Ergodic Proofs of VDW Theorem

1 Introduction

Van Der Waerden [5] proved the following combinatorial theorem in a combinatorial
way

Theorem 1.1 For all c € N, k € N, any c-coloring of Z will have a monochromatic
arithmetic progression of length k.

Furstenberg [1] later proved it using topological methods. We give a detailed
treatment of this proof using as much intuition and as little topology as needed. We
follow the approach of [3] who in turn followed the approach of [2].

2 Definitions from Topology

Def 2.1 X is a metric space if there exists a function d : X x X — R2? (called a
metric) with the following properties.

1. d(z,y) =0iff z =y
2. d(z,y) = d(y,z),

3. d(z,y) < d(x,z)+d(z,y) (this is called the triangle inequality).

Def 2.2 Let X,Y be metric spaces with metrics dx and dy-.

1. If 2 € X and € > 0 then B(z,¢) = {y | dx(z,y) < €}. Sets of this form are
called balls.

2. Let AC X and z € X. x is a limit point of A if

(Ve > 0)(3y € A)d(z,y) < e].
3. If x1,29,... € X then lim; z; = x means (Ve > 0)(3:)(Vj)[j > i = z; € B(z,¢€)].
4. Let T: X =Y.
(a) T is continuous if for all z,xy,z9,... € X

limz; =z = lim 7T (z;) = T(x).



(b) T is uniformly continuous if
(Ve)(30)(Var,y € X)dx (2, y) <6 = dy(T(x), T(y)) < €.

5. T is bi-continuous if T' is a bijection, T is continuous, and 7'~ is continuous.

6. T is bi-unif-continuous if T is a bijection, 7" is uniformly continuous, and 7"~ is
uniformly continuous.

7. If AC X then

(a) A’is the set of all limit points of A.
(b) cl(A) = AU A’. (This is called the closure of A).

8. A set A C X is closed under limit points if every limit point of A is in A.

Fact 2.3 If X is a metric space and A C X then cl(A) is closed under limit points.
That is, if x is a limit point of cl(A) then x € cl(A). Hence cl(cl(A)) = cl(A).

Note 2.4 The intention in defining the closure of a set A is to obtain the smallest
set that contains A that is also closed under limit points. In a general topological
space the closure of a set A is the intersection of all closed sets that contain A.
Alternatively one can define the closure to be AUA’"UA”U---. That - -- is not quite
what is seems- it may need to go into transfinite ordinals (you do not need to know
what transfinite ordinals are for this paper). Fortunately we are looking at metric
spaces where cl(A) = AU A’ suffices. More precisely, our definition agrees with the
standard one in a metric space.

Example 2.5

1. [0,1] with d(z,y) = |x — y| (the usual definition of distance).

() TEA = (1,2) then cl(4) = [}, 3]

(b) If A={1,5,4,4,...} then cl(4) = AU {0}.

() el(@) =R

(d) Fix ¢ € N. Let BISEQ be the set of all c-colorings of Z. (It is called

BISEQ since it is a bi-sequence of colors. A bi-sequence is a sequence in
two directions.) We represent elements of BISEQ by f:Z — [c].



2. Let d : BISEQ x BISEQ — R2% be defined as follows.

0 i f=g;
d(f.9) = { 1%@ if f # g and 7 is least number s.t. f(i) # g(i) or f(—i) # g(—i);

One can easily verify that d(f, g) is a metric. We will use this in the future alot
so the reader is urged to verify it.

3. The function 7T is defined by T'(f) = g where ¢g(i) = f(i + 1). One can easily
verify that 7' is bi-unif-continuous. We will use this in the future alot so the
reader is urged to verify it.

Notation 2.6 Let T': X — X be a bijection. Let n € N.
1. TW(z) = T(T(---T(z)---)) means that you apply T to x n times.

2. T () =T~ (T~ (---T(x)---)) means that you apply 7~ to x n times.

Def 2.7 If X is a metric space and T': X — X then
orbit(x) = {TW(z) |i € N}
dorbit(z) = {TW(z) | i € Z} (dorbit stands for for double-orbit)

Def 2.8 Let X be a metric space, T': X — X be a bijection, and z € X.

1.
CLDOT(z) = cl({..., T3 (x), T (), ..., TP (x), T®(z),...)

CLDOT(x) stands for Closure of Double-Orbit of .
2. x is homogeneous if

(Vy € CLDOT(z))[CLDOT(z) = CLDOT(y)].

3. X is limit point compact® if every infinite subset of X has a limit point in X.

Example 2.9 Let BISEQ and T be as in Example 2.5.2. Even though BISEQ is
formally the functions from Z to [c] we will use colors as the co-domain.

'Munkres [4] is the first one to name this concept “limit point compact”; however, the concept
has been around for a long time under a variety of names. Originally, what we call “limit point
compact” was just called “compact”. Since then the concept we call limit point compact has gone
by a number of names: Bolzano-Weierstrass property, Frechet Space are two of them. This short
history lesson is from Munkres [4] page 178.



1. Let f € BISEQ be defined by

f(z) = {RED if |z| is a square;
BLUE otherwise.

The set {TW(f) | i € Z} has one limit point. It is the function
(Vz € Z)[g(z) = BLUE].

This is because their are arbitrarily long runs of non-squares. For any M there
is an 7 € Z such that T®(f) and g agree on {—M, ..., M}. Note that

1
M+1

d(TV(f).g) <

Hence

CLDOT(f) = {TY(f) | i € Z} U {g}.
2. Let f € BISEQ be defined by

fla) = {RED if x > 0 and x is a square or x < 0 and z is not a square;
BLUE otherwise.

The set {T(f) | i € Z} has two limit points. They are
(Vz € Z)[g(x) = BLUE]

and
(Vz € Z)[h(z) = RED].

This is because their are arbitrarily long runs of REDs and arbitrarily long runs
of BLUEs. ‘
CLDOT(f) = {T(f) | i € Z}y U{g, h}.

3. We now construct an example of an f such that the number of limit points of

{TO(f) | i€ Z} is infinite. Let f; € BISEQ be defined by

filz) = {RED if x > 0 and z is a jth power;
’ BLUE otherwise.

Let I, = {2F, ..., 2¥1 — 1}, Let ay,ay,as,... be a list of natural numbers so
that every single natural number occurs infinitely often. Let f € BISEQ be
defined as follows.

f(m):{fj(x) if x> 1,2 €1 and j = ay;
BLUE if z < 0.

For every j there are arbitrarily long segments of f that agree with some trans-
lation of f;. Hence every point f; is a limit point of {T®Wf | i € Z}.
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Example 2.10 We show that BISEQ is limit point compact. Let A C BISEQ be
infinite. Let fi, fo, f3,... € A. We construct f € BISEQ to be a limit point of
f1, fa,.... Let ai,as,as, ... be an enumeration of the integers.

Iy= N
f(a;) = least color in [¢] that occurs infinitely often in {f;(a1) | i € I}

L= {i| fi(a1) = f(a1)}

Assume that f(ay), 1, f(az2), Is,. .., f(an—1), I,—1 are all defined and that I,,_; is
infinite.

f(a,) = least color in [c] that occurs infinitely often in {f;(a,) |7 € I,_1}
L= {i| (V)1 <j <n= fila;) = fla;)]}

Note that I,, is infinite.

Note 2.11 The argument above that BISEQ is limit point compact is a common
technique that is often called a compactness argument.

Lemma 2.12 [f X is limit point compact, Y C X, and Y is closed under limit points
then Y s limit point compact.

Proof: Let A CY be an infinite set. Since X is limit point compact A has a limit
point z € X. Since Y is closed under limit points, € Y. Hence every infinite subset
of Y has a limit point in Y, so Y is limit point compact. |
Def 2.13 Let X be a metric space and T': X — X be continuous. Let z € X.

1. The point x is recurrent for T if

(Ve) Fn)[d(T™ (z), x) < €.

Intuition: If x is recurrent for T" then the orbit of z comes close to x infinitely
often. Note that this may be very irregular.

2. Let e >0, 7€ N, and w € X. wis (¢ 1)-recurrent for T if
(Fn € N)[d(T™ (w), w) < e Ad(T® (w),w) < eA---Ad(T"™ (w), w) < €]

Intuition: If w is (e, r)-recurrent for T' then the orbit of w comes within € of
w r times on a regular basis.

Example 2.14



1. If T(z) = = then all points are recurrent (this is trivial).

2. Let T': R — R be defined by T'(z) = —z. Then, for all x € R, T(T'(z)) = z so
all points are recurrent.

3. Let a €[0,1]. Let T: [0,1] — [0,1] be defined by T'(z) =z + « (mod 1).

(a) If @« =0 or w =1 then all points are trivially recurrent.

(b) faeQ,a= % then it is easy to show that all points are recurrent for the
trivial reason that 79 (z) = x + q(2) (mod 1) =uz.

(c¢) If @ ¢ Q then T is recurrent. This requires a real proof.

3 A Theorem in Topology

Def 3.1 Let X be a metric space and T : X — X be a bijection. (X,T) is homoge-
neous if, for every x € X,

X = CLDOT(x).

Example 3.2
Let X = 10,1}, d(z,y) = |xr —y|, and T'(z) =z +« (mod 1).

1. If @ € Q then (X, T) is not homogeneous.
2. If « ¢ Q then (X, T) is homogeneous.
3. Let f,g € BISEQ, so f:Z — {1,2} be defined by

(1 ifz=1 (mod 2);
f(x)_{2 ifz=0 (mod 2)

and
g(x) =3 — f(a).
Let T : BISEQ — BISEQ be defined by

T(h)(z) = h(z+1).
Let X = CLDOT(f). Note that

X = {f, g} = CLDOT(f) = CLDOT(g).

Hence (X, T) is homogeneous.

4. All of the examples in Example 2.9 are not homogeneous.



The ultimate goal of this section is to show the following.

Theorem 3.3 Let X be a metric space and T : X — X be bi-unif-continuous. As-
sume (X, T) is homogeneous. Then for every r € N, for every ¢ > 0, T has an
(€, 7)-recurrent point.

Important Convention for the Rest of this Section:

1.
2.

3.

X is a metric space.
T is bi-unif-continuous.

(X, T) is homogeneous.

We show the following by a multiple induction.

1.

A, (Ve > 0)(Fz,y € X,n € N)

d(T™(z),y) < e A dT®) (z),y) <eN---AdT™(z),y) <e

Intuition: There exists two points x,y such that the orbit of x comes very
close to y on a regular basis r times.

B,: (Ve > 0)(Vz € X)(3z € X,n € N)

d(TM(x),2) < e Nd(TP)(x),2) <eA---AdT™(z),2) <e.

Intuition: For any z there is an x such that the orbit of z comes very close to
z on a regular basis r times.

Cr: (Ve > 0)(Vz € X)(Jz € X)(In € N)(F€ > 0)

TM™(B(x,e')) C B(z,e) A T®)(B(x,¢)) C B(z,e) A---A T (B(z,€))) C
B(z,e€).

Intuition: For any z there is an x such that the orbit of a small ball around x
comes very close to z on a regular basis r times.

. D,: (Ve >0)(Fw e X,n eN)

d(T™(w),w) < e A d(T®(w),w) <eA---AdT" (w),w) < e

Intuition: There is a point w such that the orbit of w comes close to w on
a regular basis r times. In other words, for all €, there is a w that is (e, 7)-
recurrent.



Lemma 3.4 (Ve > 0)(IM € N)(Vz,y € X)
min{d(z, T (y)), d(z, TCM (), ..., d(z, T (y))} < €

Proof:
Intuition: Since (X, T') is homogeneous, if z,y € X then z is close to some point in
the double-orbit of y (using T').

Assume, by way of contradiction, that (Je > 0)(VM € N)(Tzrs, yar € X)

min{d(va T(_M)(yM))a d(xf\/b T(_M+1)(yM))7 T d(xM’ T(M) (yM))} > €

Let © = limy; oo xpr and y = limy; o yas. Since (X, T) is homogeneous (so it is
the closure of a set) and Fact 2.3, z,y € X. Since (X, T) is homogeneous

X ={1"(y) |ieZ}u{T(y) |ieZ}.

Since z € X

(3%i € Z)[d(x, T (y)) < e/4).
We don’t need the 4°°, all we need is to have one such . Let I € Z be such that

d(z, TU (y)) < €/4

Since TU is continuous, lim,y, ym = vy, and limy, x), = x there exists M > |[]
such that

d(TD (), TV (ypr)) < €/4 N d(zpg, ) < €/4.

Hence

d(va T(I)<yM)) < d('rMa C(])—i—d(l’, T(I) (y))+d<T(I) (y)v T(I)<yM)) < 6/4—f—6/4—i_6/4 < €.

Hence d(xyr, T (yar)) < e. This violates the definition of zas, yas. 1

Note 3.5 The above lemma only used that T is continuous, not that T is bi-unif-
continuous.



3.1 A =B,

Lemma 3.6 A,: (Ve > 0)(3z,y € X,n € N)
d(T™(x),y) < e Nd(T® (x),y) < e --- A d(TT™ (x),y) < €
=
B,: (Ve > 0)(Vz € X)(Fz € X,n € N)
d(T™(z),2) < en d(T®(z),2) < e -+ A d(T"™(x),2) < e

Proof:
Intuition: By A, there is an x, y such that the orbit of z will get close to y regularly.
Let z € X. Since (X,T) is homogeneous the orbit of y comes close to z. Hence z is
close to T®(y) and y is close to T (z), so z is close to T+ (x) = TE(T®)(z)).
So z is close to T®)(x) on a regular basis.
Note: The proof merely pins down the intuition. If you understand the intuition you
may want to skip the proof.

Let € > 0.

1. Let M be from Lemma 3.4 with parameter €/3.

2. Since T is bi-unif-continuous we have that for s € Z, |s| < M, T®) is unif-cont.
Hence there exists €’ such that

(Va,b € X)[d(a,b) <€ = (Vs € Z,|s| < M)[d(T® (a), T (b)) < ¢/3].

3. Let z,y € X, n € N come from A, with € as parameter. Note that

d(T™(z),y) < € for 1 <i <r.

Let z € X. Let y be from item 3 above. By the choice of M there exists s,
|s| < M, such that
d(T¥(y), z) < €/3.

Since z,y,n satisfy A, with ¢ we have
(T (x),y) < € for 1 <i <.

By the definition of ¢ we have

d(T(erS) (2), T(S)(y)) <e/3for1<i<r.
Note that

A(T(TE) (z), 2)) < d(T"(TO) (2)), T (y)) + d(T®) (y), 2) < €/3+¢/3 < e.



3.2 B =C,

Lemma 3.7 B,: (Ve > 0)(Vz € X)(dz € X,n € N)
d(T™(z),2) < e Ad(TP)(z),2) <eA---ANd(T"(x),2) <€
=
Cr: (Ve>0)(Vz € X)(Fx € X,neN,¢ >0)
TWB(x,€) C B(z,€) AN TP (B(x,€') C B(z,€) A-+-A T (B(x,€') C B(z,¢).

Proof:
Intuition: Since the orbit of x is close to z on a regular basis, balls around the orbits
of z should also be close to z on the same regular basis.

Let € > 0 and z € X be given. Use B, with €/3 to obtain the following:

(Fz € X,n e N)[d(T™(z),2) < ¢/3NA(TP (), 2) < e/3N---ANd(T"™(z),2) < €/3].

By uniform continuity of 7™ for 1 < i < r we obtain € such that

(Va,b € X)[d(a,b) < ¢ = (Vi <r)[d(T(a), T (b)) < €]
We use these values of x and €.
Let w € T (B(z,¢)). We show that w € B(z, ¢) by showing d(w, 2) < e.
Since w € T (B(z, €')) we have w = T (w') for w' € B(x,¢). Since
d(z,w') < €

we have, by the definition of ¢,

d(T™ (), T (w')) < €/3.

d(z,w) = d(z, T (w')) < d(z, T (z)) + d(T™ (x), T (w')) < ¢/3 4+ ¢/3 < e.

Hence w € B(ze). 1

Note 3.8 The above proof used only that 7" is unif-continuous, not bi-unif-continuous.
In fact, the proof does not use that 7' is a bijection.
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3.3 C,=D,

Lemma 3.9 C,: (Ve > 0)(Vz € X)(3z € X,n € N, > 0)
TWB(x,€) C B(z,¢) AN TP (B(x,€) C B(z,€) A---A T (B(x,€') C B(z,¢)
=
D,: (Ve > 0)(Fw € X,n € N)
d(T™(w),w) < e A d(T®) (w),w) <e AN dT™ (w),y) < e

Proof:
Intuition: We use the premise iteratively. Start with a point zy;. Some z; has a ball
around its orbit close to zg. Some 2z, has a ball around its orbit close to z;. Etc.
Finally there will be two z;’s that are close: in fact the a ball around the orbit of one
is close to the other. This will show the conclusion.

Let zp € X. Apply C, with ¢y = €/2 and zy to obtain zi, €1, ny such that

T (B(z1,€1)) € B(z,€) for 1 <i <.
Apply C, with €; and z; to obtain 2o, €5, 1y such that

T(inQ)(B(ZQ,EQ)) C B(z1,6) for 1 <i <.
Apply C, with €5 and z; to obtain z3, €3, n3 such that

T"3)(B(z3,€3)) C Bz, €) for 1 <i <.

Keep doing this to obtain 2y, 21, 29, . . ..
One can easily show that, for all t < s, forall i 1 <i <r,

T(i(ns+"s+1+"‘+ns+t))(B(zs, €s)) C Bz, €)

Since X is closed zy, 21, . .. has a limit point. Hence

d(zs, z) < €g.

Using these s,¢ and letting ns + - - - + ngyr = n we obtain

T(m)(B(zs, 68)) C Bz, et)

Hence 4
d(T(Zn) (ZS), Zt) < €t.

Let w = z,. Hence, for 1 <:<r

d(T(m)(w), w) < d(T(m)(zs), zs) < d(T(m)(zs), z) +d(z, 2s) < €+ €9 < €.
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3.4 Dr = Ar—i—l

Lemma 3.10 D,: (Ve > 0)(Jw € X,n € N)
AT (w),w) < e A d(TP)(w),w) <e AN dT™(w),y) < e
=
Ary1: (Ve>0)(3z,y € X,n €N)
A(T™(z),y) < e ANd(T®(z),y) <en ..., d(TTI (7)) y) < .

Proof:
By D, and (Vz)[d(z,z) = 0] we have that there exists a w € X and n € N such
that the following hold.
<e€
)y w) <e
)yw) <e

£

d(w,
d(T™ (w
d(T (w

d(T™) (w), w) < €

We rewrite the above equations.

), w) <e
), w) <e
A(TC N (TE (W), w) < e

AT (T (w)),w) < e
(T (T (), w) < e
Let # = T (w) and y = w to obtain

d(TM (x),y) <e
d(TP(z),y) <e
d(TG(z),y) <e

dT(2),y) <e
AT (2),y) < e

Theorem 3.11 Assume that
1. X 1is a metric space,
2. T is bi-unif-continuous.

3. (X, T) is homogeneous.
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For every r € N, € > 0, there exists w € X, n € N such that w is (e, r)-recurrent.
Proof:
Recall that A; states

(Ve)(3z,y € X)(3n)[d(T™(x),y) < .
Let x € X be arbitrary and y = T'(y). Note that

d(TW(z),y) = d(T(z),T(z)) =0 < e.

Hence A; is satisfied.
By Lemmas 3.6, 3.7, 3.9, and 3.10 we have (Vr € N)[D,]. This is the conclusion
we seek. |

4 Another Theorem in Topology

Recall the following well known theorem, called Zorn’s Lemma.

Lemma 4.1 Let (X, X) be a partial order. If every chain has an upper bound then
there exists a maximal element.

Proof:  See Appendix TO BE WRITTEN 1

Lemma 4.2 Let X be a metric space, T : X — X be bi-continuous, and v € X. If
y € CLDOT(z) then CLDOT(y) € CLDOT ().

Proof: Let y € CLDOT(z). Then there exists iy, i, i3,... € Z such that

T (), T (2), T (), ... — y.
Let j € Z. Since TV is continues

T (), 74D (), T (7)), — Ty,
Hence, for all j € Z,

TU (y) € T ) (z) | ke N} C l{TD () | i € Z} = CLDOT(z).
Therefore

{TY)(y) | j € Z} € CLDOT ().
By taking cl of both sides we obtain

CLDOT(y) € CLDOT(z).
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Theorem 4.3 Let X be a limit point compact metric space. Let T : X — X be a
bijection. Then there exists a homogeneous point x € X.

Proof:
We define the following order on X.

z =y iff CLDOT(x) 2 CLDOT(y).

This is clearly a partial ordering. We show that this ordering satisfies the premise
of Zorn’s lemma.

Let C' be a chain. If C' is finite then clearly it has an upper bound. Hence we
assume that C'is infinite. Since X is limit point compact there exists z, a limit point
of C.

Claim 1: For every y, z € C such that y < z, z € CLDOT(y).
Proof: Since y < z we have CLDOT(z) C CLDOT(y). Note that

z € CLDOT(z) € CLDOT(y).

End of Proof of Claim 1
Claim 2: For every y € C' x € CLDOT(y).
Proof: Let y1, 92,3, ... be such that

Loy =uw,

2. Y1,Y2,Ys3, ... € C,

3. y1 2 Y2 2 yz3 = -+, and
4. lim; y; = .

Since y < y2 < y3 < - -+ we have (Vi)[CLDOT(y) 2 CLDOT(y;)]. Hence (Vi)[y; €
CLDOT(y)]. Since lim; y; = z, (Vi)[y; € CLDOT(y)], and CLDOT(y) is closed under
limit points, x € CLDOT(y).

End of Proof of Claim 2

By Zorn’s lemma there exists a maximal element under the ordering <. Let this

element be x.
Claim 3: z is homogeneous.
Proof: Let y € CLDOT(z). We show CLDOT(y) = CLDOT(z).

Since y € CLDOT(z), CLDOT(y) € CLDOT(z) by Lemma 4.2.

Since x is maximal CLDOT(z) € CLDOT(y).

Hence CLDOT(z) = CLDOT(y).

End of Proof of Claim 3 |
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5 VDW

Theorem 5.1 For all ¢, for all k, for every c-coloring of Z there exists a monochro-
matic arithmetic sequence of length k.

Proof:

Let BISEQ and T be as in Example 2.5.2.

Let f € BISEQ. Let Y = CLDOT(f). Since BISEQ is limit point compact and Y
is closed under limit points, by Lemma 2.12 Y is limit point compact. By Theorem 4.3
there exists g € X such that CLDOT(g) is homogeneous. Let X = CLDOT(g). The
premise of Theorem 3.11 is satisfied with X and 7. Hence we take the following
special case.

There exists h € X, n € N such that h is (%, k)-recurrent. Hence there exists n
such that

d(h, T™(h)),d(h, T*V(h)),...,d(h, T"™(h)) <

o |

Since for all i, 1 <i <, d(h, T (h)) < 1 < % we have that

h(0) = h(n) = h(2n) = --- = h(kn).

Hence h has an AP of length k. We need to show that f has an AP of length k.

Let € = m Since h € CLDOT(g) there exists j € Z such that

d(h,TY(g)) < e.
Let €’ be such that
(Va,b € X)[d(a,b) < € = d(TYV(a), TV (b)) < €.

Since ¢ € CLDOT(f) there exists i € Z such that d(g,T%(f)) < €. By the
definition of € we have

A(TO (g), TEI(f) < c.

Hence we have

A(h, T (f)) < d(h, TV (g)) + ATV (g), T f) < 26 < o=

Hence we have that h and T+ (f) agree on {0,...,kn}. In particular
h(0) = f(i +j).

h(n) = f(i+j+n).

h(2n) = f(i + j + 2n).
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h(kn) = f(i+ j + kn).

Since

we have
fle+g)=fli+j+n)=flt+j+2n)=---=f(i+j+kn).

Thus f has a monochromatic arithmetic progression of length k.
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