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1 Roth’s Theorem

Notation 1.1 Let [n] = {1, . . . , n}. If k ∈ N then k-AP means an arithmetic progression of size k.

Consider the following statement:
If A ⊆ [n] and |A| is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true and easy:
Let n ≥ 3. If A ⊆ [n] and |A| ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we allow n to start later:
Roth [2, 4, 5] proved the following using analytic means.

(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[|A| ≥ λn⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [2, 6] by a combinatorial proof.
Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi. Our proof is essen-
tially the same as in the book Ramsey Theory by Graham, Rothchild, and Spencer [2].

More is known. A summary of what else is known will be presented in the next section.

Definition 1.2 Let sz(n) be the least number such that, for all A ⊆ [n], if |A| ≥ sz(n) then A
has a 3-AP. Note that if A ⊆ [a, a + n − 1] and |A| ≥ sz(n) then A has a 3-AP. Note also that if
A ⊆ {a, 2a, 3a, . . . , na} and |A| ≥ sz(n) then A has a 3-AP. More generally, if A is a subset of any
equally spaced set of size n, and |A| ≥ sz(n), then A has a 3-AP.

We will need the following Definition and Lemma.

Definition 1.3 Let k, e, d1, . . . , dk ∈ N. The cube on (e, d1, . . . , dk), denoted C(e, d1, . . . , dk), is
the set {e+ b1d1 + · · ·+ bkdk | b1, . . . , bk ∈ {0, 1}}. A k-cube is a cube with k d’s.

Lemma 1.4 Let I be an interval of [1, n] of length L. If |B| ⊆ I then there is a cube (e, d1, . . . , dk)
contained in B with k = Ω(log log |B|) and (∀i)[di ≤ L].

Proof:
The following procedure produces the desired cube.

1. Let B1 = B and β1 = |B1|.

2. Let D1 be all
(β1
2

)
positive differences of elements of B1. Since B1 ⊆ [n] all of the differences

are in [n]. Hence some difference must occur
(β1
2

)
/n ∼ β21/2n times. Let that difference be

d1. Note that d1 ≤ L.
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3. Let B2 = {x ∈ B1 : x + d1 ∈ B1}. Note that |B2| ≥ β21/2n. Let |B2| = β2. Note the trivial
fact that

x ∈ B1 ⇒ x+ d1 ∈ B.

4. Let D2 be all
(β2
2

)
positive differences of elements of B2. Since B2 ⊆ [n] all of the differences

are in [n]. Hence some difference must occur
(β1
2

)
/n ∼ β22/2n times. Let that difference be

d2. Note that d2 ≤ L.

5. Let B3 = {x ∈ B2 : x+ d2 ∈ B2}. Note that |B3| ≥ β22/2n. Let |B3| = β3. Note that

x ∈ B3 ⇒ x+ d2 ∈ B
x ∈ B3 ⇒ x ∈ B2 ⇒ x+ d1 ∈ B
x ∈ B3 ⇒ x+ d2 ∈ B2 ⇒ x+ d1 + d2 ∈ B

6. Keep repeating this procedure until Bk+2 = ∅. (We leave the details of the definition to the
reader.) Note that if i ≤ k + 1 then

x ∈ Bi ⇒ x+ b1d1 + · · ·+ bi−1di−1 ∈ B for any b1, . . . , bi−1 ∈ {0, 1}.

7. Let e be any element of Bk+1. Note that we have e+b1d1 + · · ·+bkdk ∈ B for any b1, . . . , bk ∈
{0, 1}.

We leave it as an exercise to formally show that C(e, d1, . . . , dk) is contained in B and that
k = Ω(log log |B|).

We now note that the above gives a good upper bound on the Hilbert Cube Numbers.

Corollary 1.5 For k, c let H(k, c) be the least H such that for any c-coloring of {1, . . . ,H} there
is a monochromatic k-cube. Then H(k, c) ≤ c22O(k)

.

Proof: Let H = c22
Ak

where we define A later. Let COL be a c-coloring of {1, . . . ,H}. Some

color appears H/c = 22
Ak

times. Let B be the set of integers with that color, so |B| = 22
Ak

. By
Lemma 1.4 there is a monochromatic cube of size Ω(log2(log2(|B|))) = Ω(Ak). Pick A big enough
so that this term is ≥ k.

The next lemma states that if A is ‘big’ and 3-free then it is somewhat uniform. There cannot
be sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to
be dense to make up for it, and it might have to be so dense that it has a 3-AP.

Lemma 1.6 Let n, n0 ∈ N;λ, λ0 ∈ (0, 1). Assume λ < λ0 and (∀m ≥ n0)[sz(m) ≤ λ0m]. Let
A ⊆ [n] be a 3-free set such that |A| ≥ λn.

1. Let a, b be such that a < b, a > n0, and n− b > n0. Then λ0(b− a)− n(λ0 − λ) ≤ |A∩ [a, b]|.

2. Let a be such that n− a > n0. Then λ0a− n(λ0 − λ) ≤ |A ∩ [1, a]|.
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Proof:

1) Since A is 3-free and a ≥ n0 and n − b ≥ n0 we have |A ∩ [1, a − 1]| < λ0(a − 1) < λ0a and
|A ∩ [b+ 1, n]| < λ0(n− b). Hence

λn ≤ |A| = |A ∩ [1, a− 1]|+ |A ∩ [a, b]|+ |A ∩ [b+ 1, n]|
λn ≤ λ0a+ |A ∩ [a, b]|+ λ0(n− b)

λn− λ0n+ λ0b− λ0a ≤ |A ∩ [a, b]|
λ0(b− a)− n(λ0 − λ) ≤ |A ∩ [a, b]|.

2) Since A is 3-free and n− a > n0 we have |A ∩ [a+ 1, n]| ≤ λ0(n− a). Hence

λn ≤ |A| = |A ∩ [1, a]|+ |A ∩ [a+ 1, n]|
λn ≤ |A ∩ [1, a]|+ λ0(n− a)

λn− λ0n+ λ0a ≤ |A ∩ [1, a]|
λ0a− (λ0 − λ)n ≤ |A ∩ [1, a]|.

Lemma 1.7 Let n, n0 ∈ N and λ, λ0 ∈ (0, 1). Assume that λ < λ0 and that (∀m ≥ n0)[sz(m) ≤
λ0m]. Assume that n

2 ≥ n0. Let a, L ∈ N such that a ≤ n
2 , L <

n
2 − a, and a ≥ n0. Let A ⊆ [n] be

a 3-free set such that |A| ≥ λn.

1. There is an interval I ⊆ [a, n2 ] of length ≤ L such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

2. Let α be such that 0 < α < 1
2 . If a = αn and

√
n << n

2 − αn then there is an interval
I ⊆ [a, n2 ] of length ≤ O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− (λ0 − λ)− α))

⌋
= Ω(

√
n).

Proof: By Lemma 1.6 with b = n
2 , |A∩ [a, n2 ]| ≥ λ0(n2 − a−n(λ0− λ). Divide [a, n2 ] into

⌈
n−2a
2L

⌉
intervals of size ≤ L. There must exist an interval I such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

If L = d
√
ne and a = αn then

|A ∩ I| ≥
⌊

2L
n−2a(λ0(

n
2 − a)− n(λ0 − λ))

⌋
≥
⌊

2
√
n

n(1−2α)(λ0(
n
2 − αn)− n(λ0 − λ)))

⌋
≥
⌊

2
√
n

(1−2α)(λ0(
1
2 − α)− (λ0 − λ))

⌋
= Ω(

√
n).
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Theorem 1.8 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ | S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of contradiction, that
C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C and λ0 ∈ C. We can take λ0 − λ to be as
small as we like. Let n0 be such that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that
|A| ≥ λn but A is 3-free. At the end we will fix values for the parameters that (a) allow the proof
to go through, and (b) imply |A| < λn, a contradiction.

PLAN : We will obtain a T ⊆ A that will help us. We will soon see what properties T needs to
help us. Consider the bit string in {0, 1}n that represents T ⊆ [n]. Say its first 30 bits looks like
this:

T (0)T (1)T (2)T (3) · · ·T (29) = 000111111100001110010111100000

The set A lives in the blocks of 0’s of T (henceforth 0-blocks). We will bound |A| by looking at
A on the ‘small’ and on the ‘large’ 0-blocks of T . Assume there are t 1-blocks. Then there are t+ 1
0-blocks. We call a 0-block small if it has < n0 elements, and big otherwise. Assume there are tsmall

small 0-blocks and tbig big 0-blocks. Note that tsmall + tbig = t + 1 so tsmall, tbig ≤ t + 1. Let the
small 0-blocks be Bsmall

1 , . . . , Bsmall
tsmall , let their union be Bsmall, let the big 0-blocks be Bbig

1 , . . . , Bbig
tbig

,

and let their union be Bbig. It is easy to see that

|A ∩Bsmall| ≤ tsmalln0 ≤ (t+ 1)n0.

Since each Bbig
i is bigger than n0 we must have, for all i, |A ∩ Bbig

i | < λ0|Bbig
i | (else A ∩ Bbig

i

has a 3-AP and hence A does). It is easy to see that

|A ∩Bbig| =
tbig∑
i=1

|A ∩Bbig
i | ≤

tbig∑
i=1

λ0|Bbig
i | ≤ λ0

tbig∑
i=1

|Bbig
i | ≤ λ0(n− |T |).

Since A can only live in the (big and small) 0-blocks of T we have

|A| = |A ∩Bsmall|+ |A ∩Bbig| ≤ (t+ 1)n0 + λ0(n− |T |).

In order to use this inequality to bound |A| we will need T to be big and t to be small, so we
want T to be a big set that has few blocks.

If only it was that simple. Actually we can now reveal the

REAL PLAN: The real plan is similar to the easy version given above. We obtain a set T ⊆ A
and a parameter d. A 1-block is a maximal AP with difference d that is contained in T (that is,
if FIRST and LAST are the first and last elements of the 1-block then FIRST − d /∈ T and
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LAST + d /∈ T ). A 0-block is a maximal AP with difference d that is contained in T . Partition T
into 1-blocks. Assume there are t of them.

Let [n] be partitioned into N0 ∪ · · · ∪Nd−1 where Nj = {x | x ≤ n ∧ x ≡ j (mod d)}.
Fix j, 0 ≤ j ≤ d− 1. Consider the bit string in {0, 1}bn/dc that represents T ∩Nj Say the first

30 bits of T ∩Nj look like

T (j)T (d+ j)T (2d+ j)T (3d+ j) · · ·T (29d+ j) = 00011111110000111001011111100

During PLAN we had an intuitive notion of what a 0-block or 1-block was. Note that if we
restrict to Nj then that intuitive notion is still valid. For example the first block of 1’s in the above
example represents T (3d + j), T (4d + j), T (5d + j), . . ., T (9d + j) which is a 1-block as defined
formally.

Each 1-block is contained in a particular Nj . Let tj be the number of 1-blocks that are contained
in Nj . Note that

∑d−1
j=0 tj = t. The number of 0-blocks that are in Nj is at most tj + 1.

Let j be such that 0 ≤ j ≤ d− 1. By reasoning similar to that in the above PLAN we obtain

|A ∩Nj | ≤ (tj + 1)n0 + λ0(Nj − |T |).

We sum both sides over all j = 0 to d− 1 to obtain

|A| ≤ (t+ d)n0 + λ0(n− |T |)

In order to use this inequality to bound |A| we need T to be big and t, d to be small. Hence we
want a big set T which when looked at mod d, for some small d, decomposes into a small number
of blocks.

What is a 1-block within Nj? For example, lets look at d = 3 and the bits sequence for T is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17;
0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0.

Note that T looked at on N2 ∪ T has bit sequence

2 5 8 11 14 17;
0 1 1 1 1 0.

The numbers 5, 8, 11, 14 are all in T and form a 1-block in the N2 part. Note that they also
from an arithmetic progression with spacing d = 3. Also note that this is a maximal arithmetic
progression with spacing d = 3 since 0 /∈ T and 17 /∈ T . More generally 1-blocks of T within Nj

are maximal arithmetic progressions with spacing d. With that in mind we can restate the kind of
set T that we want.

We want a set T ⊆ A and a parameter d such that

1. T is big (so that λ0(n− |T |) is small),

2. d is small (see next item), and

3. the number of maximal arithmetic progressions of length d within T , which is the parameter
t above, is small (so that (t+ d)n0 is small).
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How do we obtain a big subset of A? We will obtain many pairs x, y ∈ A such that 2y− x ≤ n.
Note that since x, y, 2y − x is a 3-AP and x, y ∈ A we must have 2y − x ∈ A.

Let α, 0 < α < 1
2 , be a parameter to be determined later. (For those keeping track, the

parameters to be determined later are now λ0, λ, n, and α. The parameter n0 depends on λ0 so is
not included in this list.)

We want to apply Lemma 1.7.2.b to n, n0, a = αn. Hence we need the following conditions.

αn ≥ n0
n
2 ≥ n0

n
2 − αn ≥

√
n

Assuming these conditions hold, we proceed. By Lemma 1.7.b there is an interval I ⊆ [αn, n2 ]
of length O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).

By Lemma 1.4 there is a cube C(e, d1, . . . , dk) contained in |A∩ I| with k = Ω(log log |A∩ I|) =
Ω(log log

√
n) = Ω(log log n) and d ≥

√
n.

For i such that 1 ≤ i ≤ k we define the following.

1. Define C0 = {e} and, for 1 ≤ i ≤ k, define Ci = C(e, d1, . . . , di).

2. Ti is the third terms of AP’s with the first term in A ∩ [1, e− 1] and the second term in Ci.
Formally Ti = {2m− x | x ∈ A ∩ [1, e− 1] ∧m ∈ Ci}.

Note that, for all i, Ti ∩ A = ∅. Hence we look for a large Ti that can be decomposed into a
small number of blocks. We will end up using d = 2di+1.

Note that T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tk. Hence to obtain a large Ti it suffices to show that T0
is large and then any of the Ti will be large (though not necessarily consist of a small number of
blocks).

Since C0 = {e} we have
T0 = {2m− x | x ∈ A ∩ [1, e− 1] ∧m ∈ C0} = {2e− x | x ∈ A ∩ [1, e− 1]}.
Clearly there is a bijection from A∩ [1, e−1] to T0, hence |T0| = |A∩ [1, e−1]|. Since e ∈ [αn, n2 ]

we have |A ∩ [1, e]| ≥ |A ∩ [1, αn]|.
We want to use Lemma 1.6.2 on A ∩ [1, αn]. Hence we need the condition

n− αn ≥ n0.

By Lemma 1.6

|T0| ≥ |A ∩ [1, αn]| ≥ λ0αn− n(λ0 − λ) = n(λ0α− (λ0 − λ)).

In order for this to be useful we need the following condition

λ− λ0 + λ0α > 0
λ0α > λ0 − λ
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We now show that some Ti has a small number of blocks. Since |Tk| ≤ n (a rather generous
estimate) there must exist an i such that |Ti+1 − Ti| ≤ n

k . Let t = n
k (t will end up bounding the

number of 1-blocks).
Partition Ti into maximal AP’s with difference 2di+1. We call these maximal AP’s 1-blocks.

We will show that there are ≤ t 1-blocks by showing a bijection between the blocks and Ti+1 − Ti.
If z ∈ Ti then z = 2m−x where x ∈ A∩[1, αn−1] and m ∈ Ci. By the definitions of Ci and Ci+1

we know m+ di+1 ∈ Ci+1. Hence 2(m+ di+1)− x ∈ Ti+1. Note that 2(m+ di+1)− x = z + 2di+1.
In short we have

z ∈ Ti ⇒ z + 2di+1 ∈ Ti+1.

NEED PICTURE
We can now state the bijection. Let z1, . . . , zm be a block in Ti. We know that zm + 2di+1 /∈ Ti

since if it was the block would have been extended to include it. However, since zm ∈ Ti we know
zm+ 2di+1 ∈ Ti+1. Hence zm+ 2di+1 ∈ Ti+1−Ti. This is the bijection: map a block to what would
be the next element if it was extended. This is clearly a bijection. Hence the number of 1-blocks
is at most t = |Ti+1 − Ti| ≤ n/k.

To recap, we have

|A| ≤ (t+ d)n0 + λ0(n− |T |)

with t ≤ n
k = O( n

log logn), d = O(
√
n), and |T | ≥ n(λ0α− (λ0 − λ)). Hence we have

|A| ≤ O((
n

log logn
+
√
n)n0) + nλ0(1− λ+ λ0 − λ0α).

We want this to be < λn. The term O(( n
log logn +

√
n)n0) can be ignored since for n large enough

this is less than any fraction of n. For the second term we need

λ0(1− λ+ λ0 − λ0α) < λ

We now gather together all of the conditions and see how to satisfy them all at the same time.

αn ≥ n0
n
2 ≥ n0

n
2 − αn ≥

√
n

n− αn ≥ n0
λ0α > λ0 − λ

λ0(1− λ+ λ0 − λ0α) < λ

We first choose λ and λ0 such that λ0 − λ < 10−1λ20. This is possible by first picking an initial
(λ′, λ′0) pair and then picking (λ, λ0) such that λ′ < λ < λ0 < λ′0 and λ0−λ < 10−1(λ′)2 < 10−1λ20.
The choice of λ0 determines n0. We then chose α = 10−1. The last two conditions are satisfied:

λ0α > λ0 − λ becomes

10−1λ0 > 10−1λ20
1 > λ0

which is clearly true.
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λ0(1− λ+ λ0 − λ0α) < λ becomes

λ0(1− 10−1λ20 − 10−1λ0) < λ
λ0 − 10−1λ30 − 10−1λ20 < λ

λ0 − λ− 10−1λ30 − 10−1λ20 < 0
10−1λ20 − 10−1λ30 − 10−1λ20 < 0

−10−1λ30 < 0

which is clearly true.
Once λ, λ0, n0 are picked, you can easily pick n large enough to make the other inequalities

hold.

2 What more is known?

The following is known.

Theorem 2.1 For every λ > 0 there exists n0 such that for all n ≥ n0, sz(n) ≤ λn.

This has been improved by Heath-Brown [3] and Szemeredi [8]

Theorem 2.2 There exists c such that sz(n) = Ω(n 1
(logn)c ). (Szemeredi estimates c ≤ 1/20).

Bourgain [1] improved this further to obtain the following.

Theorem 2.3 sz(n) = Ω(n
√

log logn
logn ).
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[8] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Sci. Hung.,
56:155–158, 1990. http://www.cs.umd.edu/~gasarch/vdw/szlog.pdf.

9


