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1 Introduction

In this manuscript we are only concerned with colorings of the edges of a complete graph (and in
the appendix the edges of a complete hypergraph). Hence the term coloring G will mean coloring
the edges of G.

Recall Ramsey’s theorem:

Theorem 1.1 For all k, for all c, there exists n such that for any c-coloring of the edges of Kn

there exists a set of k points that form a monochromatic clique (that is, all of the edges between the
vertices have the same color).

We need some terminology.

Definition 1.2 Let n ∈ N. Assume that a complete graph (on a finite or infinite number of
vertices) is colored. A homogeneous set is a set of vertices of the graph such that every edge
between them has the same color. A set is homogeneous RED if it is homogeneous and the color is
RED (similar for BLUE). A set of size 1 is considered to be homogeneous RED and homogeneous
BLUE.

The conclusion of Ramsey’s Theorem is the existence of a homogeneous set of size k. What if
instead of wanting a homogeneous set of size k we want a homogeneous set that is large compared
to the minimum element in the set?

Definition 1.3 Let A ⊆ N. A is large if A is at least as big as the minimum element of A.

Example 1.4

1. The set {10, 15, 20, . . . , 100} is large since it has 19 elements and its min element is 10

2. The set {1010, 1010 + 1, . . . , 1010 + 109} is not large since it has 109 + 1 elements but its min
element is 1010.

Consider the following theorem:

Theorem 1.5 For all c, there exists n such that for any c-coloring of the edges of Kn there exists
a large homogeneous set.

This is a stupid theorem. The set {1} is always a large homogeneous set. Even if you don’t
allow homogeneous sets of size 1 you can take {2, 3} to be a large homogeneous set.

How to make this interesting? We need to label the graphs with the vertices {k, k + 1, . . . , n}.
We need some notation and can then state the theorem.

Notation 1.6
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1. Let k, n ∈ N, k < n. K[k,n] is the complete graph with vertex set {k, k + 1, . . . , n} (This is
not the complete bipartite graph with k vertices on the left and n vertices on the left even
though the notation looks similar.)

2. Let Kω be the complete graph with vertex set N.

3. Let K[k,ω) be the complete graph on the vertices {k, k + 1, . . .}.

The following theorem, called The Large Ramsey Theorem for Graphs will be our main concern.

Theorem 1.7 Let c ∈ N. For all k there exists n such that for every c-coloring of K[k,n] there
exists a large homogeneous set. The number n is called a Large Ramsey Number and is denoted
LRc(k).

Paris and Harrington [?] proved The Large Ramsey Theorem for Hypergraphs which we state in
the Appendix. Their interest in it was that it cannot be proven in Peano Arithmetic. The proof
that it cannot be proven in Peano Arithmetic hinges on the fact that the Large Ramsey Numbers
(for hypergraphs) grow very fast. We give upper bounds in the case of 2-coloring the edges of a
graph that are due to Mills [?]. Our proof will clearly be in Peano Arithmetic.

In this manuscript we do the following

1. In Section 2 we prove the Large Ramsey Theorem for Graphs. This proof uses infinitary
techniques and is not in Peano Arithmetic. It does not provide bounds on LRc(k).

2. In Section 3 we define Large Hybrid Ramsey Numbers LH(k;m) and relate them to the Large
Ramsey Numbers.

3. In Section 4 we obtain upper bounds on LH(k;m).

4. In Section 5 we use the upper bounds on LH(k;m) to obtain upper bounds on LR2(k).

We will need the ordinary Ramsey Numbers. We define them here for completeness

Definition 1.8 R(a, b) is the least number n such that for all 2-colorings of Kn there is either a
RED homogeneous set of size a or a BLUE homogeneous set of size b. R(a, b) exists by the ordinary
Ramsey’s theorem.

2 The Large Ramsey Theorem

We will need the infinite Ramsey Theorem, stated below, to prove the Large Ramsey Theorem.

Theorem 2.1 For every c ∈ N, for all c-colorings of Kω, there exists an infinite homogeneous set.

Theorem 2.2 Let c ∈ N. For all k there exists n such that for every c-coloring of K[k,n] there
exists a large homogeneous set.
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Proof:
Assume, by way of contradiction, that the theorem is false. Let c, k be such that for all n > k

there exists a c-coloring of K[k,n], which we denote COLn, such that there is no large homogeneous
set relative to COLn. We use the COLn’s to create a coloring of K[k,ω) which we call COL.

List out the edges of K[k,ω): e1, e2, . . .. We color each edge as follows.
Initially set

A1 = N
COL(e1) = the least d such that [∃∞n ∈ A1 such that COLn(e1) = d]

Let i ≥ 2. Assume inductively that

1. e1, . . . , ei−1 are colored.

2. Ai = {j : COLj(e1) = COL(e1), . . . ,COLj(ei−1) = COL(ei−1)}.

3. Ai is infinite.

Let

COL(ei) = the least d such that [∃∞n ∈ Ai such that COLn(ei) = d]
Ai+1 = Ai ∩ {n : COLn(ei) = d}.

It is easy to see that, after each step, the conditions 1, 2, 3 still hold.

COL is a c-coloring of K[k,ω). By Theorem 2.1 there is an infinite homogeneous set

H = {v1 < v2 < v3 < · · · }.

Take the first v1 vertices,

H ′ = {v1 < v2 < v3 < · · · < vv1}.

This is a homogeneous set relative to COL. By the definition of COL there is at least one (in
fact infinitely many) n such that COLn agrees with COL on all of the edges between elements of
H ′. Hence H ′ is a large homogeneous subset relative to COLn. This contradicts the definition of
COLn.

Definition 2.3 Let LRc(k) be the least n such that, for any c-coloring of K[k,n], there is a large
homogeneous set. Note that, for all k, c, LRc(k) exists by Theorem 2.2.

3 A Useful Large Hybrid Ramsey Number

Definition 3.1 Let k ∈ N and m ≥ 2. Let LH(k;m) be the least n such that, for all 2-colorings of
K[k,n] there is either a RED Km or a large BLUE homogeneous set.

Note 3.2
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1. LH(k; 1) = k given that we say a set of size 1 is homogeneous RED.

2. LH(k; 2) = 2k − 1. If you color K[k,2k−1] and use any RED then you have a RED K2. If
you use no RED then you have a BLUE homogeneous set of size k that includes the element
k, hence it is a large BLUE homogeneous set. We use the weaker result LH(k; 2) ≤ 2k in
calculations.

Notation 3.3 A proper (m, ∗) coloring of K[k,n] is a 2-coloring of K[k,n] with no RED Km and no
large BLUE homogeneous sets.

We relate LH(k;m) to LR2(k).
ROHAN- RELOOK AT THE THEOREM BELOW.

Theorem 3.4 LR2(k) ≤ LH(k + 1; 2k − 3)

Proof:
Let n = LH(k + 1; 2k − 3). Assume, by way of contradiction, that there is a proper coloring of

K[k,n]. (By proper we mean there are no large homogenous sets.) Denote it COL.
KEY- you probably think I am going to restrict the coloring to K[k+1,n] and use that n =

LH(k + 1; 2k − 1). I am NOT going to do that! I will instead construct a different coloring COL′

of K[k+1,n].
Let x, y ∈ {k + 1, . . . , n}. We define COL′(x, y) as follows.

1. If COL(k, x) = COL(k, y) = RED then COL′(x, y) = COL(x, y).

2. If COL(k, x) = COL(k, y) = BLUE then COL′(x, y) = OPP (COL(x, y)). (The opposite—
if COL(x, y) is RED then COL′(x, y) is BLUE and vice versa.)

3. If COL(k, x) 6= COL(k, y) then COL′(x, y) = RED. (Gee— we just ignore COL altogether.
That seems weird but it actually works.)

By the definition of n there is (with respect to COL′) either a RED K2k−3 or a large BLUE
homogeneous set.
Case 1: There is a large BLUE homogeneous set H (wrt COL′) and, for every x ∈ H, COL(k, x) =
RED (this is COL, the original coloring). By the definition of COL′ H is also a large BLUE
homogeneous set wrt COL.
Case 2: There is a large BLUE homogeneous set H (wrt COL′) and, for every x ∈ H, COL(k, x) =
BLUE (this is COL, the original coloring). By the definition of COL′ H is a large RED homogenous
set wrt COL. This is very cute- COL′ and COL differ on every edge in H, but that just makes
the set that was large BLUE homogeneous wrt COL′ now large RED homogeneous wrt COL.
Case 3: There is a large BLUE homogeneous set H and there exists x, y ∈ H such that COL(k, x) 6=
COL(k, y) (this is COL, the original coloring). AH-HA- this cannot happen since then COL′(x, y) =
RED.
Case 4: There is a RED K2k−3. Look at COL(k, x) for all x in the RED K2k−3. There are either
k − 1 x’s such that COL(k, x) = RED or there are k − 1 x’s such that COL(k, x) = BLUE.
Subcase 4a: There are at least k − 1 x’s such that COL(k, x) = RED. Let the set of those x’s
be H ′. By the definition of COL′ we have that for all x, y ∈ H ′, COL(x, y) = COL′(x, y) = RED.
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Let H = H ′ ∪ {k}. H is a is a RED homogeneous set of size k that contains k. Hence H is a large
RED homogeneous set wrt COL.
Subcase 4b: There are at least k x’s such that COL(k, x) = BLUE. By the definition of COL′ we
have that for all x, y ∈ H ′, COL(x, y) 6= COL′(x, y) hence, for all x, y ∈ H ′, COL(x, y) = BLUE.
Let H = H ′ ∪ {k}. H is a is BLUE homogeneous set of size k that contains k. Hence H is a large
BLUE homogeneous set wrt COL.

We can also lower bound LRk(2) with a Large Hybrid Ramsey Number.

Theorem 3.5 LR2(k) ≥ LH(k; k).

Proof: Let n = LR2(k). Let COL be a 2-coloring of K[k,n]. We show that there is either a RED
Kk or a large BLUE homogeneous set. By the definition of n one of the two occurs.

1. There is a large RED homogeneous set. Since the least vertex is labeled k, this is also RED
homogeneous Kk.

2. There is a large BLUE homogeneous set. Then there is a large BLUE homogeneous set (duh).

4 Upper Bounds on LH(k; m)

Theorem 4.1 For m,n ≥ 2, LH(k;m + n) ≤ LH((LH(k;m))m+n−1;n).

Proof: Let
w = LH(k;m)
u = wm+n−1

z = LH(u;n)

Picture them placed

k−−−−−−−−−−−−−−−−−−−−w−−−−−−−−u−−−−−−−−−−−−−−− z

Assume, by way of contradiction, that COL is a proper (m + n, ∗) coloring of K[k,z]. Note that
there are no RED Km+n’s and no large BLUE homogeneous sets.

Restrict the coloring to K[k,w]. By the definition of w either (1) there is a large homogeneous
BLUE set, in which case we are done, or (2) there is a RED Km. Henceforth we assume (2).

Let the vertices of the RED Km be p1 < · · · < pm. Picture

k ≤ p1 < p2 < · · · < pm ≤ w.

k−−p1−−−p2−−−p3−−−−p4−−...−−pm−−−−w−−−−−−−−u−−−−−−−−−−−−−−−z

All of the edges between the p’s are RED. Look at all of the other elements in [k, z] (not just
[k, w] but [k, z]). We classify them in terms of the colors going from the p’s to them.
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Let

A0 = {x ∈ [k, z] : COL(p1, x) = BLUE}.

Note that by the definition of COL A0 cannot have a RED Km+n (This is independent of the
fact that COL(p1, x) = BLUE. There just can’t be any RED Km+n anywhere.) Note also that
A0 cannot have a BLUE Kp1−1 since, that Kp1−1 combined with p1 would yield a large BLUE
homogeneous set. Hence

|A0| ≤ R(m + n, p1 − 1).

We will not need to be this precise. We will use

|A0| ≤ R(m + n, w).

Let

A1 = {x ∈ [k, z] : COL(p1, x) = RED ∧ COL(p2, x) = BLUE}.

Note that A1 cannot have a RED Km+n−1 since this could be combined with p1 to yield a RED
Km+n. Note also that A1 cannot have a BLUE Kp2−1 since, that Kp2−1 combined with p2 would
yield a large BLUE homogeneous set. Hence

|A1| ≤ R(m + n− 1, p2 − 1).

We will not need to be this precise. We will use

|A1| ≤ R(m + n− 1, w).

For 1 ≤ i ≤ m− 1 Let

Ai = {x ∈ [k, z] : COL(p1, x) = · · · = COL(pi−1, x) = RED ∧ COL(pi, x) = BLUE}.

Note that Ai cannot have a RED Km+n−i since this could be combined with p1, . . . , pi to yield
a RED Km+n. Note also that Ai cannot have a BLUE Kpi−1 since, that Kpi−1 combined with pi

would yield a large BLUE homogeneous set. Hence

|Ai| ≤ R(m + n− i, pi − 1).

We will not need to be this precise. We will use

|Ai| ≤ R(m + n− i, w).

Is [k, z] = {p1, . . . , pm}∪A0∪· · ·∪Am−1 ? NO! We need to define one more set Am Unfortunately
we cannot bound |Am|.

Let

Am = {x ∈ [k, z] : COL(p1, x) = · · · = COL(pm, x) = RED}.
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I know what you are thinking. You are thinking we need an upper bound on |Am|. There might
be a way to finish the proof that way; however, we do not know one. We are going to get a Lower
Bound on |Am| and then use it in a clever way.

Note that we do have

[k, z] = {p1, . . . , pm} ∪A0 ∪ · · · ∪Am

We REALLY want to use those Ramsey bounds on the |Ai| with 1 ≤ i ≤ m − 1. We can do
that by taking Am away from the LHS.

[k, z]−Am = {p1, . . . , pm} ∪A0 ∪ · · · ∪Am−1

|[k, z]−Am| = |{p1, . . . , pm}|+ |A0|+ · · ·+ |Am−1|

By our bounds on |Ai| we have

|[k, z]−Am| ≤ m +
m−1∑
i=1

R(m + n− i, w).

By Fact 9.3 (in Appendix)

(∀a, b ≥ 3)[R(a, b) ≤ ba−1 − ba−2].

We want to apply this to R(m+n− i, w) for 1 ≤ i ≤ m− 1. We have that w ≥ k ≥ 3. We need
m + n− (m− 1) ≥ 3, so we need n ≥ 2 which we have.

We obtain

|[k, z]−Am| ≤ m +
m−1∑
i=1

wm+n−i−1 − wm+n−i−2.

WOW- LOTS of stuff cancels! So we get

|[k, z]−Am| ≤ m + wm+n−1 − wn−1.

By Definition u = wm+n−1. Hence we have

|[k, z]−Am| ≤ m + u− wn−1.

One would think that wn−1 would be MUCH larger than m so we could bound by just u. While
this is true we need something slightly more refined.

Recall that

w = LH(k;m) ≥ k + m− 2.

(The ≥ follows by coloring K[k,k+m−2] with every single edge RED.)

wn−1 ≥ (k + m− 2)n−1 ≥ k + m.

(The last ≥ is a ridiculously weak inequality but its all we need.)
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So we get

|[k, z]−Am| ≤ m + u− wn−1 ≤ m + u− k −m = u− k = |[k, z]− [u, z]|.

So

|Am| ≥ |[u, z]|.

Recall this picture.

k−−−−−w−−−−−−−−−−−−−−−−−−−−−−−u−−−−−−−−−−−−−−− z

Since |Am| ≥ [u, z] we can form a map f from [u, z] into Am that is 1-1 and has f(x) ≤ x. We
will now define a coloring COL′ on K[u,z] and use the definition of z = LH(u;n).

For all x, y ∈ [u, z] let

COL′(x, y) = COL(f(x), f(y)).

By the definition of z one of the following must happen.

1. There is a RED Kn wrt to COL′. Let H ′ be the set of vertices. Let

H = f(H ′) ∪ {p1, . . . , pm}.

By the definition of f , COL′, and Am, H is a RED Kn+m.

2. There is a large BLUE homogeneous set wrt COL′. Let H ′ be the set of vertices. Let
H = f(H ′). |H| = |H ′|, but the least element of H is ≤ the least element of H ′. Hence, since
H ′ is a large homogeneous BLUE set, H is a large homogeneous BLUE set.

Let f(k, m) be a function we will define later to bound LH(k;m). What properties does f(k, m)
need?

LH(k; 1) = k.

So we need

k ≤ f(k, 1).

LH(k; 2) = 2k − 1.

So we need

2k − 1 ≤ f(k, 2).

Actually we will take
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2k ≤ f(k, 2)

since that is easier to work with.
We do not have a bound on LH(k; 3) (yet). Does Theorem 4.1 give us a bound on LH(k; 3)?

NO! Theorem 4.1 only applies if m,n ≥ 2 so it gives a bound on LH(k; 4):

LH(k; 4) = LH(k; 2 + 2) ≤ LH((LH(k; 2))3; 2) ≤ LH((2k)3; 2) ≤ 2(2k)3 = 16k3.

but not on LH(k; 3).
In Section 7, Theorem 7.3, we will show the following.

Theorem:

1. For all k, LH(k; 3) ≤ R(k − 1, 3) + 5k − 7.

2. For all k ≥ 7, LH(k; 3) ≤ k2.

End of Statement of Theorem
We use this bound now.
We will need

LH(k; 3) ≤ k2.

If you try to do a proof by induction that LH(k;m) ≤ f(k, m) by using Theorem 4.1 you will
see that you need

(∀m ≥ 2)[f(f(k, m)2m−1,m) ≤ f(k, 2m)].

and

(∀m ≥ 2)[f(f(k, m + 1)2m,m) ≤ f(k, 2m + 1)].

We could try to define an f that satisfies these equations and inequalities. Lets try f(k, m) =
kg(m) where we determine g later.

• Since LH(k; 1) = k, k1 ≤ f(k, 1) = kg(1), so we need g(1) = 1.

• Since LH(k; 2) = 2k − 1, k2 ≤ f(k, 2) = kg(2), so we need g(2) = 2. We could have used
klogk(2k−1) ≤ f(k, 2) and hence taken g(2) = 1 + ε(k) where ε(k) goes to 0. However, this
would be cumbersome and would not improve our results at all.

• Since LH(k; 3) ≤ f(k, 3) = kg(3), so we need g(3) = 2.

The recurrences for f above become the following recurrences for g.

(∀m ≥ 2)[(kg(m)(2m−1))g(m) ≤ kg(2m)]

(∀m ≥ 2)[kg(m)2(2m−1) ≤ kg(2m)]
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(∀m ≥ 2)[g(m)2(2m− 1) ≤ g(2m)].

and

(∀m ≥ 2)[(kg(m+1))2m)g(m) ≤ kg(2m+1)]

(∀m ≥ 2)[kg(m)g(m+1)2m ≤ kg(2m+1)]

(∀m ≥ 2)[g(m)g(m + 1)2m ≤ g(2m + 1)].

Rather than try to find a function g that satisfies this, we define a function that satisfies this.

Definition 4.2 Let g(m) be defined as follows.

1. g(1) = 1,

2. g(2) = 2.

3. g(3) = 2.

4. (∀m ≥ 2)[g(2m) = (2m− 1)g(m)2].

5. (∀m ≥ 2)[g(2m + 1) = 2mg(m)g(m + 1)].

Note 4.3 g(4) = 3g(2)2 = 3× 4 = 12

Corollary 4.4 For all k, for all m, LH(k;m) ≤ kg(m).

Proof: This proof will be easy since g was defined to make it work. We prove this by induction.
Base Case: m = 1. Need LH(k; 1) ≤ kg(1). Note that LH(k; 1) = k and kg(1) = k1, so we do have
LH(k; 1) ≤ kg(1).

Induction Step. Assume true for all k and for m. We prove for 2m and 2m + 1.
The Corollary for 2m:

By Theorem 4.1

LH(k; 2m) ≤ LH((LH(k;m))2m−1;m).

By the induction hypothesis

LH(k;m) ≤ kg(m)

hence

(LH(k;m))2m−1 ≤ k(2m−1)g(m).

Therefore
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LH((LH(k;m))2m−1;m) ≤ LH(k(2m−1)g(m);m).

We apply the induction hypothesis again to obtain

LH(k(2m−1)g(m);m) ≤ (k(2m−1)g(m))g(m) = k(2m−1)g(m)2

By the very definition of g

k(2m−1)g(m)2 = kg(2m).

Hence we have

LH(k; 2m) ≤ kg(2m).

The Corollary for 2m + 1:
By Theorem 4.1

LH(k; 2m + 1) ≤ LH((LH(k;m + 1))2m;m).

By the induction hypothesis

LH(k;m + 1) ≤ kg(m+1)

hence

(LH(k;m + 1))2m ≤ k2mg(m+1).

Therefore

LH((LH(k;m + 1))2m;m) ≤ LH(k2mg(m+1);m).

We apply the induction hypothesis again to obtain

LH(k2mg(m+1);m) ≤ (k2mg(m+1))g(m) = k2mg(m+1)g(m)

By the very definition of g

k2mg(m+1)g(m) = kg(2m+1).
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5 An Upper Bound on LR2(k)

We can use Theorem 3.4 and Corollary 4.4 to obtain a bound on LR2(k) in terms of g(m). We will
later obtain upper bounds on g and hence real upper bounds on LR2(k).

Corollary 5.1 Let k ∈ N. LR2(k) ≤ (k + 1)g(2k−3).

Proof:
By Theorem 3.4

LR2(k) ≤ LH(k + 1; 2k − 3).

By Corollary 4.4

LH(k + 1; 2k − 3) ≤ kg(2k−3).

Putting this all together we get

LR2(k) ≤ (k + 1)g(2k−3).

Now we need to bound g(m).

Lemma 5.2 If m is a power of 2, m ≥ 2, then g(m) ≤ 2m lg m.

Proof:
1) We prove this by induction on m. Keep in mind that m is a power of 2.
Base Case: m = 1. g(1) = 1. 21 lg 1 = 20 = 1. Hence, for m = 1, g(1) ≤ 21 lg 1.

Induction Step: Assume the lemma for m, prove it for 2m.

g(2m) = (2m− 1)g(m)2 ≤ (2m− 1)22m lg m ≤ 2m× 22m lg m = 22m lg m+lg m+1.

We need

22m lg m+lg m+1 ≤ 22m lg(2m).

So we need

2m lg m + lg m + 1 ≤ 2m lg(2m).

2m lg m + lg m + 1 ≤ 2m(1 + lg m).

2m lg m + lg m + 1 ≤ 2m + 2m lg m).

lg m + 1 ≤ 2m.

This is true, so we are done.
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We can now get a real bound on LR2(k).

Theorem 5.3
LR2(k) ≤ (2k + 1)2

4k lg(4k)
.

Proof: Let
m = the least n such that n ≥ k ∧ 2n− 3 is a power of 2.

Note that m ≤ 2k. It is easy to show that LR2(x) is a monotone increasing function of x. Hence

LR2(k) ≤ LR2(m).

By Corollary 5.1

LR2(m) ≤ (m + 1)g(2m−3).

Since 2m− 3 is a power of 2 we can use Lemma 5.2 to obtain

g(2m− 3) ≤ 2(2m−3) lg(2m−3) ≤ 22m lg(2m).

Since m ≤ 2k we have 22m lg(2m) ≤ 24k lg(4k).
Putting this all together we get

LR2(k) ≤ (2k + 1)2
4k lg(4k)

.

6 More Refined Upper Bounds on LR2(k)

Can we improve the bound on LR2(k) from Theorem 5.3? We can! To do this we will improve our
upper bound on g.

Definition 6.1 Let β(m) be such that g(m) = 2mβ(m). Note the following.

• Since 20 = g(1) = 21×β(1), β(1) = 0.

• Since 21 = g(2) = 22×β(2), β(2) = 1/2.

• Since 21 = g(3) = 23×β(2), β(3) = 1/3.

Note 6.2 In Lemma 5.2 we showed that β(m) ≤ lg(2m).

We want to show that β is bounded by a constant.

Definition 6.3 A number is cool if it is of the form 3× 2i where i ≥ 0.

Lemma 6.4
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1. For all m ≥ 2, β(2m) = lg(2m−1)
2m + β(m).

2. For all m that are cool
β(m) ≤ 1.471.

Proof:
1)

g(m) = 2mβ(m)

lg(g(m)) = mβ(m)

β(m) =
lg(g(m))

m
.

We now express β(2m) in terms of β(m).

β(2m) =
lg(g(2m))

2m
=

lg((2m− 1)g(m)2)
2m

=
lg(2m− 1)

2m
+

lg(g(m))
m

=
lg(2m− 1)

2m
+ β(m).

Hence

β(2m) =
lg(2m− 1)

2m
+ β(m).

2) By Part 1, for all m ≥ 2,

β(2m) =
lg(2m− 1)

2m
+ β(m).

Letting m = 3× 2j we obtain that, for all j ≥ 0,

β(3× 2j+1) =
lg(3× 2j+1 − 1)

3× 2j+1
+ β(3× 2j).

Let γ(j) = β(3× 2j). Note that γ(0) = β(3) = 1/3.
We have

γ(j + 1) =
lg(3× 2j+1 − 1)

3× 2j+1
+ γ(j).

Hence, by Lemma 9.4 (in the Appendix), for all j,

γ(j) ≤ γ(0) +
∞∑
i=1

lg(3× 2i − 1)
3× 2i

.

Note that γ(0) = 1/3 is of the form for the summation at 0. Hence we have

γ(j) ≤
∞∑
i=0

lg(3× 2i − 1)
3× 2i

.
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We will take out the first B terms (B to be determined later) to obtain

γ(j) ≤
B∑

i=0

lg(3× 2i − 1)
3× 2i

+
∞∑

i=B+1

lg(3× 2i − 1)
3× 2i

Note that

lg(3× 2i − 1)
3× 2i

≤ lg 3
3× 2i

+
i

3× 2i
≤ lg 3

3
1
2i

+
1
3

i

2i
.

Hence

∞∑
i=B

lg(3× 2i − 1)
3× 2i

≤ lg 3
3

∞∑
i=B

1
2i

+
1
3

∞∑
i=B

i

2i
.

It is well known that
∞∑

i=B+1

1
2i

=
1

2B
.

By Lemma 9.5 in the Appendix we have that

∞∑
i=B+1

i

2i
=

B + 2
2B

.

Hence

lg 3
3

∞∑
i=B

1
2i

+
1
3

∞∑
i=B

i

2i
≤ lg 3 + B + 2

3× 2B
.

Therefore

β(3× 2j) ≤ γ(j) ≤ lg 3 + B + 2
3× 2B

+
B∑

i=0

lg(3× 2i − 1)
3× 2i

A short MATLAB program computed this for B = 1 to 100. The number seemed to converge
to 1.4706, so we bound by 1.471. Hence

β(3× 2j) ≤ 1.471.

Note 6.5 Mills [?] claims that, for all m, β(m) ≤ 1.471.

Note 6.6 The reason we took γ(j) = β(3 × 2j) was because we knew β(3) = γ(0). What if we
knew β(L)? Then we could take γ(j) = β(L× 2j) and we would have γ(0) = β(L). If we work this
through we would end up with the following:

β(L× 2j) ≤ γ(j) ≤ lg L + B + 2
L× 2B

+ β(L) +
B∑

i=1

lg(L× 2i − 1)
L× 2i

This might lead to a constant better than 1.471.

15



Theorem 6.7
LR2(k) ≤ (2k + 1)2

5.884k
.

Proof: Let
m = the least n such that n ≥ k ∧ 2n− 3 is cool.

Note that m ≤ 2k. It is easy to show that LR2(x) is a monotone increasing function of x. Hence

LR2(k) ≤ LR2(m).

By Corollary 5.1

LR2(m) ≤ (m + 1)g(2m−3).

Since 2m− 3 is cool use Lemma 6.4 to obtain

g(2m− 3) ≤ 21.471(2m−3) ≤ 21.471×2m ≤ 22.942m.

Since m ≤ 2k we have 22.942m ≤ 25.884k. Hence

LR2(k) ≤ (2k + 1)2
5.884k

.

7 Upper Bounds on LH(k; 3)

Definition 7.1 Let k ≤ n. Let COL be a 2-coloring of K[k,n]. If v ∈ {k, . . . , n} then

RED(v) = {w : COL(v, w) = RED}

BLUE(v) = {w : COL(v, w) = BLUE}

Lemma 7.2 Let k ≤ n. Let COL be a proper (3, ∗)-coloring of K[k,n].

1. n = k + |RED(k)|+ |BLUE(k)|.

2. For all v ∈ {k, . . . , v}, |BLUE(v)| ≤ R(3, v − 1)− 1.

3. For all v < w, |RED(v) ∩BLUE(w)| ≤ w − 2

Proof:
1) There are n − k vertices in the graph. For each vertex v either v ∈ RED(k) or v ∈ BLUE(k)
but not both. Hence

n− k = |RED(k)|+ |BLUE(k)

n = k + |RED(k)|+ |BLUE(k)|

16



2) Assume, by way of contradiction, that |BLUE(v)| ≥ R(3, v − 1). Look at COL restricted to
BLUE(v). Since |BLUE(v)| ≥ R(3, v − 1) either this graph has a RED K3 (contradicting COL
being a proper (3, ∗)-coloring), or this graph has a BLUE Kv−1. In the later case let H be the set
of vertices in the BLUE Kv−1. Since for all x ∈ H, COL(x, v) = BLUE, H ∪ {v} form a BLUE
Kv. Note that v is one of the vertices in this BLUE clique, so it is a large BLUE homogeneous set.

3) Let X = RED(v) ∩ BLUE(w). Assume, by way of contradiction, that |X| ≥ w − 1. For all
x, y ∈ X we have COL(x, y) = BLUE, else there would be a RED K3 with v, x, y. Hence the
vertices of X form a BLUE Kw−1. Add in the vertex w and you have a BLUE Kw with vertex w,
so it is a large BLUE homogeneous set.

Theorem 7.3

1. For all k, LH(k; 3) ≤ R(k − 1, 3) + 5k − 7.

2. For all k ≥ 7, LH(k; 3) ≤ k2.

BILL- LOOK INTO WHAT HAPPENS WHEN k = 1, 2, 3, 4, 5, 6.
Proof:
1) Let n = R(k − 1, 3) + 5k − 7. Assume, by way of contradiction, that there is a proper (3, ∗)
coloring of K[k,n]. Call it COL. By Lemma 7.2 parts a and b

R(k − 1, 3) + 5k − 7 = n = k + |RED(k)|+ |BLUE(k)| ≤ k + |RED(k)|+ R(k − 1, 3)− 1

5k − 7 ≤ k + |RED(k)| − 1

4k − 6 ≤ |RED(k)|.

Let x = min{RED(k)}.
There are two cases.

Case 1: x ≤ 4k − 6. Note that all of the edges between elements of RED(k) must be BLUE
(else you get a RED K3). Hence the elements of RED(k) form a BLUE homogeneous set of size
|RED(k)| ≥ 4k−6. If x ≤ 4k−6 then this BLUE homogeneous set has an element that is ≤ 4k−6
and is hence a large homogeneous BLUE set.

Case 2: x ≥ 4k − 5 (actually all we need is x ≥ 2k + 1). Note that, for all x ∈ {k + 1, . . . , 2k},
COL(k, x) = BLUE. Hence there must be a, b with k ≤ a < b ≤ 2k−1 such that COL(a, b) = RED
(else the vertices {k, . . . , 2k − 1} form a large BLUE homogeneous set).

We now upper bound |RED(k)|. Since COL(a, b) = RED, for every x either COL(a, x) =
BLUE or COL(b, x) = BLUE (or else you have a RED K3). Hence

|RED(k)| ≤ |RED(k) ∩BLUE(a)|+ |RED(k) ∩BLUE(b)|.

By Lemma 7.2.3 and a ≤ 2k − 2 and b ≤ 2k − 1 we have
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|RED(k)| ≤ (a− 2) + (b− 2) ≤ a + b− 4 ≤ (2k − 2) + (2k − 1)− 4 = 4k − 7.

By Lemma 7.2 and the bound on |RED(k)|

n ≤ k + |RED(k) + |BLUE(k)| ≤ k + 4k − 7 + R(3, k − 1)− 1 = 5k − 8 + R(3, k − 1).

This contradicts the definition of n.

2) By Fact 9.2

R(a, b) ≤
(

a + b− 2
b− 1

)
.

Hence

R(k − 1, 3) ≤
(

k

2

)
=

k(k − 1)
2

.

This can be used to show that, for k ≥ 7,

R(k − 1, 3) + 5k − 7 ≤ k2.

8 Appendix on Large Ramsey For Hypergraphs

Notation 8.1

1. Let k, n ∈ N, k < n. Km
[k,n] is the complete m-hypergraph with vertex set {k, k + 1, . . . , n}.

(This looks like the notation for the cross product of graphs or an m-partite graph, but its
not.)

2. Let Km
ω be the complete m-hypergraph with vertex set N.

3. Let Km
[k,ω) be the complete m-hypergraph with vertex set {k, k + 1, . . .}.

4. We will only be coloring EDGES of complete m-hypergraphs. Henceforth in this manuscript
the term coloring G will mean coloring the edges of G.

5. Assume that a complete m-hypergraph (on a finite or infinite number of vertices) is colored.
A homogeneous set is a set of vertices of the graph such that every edge between them has
the same color.

6. Let A ⊆ N. A is large if A is larger than its minimal element. (Same as in main paper.)

Recall the infinite hypergraph Ramsey Theorem:

Theorem 8.2 For every m ∈ N, for every c ∈ N, for all c-colorings of Km
ω , there exists an infinite

homogeneous set.
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This can be used to give a proof of the Large Ramsey Theorem:

Theorem 8.3 For every m ∈ N, for every c ∈ N, for all k there exists n such that for every
c-coloring of Km

[k,n] there exists a large homogeneous set.

We omit the proof, though it is similar to the proof of Theorem 2.1.

Definition 8.4 Let LRm
c (k) be the n in Theorem 8.3.

Paris and Harrington showed that Theorem 8.3 cannot be proven in Peano Arithmetic. They
showed that the function LRm

c (k) grows faster than any function whose existence can be proven in
Peano Arithmetic. This essentially means that the proof from the Theorem 8.2 is really the only
proof- so to prove this finitary theorem requires infinitary techniques. So a proof like that of the
original finite Ramsey Theorem, or of the bound in LR2(k) in this manuscript, cannot be obtained
for Theorem 8.3.

9 Appendix: Some Misc Facts

The following recurrence is well known. It is the key to one of the proofs of the finite Ramsey
Theorem.

Fact 9.1
R(a, b) ≤ R(a, b− 1) + R(a− 1, b)− 1.

Fact 9.2

R(a, b) ≤
(

a + b− 2
a− 1

)
=

(
a + b− 2

b− 1

)
.

Proof:
BILL- INSERT.

Fact 9.3 If 3 ≤ a ≤ b then
R(a, b) ≤ ba−1 − ba−2.

Proof:
We prove this by induction on a + b.

Base Case: Since 3 ≤ a ≤ b the least a + b can be is 6. If a + b = 6 and 3 ≤ a ≤ b then a = 3 and
b = 3. It is known that R(3, 3) = 6. ba−1 − ba−2 = 32 − 31 = 6.

Induction Step: Assume the statement is true for any 3 ≤ a′ ≤ b′ such that a′ + b′ < a + b. By
Fact 9.1

R(a, b) ≤ R(a, b− 1) + R(a− 1, b).

There are two cases.
Case 1: a ≤ b− 1. Then we can use the induction hypothesis and obtain
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R(a, b) ≤ R(a, b− 1) + R(a− 1, b) ≤ (b− 1)a−1 − (b− 1)a−2 + ba−2 − ba−3.

Now we need

(b− 1)a−1 − (b− 1)a−2 + ba−2 − ba−3 ≤ ba−1 − ba−2

(b− 1)a−1 − (b− 1)a−2 ≤ ba−1 − 2ba−2 + ba−3

(b− 1)a−2(b− 1− 1) ≤ ba−3(b2 − 2b + 1)
(b− 1)a−2(b− 2) ≤ ba−3(b− 1)2

(b− 1)a−4(b− 2) ≤ ba−3

GREAT- This is TRUE!

Case 2: a = b.

R(a, a) ≤ R(a, a− 1) + R(a− 1, a) = 2R(a− 1, a) ≤ aa−1 − aa−2.

This is exactly what we need!.

Lemma 9.4 Let γ : N → R. Let α : N → R. Assume that, for all j ≥ 0,

γ(j + 1) ≤ γ(j) + α(j + 1).

Then, for all j ≥ 0,

γ(j) ≤ γ(0) +
∞∑
i=1

α(i).

Proof:
γ(j + 1)− γ(j) ≤ α(j + 1)
γ(j)− γ(j − 1) ≤ α(j)
...
γ(2)− γ(1) ≤ α(2)
γ(1)− γ(0) ≤ α(1)
If you add up these equations you get
γ(j + 1)− γ(0) ≤

∑∞
i=1 α(i).

Hence, for all j,
γ(j) ≤ γ(0) +

∑∞
i=1 α(i).

Lemma 9.5

1. If 0 < x < 1 then
∞∑
i=0

ixi =
x

(1− x)2

2.
∞∑
i=0

i

2i
= 2

(This follows from part a by plugging in x = 1/2.)
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3.
B∑

i=0

i

2i
=

2B+1 −B − 2
2B

.

4.
∞∑

i=B+1

i

2i
=

B + 2
2B

.

(This follows from parts 2 and 3.)

Proof:
1 and 2) For any x with 0 < x < 1 we know that

∞∑
i=0

xi =
−1

x− 1

Differentiate this to obtain

∞∑
i=0

ixi−1 =
1

(1− x)2

Multiply both sides by x to obtain

∞∑
i=0

ixi =
x

(1− x)2

Plug in x = 1/2 to obtain the result.

3 and 4)
For any x with 0 < x < 1 we know that

B∑
i=0

xi =
xB+1 − 1

x− 1

Differentiate this to obtain

B∑
i=0

ixi−1 =
(x− 1)(B + 1)xB − (xB+1 − 1)

(x− 1)2

Multiply by x to obtain

B∑
i=0

ixi =
x

(x− 1)2

[
(x− 1)(B + 1)xB − (xB+1 − 1)

]
=

x

(x− 1)2

[
BxB+1 − (B + 1)xB + 1

]
Plug in x = 1/2 to obtain

2×
[

B

2B+1
− B + 1

2B
+ 1

]
=

B

2B
− 2B + 2

2B
+

2B+1

2B
=

2B+1 −B − 2
2B

.
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