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1 Roth’s Theorem
Notation 1.1 Let [n] ={1,...,n}. If £ € N then k-AP means an arithmetic progression of size k.

Consider the following statement:
If AC [n]and |A]|is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true and easy:
Let n > 3. If A C [n] and |A| > 0.7n then A must have a 3-AP.

Can we lower the constant 0.77 We can lower it as far as we like if we allow n to start later:
Roth [2, 4, 5] proved the following using analytic means.
(VA > 0)(3no € N)(Vn > ng) (VA C [n])[|A] > An = A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [2, 6] by a combinatorial proof.
Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi. Our proof is essen-
tially the same as in the book Ramsey Theory by Graham, Rothchild, and Spencer [2].

More is known. A summary of what else is known will be presented in the next section.

Definition 1.2 Let sz(n) be the least number such that, for all A C [n], if |A| > sz(n) then A
has a 3-AP. Note that if A C [a,a+n — 1] and |A| > sz(n) then A has a 3-AP. Note also that if
A C{a,2a,3a,...,na} and |A| > sz(n) then A has a 3-AP. More generally, if A is a subset of any
equally spaced set of size n, and |A| > sz(n), then A has a 3-AP.

We will need the following Definition and Lemma.

Definition 1.3 Let k,e,d;,...,d; € N. The cube on (e,di,...,d;), denoted C(e,dy,...,dy), is
the set {e 4+ bydy + -+ + brdy | b1, ..., by € {0,1}}. A k-cube is a cube with k d’s.

Lemma 1.4 Let I be an interval of [1,n] of length L. If |B| C I then there is a cube (e,dy, ..., d)
contained in B with k = Q(loglog |B|) and (Vi)[d; < LJ.

Proof:
The following procedure produces the desired cube.

1. Let By = B and 1 = ‘Bl‘

2. Let D1 be all (%1) positive differences of elements of B;. Since By C [n] all of the differences

are in [n]. Hence some difference must occur (521)/71 ~ B%/2n times. Let that difference be
di. Note that di < L.



3. Let By = {x € By : *+dj € By}. Note that |Bs| > 87/2n. Let |By| = 2. Note the trivial
fact that

r € By =x+d €B.

4. Let D5 be all (’322) positive differences of elements of Bs. Since By C [n] all of the differences
are in [n]. Hence some difference must occur (*321)/71 ~ B2/2n times. Let that difference be

ds. Note that dy < L.

5. Let B3 = {x € By :  + ds € By}. Note that |Bs| > 82/2n. Let |Bs| = B3. Note that
r€B3s=x+dy€eB
r€B3s=>reBy=>x+d €B
r€B3s=>x+dyeBy=x+di +dy€B

6. Keep repeating this procedure until Byo = (). (We leave the details of the definition to the
reader.) Note that if i < k4 1 then
r€e€B;=x+bidi+ -+ bj_1d;—1 € B for any bi,....b_1 € {0,1}.

7. Let e be any element of By, 1. Note that we have e+bidy +---+brdy, € B for any by,...,b €

{0,1}.

We leave it as an exercise to formally show that C(e,d1,...,dx) is contained in B and that
k= Q(loglog|Bl|). 1

We now note that the above gives a good upper bound on the Hilbert Cube Numbers.

Corollary 1.5 For k,c let H(k,c) be the least H such that for any c-coloring of {1,...,H} there
is a monochromatic k-cube. Then H(k,c) < 227"

Proof: Let H = 22" where we define A later. Let COL be a c-coloring of {1,...,H}. Some
color appears H/c = 22" times. Let B be the set of integers with that color, so |B| = 22**. By
Lemma 1.4 there is a monochromatic cube of size Q(logy(logy(|B]))) = Q(Ak). Pick A big enough
so that this term is > k. |}

The next lemma states that if A is ‘big’ and 3-free then it is somewhat uniform. There cannot
be sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to
be dense to make up for it, and it might have to be so dense that it has a 3-AP.

Lemma 1.6 Let n,ng € N; A\, \g € (0,1). Assume X < \g and (Ym > ng)[sz(m) < Agm|. Let
A C [n] be a 3-free set such that |A| > An.

1. Let a,b be such that a < b, a > ng, and n—b > ng. Then A\o(b—a) —n(ro—A) < |AN]a,b]|.

2. Let a be such that n —a > ng. Then Aopa —n(Ao — ) < |AN[L,a]|.



Proof:
1) Since A is 3-free and a > ng and n —b > ng we have |[AN[l,a — 1]| < Ao(a — 1) < Apa and
|[AN b+ 1,n]| < Ao(n —b). Hence

an < |Al= |[An[l,a—1]|+|AN]a,b]| + AN b+ 1,n]|
An < Xoa+ [AN]a,b]| + Xo(n —b)
An — Aon + Aob — Apa < |ANa, ]
Xo(b—a) —n(Ao—A) < |AN]a,b]|

2) Since A is 3-free and n — a > ng we have |[AN[a+ 1,n]| < A\g(n — a). Hence

an <|Al= ANl a]|+]AN[a+1,n]|
an < JAN[L,a]| + Xo(n—a)
An — Xon + Xa < JAN[1,a]|
Aoa — ()\0 — )\)n < |Aﬂ [1,a]|.

Lemma 1.7 Let n,ng € N and A\, \g € (0,1). Assume that A < \g and that (Ym > ng)[sz(m) <
Xom]. Assume that § > ng. Let a,L € N such that a < §, L < § —a, and a > ng. Let A C [n] be
a 3-free set such that |A| > An.

1. There is an interval I C [a, 5] of length < L such that

AN > { (Ao(g—a)—n(Ao—)\))J.

n —2a

n

2. Let o be such that 0 < a < % If a = an and /n << § — an then there is an interval
I C[a, 2] of length < O(y/n) such that

2
AnT] > {(f_@)w; (o) —a))J — ().

Proof: By Lemma 1.6 with b= %, [AN[a, 5]| > Xo(5 —a —n(Xo — ). Divide [a, 5] into [”Q_LQ“W
intervals of size < L. There must exist an interval I such that

AT |25 (a(G — ) =0l - V)|
If L =[y/n] and a = an then

|ANI|

200l —a) =l = )|
2/ (ol — am) — n(x — A)|

n(l—2a)

B old = a) = (o= 1) | = V).

AV VARV



Theorem 1.8 For all \, 0 < A < 1, there exists ng € N such that for all n > ng, sz(n) < An.

Proof:
Let S(\) be the statement

there exists ng such that, for all n > ng, sz(n) < An.

It is a trivial exercise to show that S(0.7) is true.
Let
C={NNSN}

C' is closed upwards. Since 0.7 € C' we know C # (). Assume, by way of contradiction, that
C # (0,1). Then there exists A < Ag such that A ¢ C and A9 € C. We can take Ay — A to be as
small as we like. Let ng be such that S(Xg) is true via ng. Let n > ng and let A C [n] such that
|A] > An but A is 3-free. At the end we will fix values for the parameters that (a) allow the proof
to go through, and (b) imply |A| < An, a contradiction.
PLAN : We will obtain a T C A that will help us. We will soon see what properties 7' needs to
help us. Consider the bit string in {0, 1}" that represents 7' C [n]. Say its first 30 bits looks like
this:

T(0)T(1)T(2)T(3)---T(29) = 000111111100001110010111100000

The set A lives in the blocks of 0’s of T' (henceforth 0-blocks). We will bound |A| by looking at
A on the ‘small’ and on the ‘large’ 0-blocks of T. Assume there are ¢ 1-blocks. Then there are ¢+ 1
0-blocks. We call a 0-block smallif it has < ng elements, and big otherwise. Assume there are tS™a!l
small 0-blocks and P& big 0-blocks. Note that tsmall 4 ¢hie — ¢ 4 1 go gomall ¢bie < ¢ + 1. Let the
small 0-blocks be Bi™a!, .. Bsmall Jet their union be B! et the big 0-blocks be BYe beligg,
and let their union be BP®&. It is easy to see that

‘AmBsmaH’ < tsmallno < (t—i— 1)n0.

Since each B;Oig is bigger than ny we must have, for all 7, |AN Bf’ig| < )\0|B:f’ig| (else AN B:f’ig
has a 3-AP and hence A does). It is easy to see that

¢big ¢big thig
AN B[ =" JANBYE < 37 MlBYE < Mo Y IBYE < Mo(n — |T)).
=1 =1 =1

Since A can only live in the (big and small) 0-blocks of 7" we have

[A] = [AN B™ 1 |AN BY| < (¢ + Dng + o(n — |T)).

In order to use this inequality to bound |A| we will need T to be big and ¢ to be small, so we
want 1" to be a big set that has few blocks.

If only it was that simple. Actually we can now reveal the
REAL PLAN: The real plan is similar to the easy version given above. We obtain a set T C A

and a parameter d. A 1-block is a maximal AP with difference d that is contained in 7' (that is,
if FIRST and LAST are the first and last elements of the 1-block then FIRST —d ¢ T and



LAST +d ¢ T). A 0-block is a maximal AP with difference d that is contained in T. Partition T
into 1-blocks. Assume there are ¢ of them.

Let [n] be partitioned into NOU--- U N%~1 where N; = {z |z <nAz=j (modd)}.

Fix j, 0 < j < d — 1. Consider the bit string in {0, 1}!"/4 that represents T N N; Say the first
30 bits of T'N N; look like

T()T(d+ §j)T(2d + §)T(3d + j) - - - T(29d + j) = 00011111110000111001011111100

During PLAN we had an intuitive notion of what a 0-block or 1-block was. Note that if we
restrict to IV; then that intuitive notion is still valid. For example the first block of 1’s in the above
example represents T'(3d + j), T(4d + j), T(5d + j), ..., T(9d + j) which is a 1-block as defined
formally.

Each 1-block is contained in a particular IV;. Let t; be the number of 1-blocks that are contained
in N;. Note that Z;.l;é t; = t. The number of 0-blocks that are in N; is at most t; + 1.

Let j be such that 0 < j < d — 1. By reasoning similar to that in the above PLAN we obtain

[ANN;| < (5 + L)no + Ao(Nj — |T1).
We sum both sides over all j =0 to d — 1 to obtain

[ Al < (t + d)no + do(n — |T1)

In order to use this inequality to bound |A| we need T to be big and ¢,d to be small. Hence we
want a big set T which when looked at mod d, for some small d, decomposes into a small number
of blocks.

What is a 1-block within N;? For example, lets look at d = 3 and the bits sequence for T is

3 4
11

= Ot

1 2 6 7 8 9 10 11 12 13 14 15 16 17,
00 T 0110 1 1 1 1 0 0 O
Note that T looked at on No UT has bit sequence

2 5 8 11 14 17,
011 1 1 o0

The numbers 5,8,11,14 are all in 7" and form a 1-block in the N part. Note that they also
from an arithmetic progression with spacing d = 3. Also note that this is a maximal arithmetic
progression with spacing d = 3 since 0 ¢ T" and 17 ¢ T. More generally 1-blocks of T" within N;
are mazimal arithmetic progressions with spacing d. With that in mind we can restate the kind of
set T' that we want.

We want a set T C A and a parameter d such that

1. T is big (so that Ag(n — |T'|) is small),
2. d is small (see next item), and

3. the number of maximal arithmetic progressions of length d within T, which is the parameter
t above, is small (so that (¢ + d)ng is small).



How do we obtain a big subset of A? We will obtain many pairs z,y € A such that 2y —z < n.

Note that since z,y,2y — x is a 3-AP and z,y € A we must have 2y —x € A.
Let o, 0 < a < %, be a parameter to be determined later. (For those keeping track, the
parameters to be determined later are now Ay, A, n, and «. The parameter ng depends on A so is

not included in this list.)
We want to apply Lemma 1.7.2.b to n,ng,a = an. Hence we need the following conditions.

an > ng

5 =N

Z—an >.+/n

2
an, 5]

Assuming these conditions hold, we proceed. By Lemma 1.7.b there is an interval I C |

of length O(y/n) such that
2y/n 1
ANI| > | ——— - —a)— — =Q .
[ANI| > (1-2a) ()\0(2 a) — (Ao — ) (Vn)
By Lemma 1.4 there is a cube C(e, dy, . .., dj) contained in |[ANI| with £ = Q(loglog |[ANI|) =
Q(loglog v/n) = Qloglogn) and d > /n.
For 4 such that 1 < i < k we define the following.
1. Define Cy = {e} and, for 1 < i < k, define C; = C(e, dy,...,d;).
2. T; is the third terms of AP’s with the first term in AN [1,e — 1] and the second term in C;.

Formally T; = {2m —z |z € AN[l,e — 1] Am € C;}.
Note that, for all 7, T; N A = (). Hence we look for a large T; that can be decomposed into a

small number of blocks. We will end up using d = 2d;41.
Note that Ty € 177 € T C --- C T. Hence to obtain a large T; it suffices to show that T}

is large and then any of the 7; will be large (though not necessarily consist of a small number of

blocks).
Since Cp = {e} we have
Tr={2m—-—z|zecAn[l,e—1]AmeCy} ={2e—z|zec AN[l,e—1]}.
an, 5]

Clearly there is a bijection from AN[1,e—1] to Ty, hence |Ty| = |AN[1,e—1]|. Since e € |

we have [AN[L,e]| > |[AN[L, an]|.
We want to use Lemma 1.6.2 on A N [1, an|. Hence we need the condition

n —an > ng.

By Lemma 1.6
|Tol > |AN[1, an]| > Agan —n(Ag — A) = n(Aga — (Ag — A))

In order for this to be useful we need the following condition

A=+ o >0
Aox > Ag— A



We now show that some 7; has a small number of blocks. Since |T;| < n (a rather generous
estimate) there must exist an i such that |T;41 — T;| < 7. Let t = 2 (¢ will end up bounding the
number of 1-blocks).

Partition T; into maximal AP’s with difference 2d; 1. We call these maximal AP’s 1-blocks.
We will show that there are <t 1-blocks by showing a bijection between the blocks and 7541 — T;.

If z € T; then z = 2m—x where x € AN[1,an—1] and m € C;. By the definitions of C; and Cj41
we know m + d; 1 € Ci41. Hence 2(m + d;j+1) — x € T;1. Note that 2(m + diy1) — ¢ = z + 2d;41.
In short we have

ZETZ‘=>Z+2di+1€Ti+1.

NEED PICTURE

We can now state the bijection. Let z1,..., 2z, be a block in T;. We know that z,, + 2d;+1 ¢ T;
since if it was the block would have been extended to include it. However, since z,, € T; we know
Zm +2d;+1 € Ti11. Hence zy, +2d; 11 € T;41 —T;. This is the bijection: map a block to what would
be the next element if it was extended. This is clearly a bijection. Hence the number of 1-blocks
is at most t = |Tj41 — T;| < n/k.

To recap, we have

[ Al < (t+ d)no + do(n — [T1)

with ¢t < 2 = O( ), d=0(y/n), and |T| > n(Aoa — (Ao — A)). Hence we have

_n
loglogn

|A] < O(( +v/n)ng) +nXo(1 — X+ Ao — Aoar).

loglogn
We want this to be < An. The term O(( 5165, + v/n)ng) can be ignored since for n large enough
this is less than any fraction of n. For the second term we need

)\0(1—)\+/\0—)\0a)<)\

We now gather together all of the conditions and see how to satisfy them all at the same time.

an > ng

5 =>ng

n

f—an >4/n

n—an >ng
Ao > Ag— A

(L =X+ X — Na) <A

We first choose A and \g such that \g — A < 1071)\2. This is possible by first picking an initial
(N, \j) pair and then picking (A, Ag) such that ) < A < Ao < Aj and A\g — A < 1071(\)2 < 1071 )\2.
The choice of Ao determines ng. We then chose a = 10~!. The last two conditions are satisfied:

Agex > A\g — A becomes

1071 > 10712
1 > X

which is clearly true.



Ao(1 — A4+ Ao — M) < X becomes

A(1—=107122 —1071)) < A
Ao — 107N —1071A3 < A

Ao —A—1071A3 —1071A3 <0
107102 —107IA3 — 107102 <0
—-10712% <o

which is clearly true.

Once A, \g,ng are picked, you can easily pick n large enough to make the other inequalities

hold. 1

2

What more is known?

The following is known.

Theorem 2.1 For every A > 0 there exists ng such that for all n > ng, sz(n) < An.

This has been improved by Heath-Brown [3] and Szemeredi [8]

Theorem 2.2 There exists ¢ such that sz(n) = Q(n%) (Szemeredi estimates ¢ < 1/20).

log n)°

Bourgain [1] improved this further to obtain the following.

Theorem 2.3 sz(n) = QW\/@)
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