
Ramsey’s Theorem on Graphs
Exposition by William Gasarch

1 Introduction

Imagine that you have 6 people at a party. We assume that, for every pair
of them, either THEY KNOW EACH OTHER or NEITHER OF THEM
KNOWS THE OTHER. So we are assuming that if x knows y, then y
knows x.
Claim: Either there are at least 3 people all of whom know one another, or
there are at least 3 people no two of whom know each other (or both).
Proof of Claim:

Let the people be p1, p2, p3, p4, p5, p6. Now consider p6.
Among the other 5 people, either there are at least 3 people that p6 knows,

or there are at least 3 people that p6 does not know.
Why is this?
Well, suppose that, among the other 5 people, there are at most 2 people

that p6 knows, and at most 2 people that p6 does not know. Then there
are only 4 people other than p6, which contradicts the fact that there are
5 people other than p6.

Suppose that p6 knows at least 3 of the others. We consider the case
where p6 knows p1, p2, and p3. All the other cases are similar.

If p1 knows p2, then p1, p2, and p6 all know one another. HOORAY!
If p1 knows p3, then p1, p3, and p6 all know one another. HOORAY!
If p2 knows p3, then p2, p3, and p6 all know one another. HOORAY!
What if none of these scenarios holds? Then none of these three people

(p1, p2, p3) knows either of the other 2. HOORAY!
End of Proof of Claim

We want to generalize this observation.

Notation 1.1 N is the set of all positive integers. If n ∈ N, then [n] is the
set {1, . . . , n}.

Def 1.2 A graph G consists of a set V of vertices and a set E of edges. The
edges are unordered pairs of vertices.
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Note 1.3 In general, a graph can have an edge {i, j} with i = j. Here,
however, every edge of a graph is an unordered pair of distinct vertices (i.e.,
an unordered pair {i, j} with i 6= j).

Def 1.4 Let c ∈ N. Let G = (V, E) be a graph. A c-coloring of the edges
of G is a function COL : E → [c]. Note that there are no restrictions
on COL.

Note 1.5 In the Graph Theory literature there are (at least) two kinds of
coloring. We present them in this note so that if you happen to read the
literature and they are using coloring in a different way then in these notes,
you will not panic.

• Vertex Coloring. Usually one says that the vertices of a graph are c-
colorable if there is a way to assign each vertex a color, using no more
than c colors, such that no two adjacent vertices (vertices connected
by an edge) are the same color. Theorems are often of the form ‘if a
graph G has property BLAH BLAH then G is c-colorable’ where they
mean vertex c-colorable. We will not be considering these kinds of
colorings.

• Edge Colorings. Usually this is used in the context of Ramsey Theory
and Ramsey-type theorems. Theorems begin with ‘for all c-coloring of
a graph G BLAH BLAH happens’ We will be considering these kinds
of colorings.

Def 1.6 Let n ∈ N. The complete graph on n vertices, denoted Kn, is the
graph

V = [n]
E = {{i, j} | i, j ∈ [n]}

Example 1.7 Let G be the complete graph on 10 vertices. Recall that the
vertices are {1, . . . , 10}. We give a 3-coloring of the edges of G:

COL({x, y}) =


1 if x + y ≡ 1 (mod 3);
2 if x + y ≡ 2 (mod 3);
3 if x + y ≡ 0 (mod 3).
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Lets go back to our party! We can think of the 6 people as vertices of K6.
We can color edge {i, j} RED if i and j know each other, and BLUE if they
do not.

Def 1.8 Let G = (V, E) be a graph, and let COL be a coloring of the edges
of G. A set of edges of G is monochromatic if they are all the same color.

Let n ≥ 2. Then G has a monochromatic Kn if there is a set V ′ of n
vertices (in V ) such that

• there is an edge between every pair of vertices in V ′:
{{i, j} | i, j ∈ V ′} ⊆ E

• all the edges between vertices in V ′ are the same color: there is some
l ∈ [c] such that COL({i, j}) = l for all i, j ∈ V ′

We now restate our 6-people-at-a-party theorem:

Theorem 1.9 Every 2-coloring of the edges of K6 has a monochromatic K3.

2 The Full Theorem

From the last section, we know the following:
If you want an n such that you get a monochromatic K3 no matter how

you 2-color Kn, then n = 6 will suffice.
What if you want to guarantee that there is a monochromatic K4? What

if you want to use 17 colors?
The following is known as Ramsey’s Theorem. It was first proved in [3]

(see also [1], [2]).

For all c, m ≥ 2, there exists n ≥ m such that every c-coloring of Kn

has a monochromatic Km.

We will provide several proofs of this theorem for the c = 2 case. We will
assume the colors are RED and BLUE (rather than the numbers 1 and 2).
The general-c case (where c can be any integer i ≥ 2) and other generaliza-
tions may show up on homework assignments.
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3 First Proof of Ramsey’s Theorem

Given m, we really want n such that every 2-coloring of Kn has a RED Km or
a BLUE Km. However, it will be useful to let the parameter for BLUE differ
from the parameter for RED.

Notation 3.1 Let a, b ≥ 2. Let R(a, b) denote the least number, if it exists,
such that every 2-coloring of KR(a,b) has a RED Ka or a BLUE Kb. We
abbreviate R(a, a) by R(a).

We state some easy facts.

1. For all a, b, R(a, b) = R(b, a).

2. For b ≥ 2, R(2, b) = b: First, we show that R(2, b) ≤ b. Given any
2-coloring of Kb, we want a RED K2 or a BLUE Kb. Note that a
RED K2 is just a RED edge. Hence EITHER there exists one RED edge
(so you get a RED K2) OR all the edges are BLUE (so you get a
BLUE Kb). Now we prove that R(2, b) = b. If b = 2, this is obvious.
If b > 2, then the all-BLUE coloring of Kb−1 has neither a RED K2

nor a BLUE Kb, hence R(2, b) ≥ b. Combining the two inequalities
(R(2, b) ≤ b and R(2, b) ≥ b), we find that R(2, b) = b.

3. R(3, 3) ≤ 6 (we proved this in Section 1)

We want to show that, for every n ≥ 2, R(n, n) exists. In this proof, we
show something more: that for all a, b ≥ 2, R(a, b) exists. We do not really
care about the case where a 6= b, but that case will help us get our result.
This is a situation where proving more than you need is easier.

Theorem 3.2

1. R(2, b) = b (we proved this earlier)

2. For all a, b ≥ 3: If R(a− 1, b) and R(a, b− 1) exist, then R(a, b) exists
and

R(a, b) ≤ R(a− 1, b) + R(a, b− 1)

3. For all a, b ≥ 2, R(a, b) exists and R(a, b) ≤ 2a+b.
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Proof:
Since we proved part 1 earlier, we now prove parts 2 and 3.

Part 2 Assume R(a− 1, b) and R(a, b− 1) exist. Let

n = R(a− 1, b) + R(a, b− 1)

Let COL be a 2-coloring of Kn, and let x be a vertex. Note that there are

R(a− 1, b) + R(a, b− 1)− 1

edges coming out of x (edges {x, y} for vertices y).
Let NUM-RED-EDGES be the number of red edges coming out of x,

and let NUM-BLUE-EDGES be the number of blue edges coming out of x.
Note that

NUM-RED-EDGES + NUM-BLUE-EDGES = R(a− 1, b) + R(a, b− 1)− 1

Hence either
NUM-RED-EDGES ≥ R(a− 1, b)

or
NUM-BLUE-EDGES ≥ R(a, b− 1)

To see this, suppose, by way of contradiction, that both inequalities are false.
Then

NUM-RED-EDGES + NUM-BLUE-EDGES

≤ R(a− 1, b)− 1 + R(a, b− 1)− 1

= R(a− 1, b) + R(a, b− 1)− 2

< R(a− 1, b) + R(a, b− 1)− 1

There are two cases:

1. Case 1: NUM-RED-EDGES ≥ R(a− 1, b). Let

U = {y | COL({x, y}) = RED}

U is of size NUM-RED-EDGES ≥ R(a−1, b). Consider the restriction
of the coloring COL to the edges between vertices in U . Since

|U | ≥ R(a− 1, b),

this coloring has a RED Ka−1 or a BLUE Kb. Within Case 1, there are
two cases:
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(a) There is a RED Ka−1. Recall that all of the edges in

{{x, u} | u ∈ U}

are RED, hence all the edges between elements of the set U ∪{x}
are RED, so they form a RED Ka and WE ARE DONE.

(b) There is a BLUE Kb. Then we are DONE.

2. Case 2: NUM-BLUE-EDGES ≥ R(a, b− 1). Similar to Case 1.

Part 3 To show that R(a, b) exists and R(a, b) ≤ 2a+b, we use induction on
n = a + b. Since a, b ≥ 2, the smallest value of a + b is 4. Thus n ≥ 4.

Base Case: n = 4. Since a + b = 4 and a, b ≥ 2, we must have a = b = 2.
From part 1, we know that R(2, 2) exists and R(2, 2) = 2. Note that

R(2, 2) = 2 ≤ 22+2 = 16

Induction Hypothesis: For all a, b ≥ 2 such that a + b = n, R(a, b) exists
and R(a, b) ≤ 2a+b.

Inductive Step: Let a, b be such that a, b ≥ 2 and a + b = n + 1.
There are three cases:

1. Case 1: a = 2. By part 1, R(2, b) exists and R(2, b) = b. Since b ≥ 2,
we have

b ≤ 2b ≤ 4 · 2b = 22 · 2b = 22+b

Hence R(2, b) ≤ 22+b.

2. Case 2: b = 2. Follows from Case 1 and R(a, b) = R(b, a).

3. Case 3: a, b ≥ 3. Since a, b ≥ 3, we have a−1 ≥ 2 and b−1 ≥ 2. Also,
a + b = n + 1, so (a− 1) + b = n and a + (b− 1) = n. By the induction
hypothesis, R(a− 1, b) and R(a, b− 1) exist; moreover,

R(a− 1, b) ≤ 2(a−1)+b = 2a+b−1

R(a, b− 1) ≤ 2a+(b−1) = 2a+b−1

From part 3, R(a, b) exists and

R(a, b) ≤ R(a− 1, b) + R(a, b− 1)
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Hence

R(a, b) ≤ R(a− 1, b)+R(a, b− 1) ≤ 2a+b−1 +2a+b−1 = 2 · 2a+b−1 = 2a+b

Corollary 3.3 For every m ≥ 2, R(m) exists and R(m) ≤ 22m.

4 Second Proof of Ramsey’s Theorem

We now present a proof that does not use R(a, b). It also gives a mildly
better bound on R(m) than the one given in Corollary 3.3.

Theorem 4.1 For every m ≥ 2, R(m) exists and R(m) ≤ 22m−2.

Proof:
Let COL be a 2-coloring of K22m−2 . We define a sequence of vertices,

x1, x2, . . . , x2m−1,

and a sequence of sets of vertices,

V0, V1, V2, . . . , V2m−1,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has 22m−2 − 1 edges coming out of

it. Some are RED, and some are BLUE. Hence there are at least 22m−3

RED edges coming out of x1, or there are at least 22m−3 BLUE edges coming
out of x1. To see this, suppose, by way of contradiction, that it is false, and
let N.E. be the total number of edges coming out of x1. Then

N.E. ≤ (22m−3 − 1) + (22m−3 − 1) = (2 · 22m−3)− 2 = 22m−2 − 2 < 22m−2 − 1

Let c1 be a color such that x1 has at least 22m−3 edges coming out of it that
are colored c1. Let V1 be the set of vertices v such that COL({v, x1}) = c1.
Then keep iterating this process.

We now describe it formally.
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V0 = [22m−2]
x1 = 1

c1 =
{

RED if |{v ∈ V0 | COL({v, x1}) = RED}| ≥ 22m−3

BLUE otherwise

V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| ≥ 22m−3)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci =
{

RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| ≥ 2(2m−2)−i;
BLUE otherwise.

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| ≥ 2(2m−2)−i)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is
nonempty. Note that

|V2m−2| ≥ 2(2m−2)−(2m−2) = 20 = 1

Thus if i−1 = 2m−2 (equivalently, i = 2m−1), then Vi−1 = V2m−2 6= ∅, but
there is no guarantee that Vi (= V2m−1) is nonempty. Hence we can define

x1, . . . , x2m−1

Consider the colors
c1, c2, . . . , c2m−2

Each of these is either RED or BLUE. Hence there must be at least m−1 of
them that are the same color. Let i1, . . . , im−1 be such that i1 < · · · < im−1

and
ci1 = ci2 = · · · = cim−1

Denote this color by c, and consider the m vertices

xi1 , xi2 , · · · , xim−1 , xim−1+1
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To see why we have listed m vertices but only m− 1 colors, picture the fol-
lowing scenario: You are building a fence row, and you want (say) 7 sections
of fence. To do that, you need 8 fence posts to hold it up. Now think of the
fence posts as vertices, and the sections of fence as edges between successive
vertices, and recall that every edge has a color associated with it.

Claim: The m vertices listed above form a monochromatic Km.
Proof of Claim:

First, consider vertex xi1 . The vertices

xi2 , . . . , xim−1 , xim−1+1

are elements of Vi1 , hence the edges

{xi1 , xi2}, . . . {xi1 , xim−1}, {xi1 , xim−1+1}

are colored with ci1 (= c).
Then consider each of the remaining vertices in turn, starting with ver-

tex xi2 . For example, the vertices

xi3 , . . . , xim−1 , xim−1+1

are elements of Vi2 , hence the edges

{xi2 , xi3}, . . . {xi2 , xim−1}, {xi2 , xim−1+1}

are colored with ci2 (= c).
End of Proof of Claim

5 Proof of the Infinite Ramsey Theorem

We now consider infinite graphs.

Notation 5.1 KN is the graph (V, E) where

V = N
E = {{x, y} | x, y ∈ N}
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Def 5.2 Let G = (V, E) be a graph with V = N, and let COL be a coloring
of the edges of G. A set of edges of G is monochromatic if they are all the
same color (this is the same as for a finite graph).

G has a monochromatic KN if there is an infinite set V ′ of vertices (in V )
such that

• there is an edge between every pair of vertices in V ′

• all the edges between vertices in V ′ are the same color

Theorem 5.3 Every 2-coloring of the edges of KN has a monochromatic KN.

Proof:
(Note: this proof is similar to the proof of Theorem 4.1.)
Let COL be a 2-coloring of KN. We define an infinite sequence of vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has an infinite number of edges

coming out of it. Some are RED, and some are BLUE. Hence there are
an infinite number of RED edges coming out of x1, or there are an infinite
number of BLUE edges coming out of x1 (or both). Let c1 be a color such
that x1 has an infinite number of edges coming out of it that are colored c1.
Let V1 be the set of vertices v such that COL({v, x1}) = c1. Then keep
iterating this process.

We now describe it formally.

V0 = N
x1 = 1

c1 =
{

RED if |{v ∈ V0 | COL({v, x1}) = RED}| is infinite
BLUE otherwise

V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| is infinite)
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Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci =
{

RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| is infinite
BLUE otherwise

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| is infinite)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is
nonempty. We an show by induction that, for every i, Vi is infinite. Hence
the sequence

x1, x2, . . . ,

is infinite.
Consider the infinite sequence

c1, c2, . . .

Each of the colors in this sequence is either RED or BLUE. Hence there
must be an infinite sequence i1, i2, . . . such that i1 < i2 < · · · and

ci1 = ci2 = · · ·

Denote this color by c, and consider the vertices

xi1 , xi2 , · · ·

Using an argument similar to the one we used in the proof of Theorem 4.1
(to show that we had a monochromatic Km), we can show that these vertices
form a monochromatic KN.

6 Finite Ramsey from Infinite Ramsey

Picture the following scenario: Our first lecture on the Ramsey Theorem
began by proving Theorem 5.3. This is not absurd: The proof we gave of the
infinite Ramsey Theorem does not need some of the details that are needed
in the proof we gave of the finite Ramsey Theorem.

Having proved the infinite Ramsey Theorem, we then want to prove the
finite Ramsey Theorem. Can we prove the finite Ramsey Theorem from the
infinite Ramsey Theorem? Yes, we can!
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Theorem 6.1 For every m ≥ 2, R(m) exists.

Proof: Suppose, by way of contradiction, that there is some m ≥ 2 such
that R(m) does not exist. Then, for every n ≥ m, there is some way to color
Kn so that there is no monochromatic Km. Hence there exist the following:

1. COL1, a 2-coloring of Km that has no monochromatic Km

2. COL2, a 2-coloring of Km+1 that has no monochromatic Km

3. COL3, a 2-coloring of Km+2 that has no monochromatic Km

...

j. COLj, a 2-coloring of Km+j−1 that has no monochromatic Km

...

We will use these 2-colorings to form a 2-coloring COL of KN that has
no monochromatic Km.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that
every unordered pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of
the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N

COL(e1) =
{

RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite
BLUE otherwise

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}

Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,
furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,
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COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =
{

RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite
BLUE otherwise

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}

One can show by induction that, for every i, Ji is infinite. Hence this
process never stops.

Claim: If KN is 2-colored with COL, then there is no monochromatic Km.

Proof of Claim:
Suppose, by way of contradiction, that there is a monochromatic Km.

Let the edges between vertices in that monochromatic Km be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(

m
2

)
. For every j ∈ JiM , COLj and COL

agree on the colors of those edges. Choose j ∈ JiM so that all the vertices
of the monochromatic Km are elements of the vertex set of Km+j−1. Then
COLj is a 2-coloring of the edges of Km+j−1 that has a monochromatic Km,
in contradiction to the definition of COLj.
End of Proof of Claim

Hence we have produced a 2-coloring of KN that has no monochro-
matic Km. This contradicts Theorem 5.3. Therefore, our initial supposition—
that R(m) does not exist—is false.

Note that two of our proofs of the finite Ramsey Theorem (the proofs of
Theorems 3.2 and 4.1) give upper bounds on R(m), but that our proof of
the finite Ramsey Theorem from the infinite Ramsey Theorem (the proof of
Theorem 6.1) gives no upper bound on R(m).
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7 Proof of Large Ramsey Theorem

In all of the theorems presented earlier, the labels on the vertices did not
matter. In this section, the labels do matter.

Def 7.1 A finite set F ⊆ N is called large if the size of F is at least as large
as the smallest element of F .

Example 7.2

1. The set {1, 2, 10} is large: It has 3 elements, the smallest element is 1,
and 3 ≥ 1.

2. The set {5, 10, 12, 17, 20} is large: It has 5 elements, the smallest ele-
ment is 5, and 5 ≥ 5.

3. The set {20, 30, 40, 50, 60, 70, 80, 90, 100} is not large: It has 9 elements,
the smallest element is 20, and 9 < 20.

4. The set {5, 30, 40, 50, 60, 70, 80, 90, 100} is large: It has 9 elements, the
smallest element is 5, and 9 ≥ 5.

5. The set {101, . . . , 190} is not large: It has 90 elements, the smallest
element is 101, and 90 < 101.

We will be considering monochromatic Km’s where the underlying set of
vertices is a large set. We need a definition to identify the underlying set.

Def 7.3 Let COL be a 2-coloring of Kn. A set A of vertices is homogeneous if
there exists a color c such that, for all x, y ∈ A with x 6= y, COL({x, y}) = c.
In other words, all of the edges between elements of A are the same color.
One could also say that there is a monochromatic K|A|.

Let COL be a 2-coloring of Kn. Recall that the vertex set of Kn is
{1, 2, . . . , n}. Consider the set {1, 2}. It is clearly both homogeneous and
large (using our definition of large). Hence the statement

“for every n ≥ 2, every 2-coloring of Kn has a large homogeneous set”

14



is true but trivial.
What if we used V = {m, m + 1, . . . ,m + n} as our vertex set? Then a

large homogeneous set would have to have size at least m.

Notation 7.4 Km
n is the graph with vertex set {m, m + 1, . . . ,m + n} and

edge set consisting of all unordered pairs of vertices. The superscript (m)
indicates that we are labeling our vertices starting with m, and the sub-
script (n) is one less than the number of vertices.

Note 7.5 The vertex set of Km
n (namely, {m, m + 1, . . . ,m + n}) has n +

1 elements. Hence if Km
n has a large homogeneous set, then n + 1 ≥ m

(equivalently, n ≥ m − 1). We could have chosen to use Km
n to denote the

graph with vertex set {m+1, . . . ,m+n}, so that the smallest vertex is m+1
and the number of vertices is n, but the set we have designated as Km

n will
better serve our purposes.

Notation 7.6 LR(m) is the least n, if it exists, such that every 2-coloring
of Km

n has a large homogeneous set.

We first prove a theorem about infinite graphs and large homogeneous
sets.

Theorem 7.7 If COL is any 2-coloring of KN, then, for every m ≥ 2, there
is a large homogeneous set whose smallest element is at least as large as m.

Proof: Let COL be any 2-coloring of KN. By Theorem 5.3, there exist
an infinite set of vertices,

v1 < v2 < v3 < · · · ,

and a color c such that, for all i, j, COL({vi, vj}) = c. (This could be called
an infinite homogeneous set.) Let i be such that vi ≥ m. The set

{vi, . . . , vi+vi−1}

is a homogeneous set that contains vi elements and whose smallest element
is vi. Since vi ≥ vi, it is a large set; hence it is a large homogeneous set.
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Theorem 7.8 For every m ≥ 2, LR(m) exists.

Proof: This proof is similar to our proof of the finite Ramsey Theorem
from the infinite Ramsey Theorem (the proof of Theorem 6.1).

Suppose, by way of contradiction, that there is some m ≥ 2 such that
LR(m) does not exist. Then, for every n ≥ m − 1, there is some way to
color Km

n so that there is no large homogeneous set. Hence there exist the
following:

1. COL1, a 2-coloring of Km
m−1 that has no large homogeneous set

2. COL2, a 2-coloring of Km
m that has no large homogeneous set

3. COL3, a 2-coloring of Km
m+1 that has no large homogeneous set

...

j. COLj, a 2-coloring of Km
m+j−2 that has no large homogeneous set

...

We will use these 2-colorings to form a 2-coloring COL of KN that has
no large homogeneous set whose smallest element is at least as large as m.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that
every unordered pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of
the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N

COL(e1) =
{

RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite
BLUE otherwise

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}

Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,
furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,
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COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =
{

RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite
BLUE otherwise

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}

One can show by induction that, for every i, Ji is infinite. Hence this
process never stops.

Claim: If KN is 2-colored with COL, then there is no large homogeneous set
whose smallest element is at least as large as m.

Proof of Claim:
Suppose, by way of contradiction, that there is a large homogeneous set

whose smallest element is at least as large as m. Without loss of generality, we
can assume that the size of the large homogeneous set is equal to its smallest
element. Let the vertices of that large homogeneous set be v1, v2, . . . vv1 ,
where m ≤ v1 < v2 < · · · < vv1 , and let the edges between those vertices be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(

v1

2

)
. For every j ∈ JiM , COLj and COL

agree on the colors of those edges. Choose j ∈ JiM so that all the vertices of
the large homogeneous set are elements of the vertex set of Km

m+j−2. Then
COLj is a 2-coloring of the edges of Km

m+j−2 that has a large homogeneous
set, in contradiction to the definition of COLj.
End of Proof of Claim

Hence we have produced a 2-coloring of KN that has no large homogeneous
set whose smallest element is at least as large as m. This contradicts Theo-
rem 7.7. Therefore, our initial supposition—that LR(m) does not exist—is
false.
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