

a((F+2)- (F+2) = (§+2) - @+ )+ b(F+2) - (F+2) — (7+2) - (F+2) =d.

Let z = (z1,...,2,). Then the above becomes

n—1

n—1 n—1 n—1
a(O-d+En+2) - O+ (2 + 1)) +0D 2+ (2 +2?) = O 2l +22) =d
=1 =1 =1

i=1

(20 +2)7 = (20 +1)%) +b((za +2)* = 27) =d
(22 44z +4— 22— 22, — 1) £ b(z2 + 4z, +4—22) =d
a2z, +3) + (42, +4) =d

3a+4b+ (2a 4+ 4b)z, = d
We need to make 2a + 4b = 0. We take a = 2 and b = —1. This forcesd =2. |



We can now rephrase the question (we pre-apologize for using z' over again in a different context,
but we are running out of letters). We want to 16-color R" so that there are no monochromatic
Z, 1y, vz with

a(Z-Z—y-y)+bx-¥—72-2)=d.

Note that dot products give us reals. Hence we will first give a coloring of the reals and then

use it to give a coloring of R™.

Lemma 3.3 For all m € N, for all € > 0 there exists a 2m-coloring of R such that, for all y,v/,
COL(y) =COL(y) = y—y € U (2kme — €,2kme + ¢€).
keZ

Proof:  We color the reals by coloring intervals of length € that are closed on the left and open
on the right. The following picture describe the coloring.

1 2 3 e 2m 1 2
[0,€) [e,2¢) [2€6,3¢) -+ [(2m —1)e,2me) [2me,(2m +1) [(2m 4+ 1)e, (2m + 2)e)

Assume COL(y) = COL(y'). Since we are interested in y — 3’ we can assume that 3’ € [0, ¢€).
If y > ¢/ then

y € [0,¢€) or ¥ € [2me, (2m + 1)) or ' € [4me, (4m + 1)e) or --- .

More succintly

y € | J[2kme, (2km + 1)e)
k=0

Hence

y—vy' € |J(2km — 1)e, (2km + 1)e)
k=0

If y < ¢/ then we get, by similar reasioning,

y—1vy € _U ((2km — 1)e, (2km + 1)e)
k=0

Hence we have

y—y' € |J(2km — 1)e, (2km + 1)e)
keZ



Lemma 3.4 For all m, for all ay,...,zy, € Z, for all d # 0, there is a (2m)™ coloring of R such
that there there is NO solution to
Zaz vi = i)

with (Vi)[COL(y;) = COL(y)).

Proof: Foralll <i<mlete¢ = ﬁ By Lemma 3.3 there exists, for 1 < ¢ < m, a coloring
COL; such that
COL(y) = COL(Yy') implies

(2km — 1)d (2km + 1)d 2kd d 2kd d
y-ye | (Bnod B E DDy (2. L 2, 2 )
a;m a; a;m  a; a;m
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