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1 Introduction

2 The Square is Ramsey

3 The set of Three Points is Not Ramsey

Let p = 0, q = 1, r = 2 on the real number line. Let S = {p, q, r}. We show that S is not Ramsey.
We want to show that, for all n, there is a 16-coloring of Rn such that, if T ⊆ Rn is a three

points set which is a copy of S then T is not monochromatic. We need to clarify copy. Fix n. Let
~p = (0, . . . , 0, 0), ~q = (0, . . . , 0, 1), and ~r = (0, . . . , 0, 2) where there number of coordinates is n.

Definition 3.1 A copy of S is a set of the form {~p + ~z, ~q + ~z, ~r + ~z}.

Hence we need a property of a copy that is independent of ~z.

Theorem 3.2 There exists a, b, d such that, for all ~z

a((~r + ~z) · (~r + ~z)− (~q + ~z) · (~q + ~z)) + b((~r + ~z) · (~r + ~z)− (~p + ~z) · (~p + ~z)) = d.

Proof:
We derive conditions for a, b, d and then give values that satisfy those conditions. We want

a(
(
~r + ~z) · (~r + ~z)− (~q + ~z) · (~q + ~z)) + b((~r + ~z) · (~r + ~z)− (~p + ~z) · (~p + ~z)) = d.

Let z = (z1, . . . , zn). Then the above becomes

a
(
(
n−1∑
i=1

z2
i + (zn + 2)2)− (

n−1∑
i=1

z2
i + (zn + 1)2

)
+ b

(n−1∑
i=1

z2
i + (zn + 2)2)− (

n−1∑
i=1

z2
i + z2

n

)
= d

a
(
(zn + 2)2 − (zn + 1)2

)
+ b

(
(zn + 2)2 − z2

n

)
= d

a(z2
n + 4zn + 4− z2

n − 2zn − 1) + b(z2
n + 4zn + 4− z2

n) = d

a(2zn + 3) + b(4zn + 4) = d

3a + 4b + (2a + 4b)zn = d

We need to make 2a + 4b = 0. We take a = 2 and b = −1. This forces d = 2.
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We can now rephrase the question (we pre-apologize for using ~z over again in a different context,
but we are running out of letters). We want to 16-color Rn so that there are no monochromatic
~x, ~y, vz with

a(~x · ~x− ~y · ~y) + b(~x · ~x− ~z · ~z) = d.

Note that dot products give us reals. Hence we will first give a coloring of the reals and then
use it to give a coloring of Rn.

Lemma 3.3 For all m ∈ N, for all ε > 0 there exists a 2m-coloring of R such that, for all y, y′,

COL(y) = COL(y′) =⇒ y − y′ ∈
⋃
k∈Z

(2kmε− ε, 2kmε + ε).

Proof: We color the reals by coloring intervals of length ε that are closed on the left and open
on the right. The following picture describe the coloring.

1 2 3 · · · 2m 1 2 · · ·
[0, ε) [ε, 2ε) [2ε, 3ε) · · · [(2m− 1)ε, 2mε) [2mε, (2m + 1) [(2m + 1)ε, (2m + 2)ε) · · ·

Assume COL(y) = COL(y′). Since we are interested in y − y′ we can assume that y′ ∈ [0, ε).
If y > y′ then

y ∈ [0, ε) or y′ ∈ [2mε, (2m + 1)ε) or y′ ∈ [4mε, (4m + 1)ε) or · · · .

More succintly

y ∈
∞⋃

k=0

[2kmε, (2km + 1)ε)

Hence

y − y′ ∈
∞⋃

k=0

((2km− 1)ε, (2km + 1)ε)

If y < y′ then we get, by similar reasioning,

y − y′ ∈
−∞⋃
k=0

((2km− 1)ε, (2km + 1)ε)

Hence we have

y − y′ ∈
⋃
k∈Z

((2km− 1)ε, (2km + 1)ε)
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Lemma 3.4 For all m, for all a1, . . . , zm ∈ Z, for all d 6= 0, there is a (2m)m coloring of R such
that there there is NO solution to

m∑
i=1

ai(yi − y′i) = d

with (∀i)[COL(yi) = COL(y′i)].

Proof: For all 1 ≤ i ≤ m let εi = d
aim

By Lemma 3.3 there exists, for 1 ≤ i ≤ m, a coloring
COLi such that

COL(y) = COL(y′) implies

y − y′ ∈
⋃
k∈Z

(
(2km− 1)d

aim
,
(2km + 1)d

aim

)
=

⋃
k∈Z

(
2kd

ai
− d

aim
,
2kd

ai
+

d

aim

)
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