Fractional Chromatic Number of Graphs and Hypergraphs Writeup by Gasarch

1 Introduction

It is easy to define the chromatic number of a graph or hypergraph. These quantities are always integers. We will define the fractional chromatic number.

To do this we will first define covering and fractional covering a hypergraph.

Def 1.1 Let H = (V, E) be a hypergraph.

- 1. An edge covering of H is a set $X \subseteq E$ such that, for all $v \in V$, there exists $x \in x$ with $v \in s$.
- 2. A minimal edge covering of H is the edge covering with a minimal number of edges in it.

Note 1.2

- 1. If H is an ordinary graph then the edge covering is what is usually called a vertex covering of a graph.
- 2. Let H = (V, E) be a hypergraph. Let H' = (V, E') where E' is the set of ind sets of vertices in H (sets of vertices that contain no edges). Note that an edge covering of H' can be interpreted as a proper coloring of H.

2 Two Definitions

We present two definitions of fractional covering number and then show that they are equivalent.

Lemma 2.1 The minimal covering problem an be formulated as an integer programming problem.

Proof:

Let H = (V, E) be a hypergraph. For each edge e we have a variable y_e . The y_e 's are 0-1 valued and indicate if e is in the cover or not.

MINIMIZE $\sum_{e \in E} y_e$

SUBJECT TO the following contraints.

For every $v \in V$ we have the constraint that it belongs to some edge that is chosen. Formally this is

$$\sum_{e:v \in e} y_e \ge 1$$

We also have that $0 \le y_e \le 1$. And of course we already said that y_e is integer valued.

PUT IN MATRIX NOTATION HERE.

Def 2.2 Let *H* be a hypergraph. $FRACCOV_1(H)$ is the value of $\sum_{e \in E} y_e$ in the relaxed LP version of the IP program in Lemma 2.1.

Def 2.3 Let H be a hypergraph.

- 1. Let $t \in \mathsf{N}$. A *t*-fold edge covering of H is a multiset of edges $F = \{f_1, \ldots, f_L\}$ such that, for every $v \in V$, there are t edges in F that contain v.
- 2. Let $MIN_t(H)$ be the least L such that there is a multiset of size L. Let

$$FRACCOV_2(H) = \inf_{t \to \infty} MIN_t(H)/t = \lim_{t \to \infty} MIN_t(H)/t.$$

(We prove that the limit exists and equals the inf in a later section.)