
2922 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

Dual RSA and Its Security Analysis

Hung-Min Sun, Mu-En Wu, Wei-Chi Ting, and M. Jason Hinek

Abstract—We present new variants of an RSA whose key generation al-
gorithms output two distinct RSA key pairs having the same public and
private exponents. This family of variants, called Dual RSA, can be used in
scenarios that require two instances of RSA with the advantage of reducing
the storage requirements for the keys. Two applications for Dual RSA, blind
signatures and authentication/secrecy, are proposed. In addition, we also
provide the security analysis of Dual RSA. Compared to normal RSA, the
security boundary should be raised when applying Dual RSA to the types
of Small-d, Small-e, and Rebalanced-RSA.

Index Terms—Cryptography, encryption, lattice basis reduction, LLL al-
gorithm, rebalanced RSA, RSA, twin RSA.

I. INTRODUCTION

Since the mid-1970s, when public-key cryptography was first devel-
oped, the RSA Cryptosystem [33] has become the most popular cryp-
tosystem in the world. Based on the believed difficulty of computing
eth roots modulo N , where N is the product of two large unknown
primes, it is widely believed to be secure for large enough N . Since
RSA can also be broken by factoring N , the security of RSA is often
based on the integer factorization problem, which is and continues to be
a well-studied problem. Currently, it is suggested that the bitlength of
N should be at least 1024 for RSA to be considered secure. Using the
best known factoring algorithms, the expected workload of factoring a
1024-bit modulus is 280 which is currently believed to be infeasible.
A workload of 280 is the current cryptographic benchmark used for
security.

One of the reasons that RSA is so popular is its simplicity. Both
encryption and decryption require only one modular exponentiation.
However, computing an exponentiation modulo N is very costly be-
cause the RSA modulus is much larger than other moduli of public
key cryptosystems such as those based on elliptic curves. The other
main disadvantage of using RSA is the size of the key pairs. For ex-
ample, to offer the same level of security as a given symmetric key
cryptosystem, the RSA keysize must be much larger than that of el-
liptic curve based cryptosystems. In addition, as the security level is
increased the RSA keysize grows at a much faster rate than the keys
in an elliptic curve cryptosystem. For a detailed discussion about key-
sizes, see Lenstra [25].

In order to overcome these drawbacks, many researchers have
studied variants of RSA which either reduce the computational costs
[8], [19], [31], [37], [36], [38], [39], or reduce the (key) storage
requirements [24], [26], [41].

In this work, we are interested in reducing the (key) storage require-
ment of RSA. In particular, we focus on the situation of using two RSA

Manuscript received September 28, 2006; revised January 15, 2007. This
work was supported in part by the National Science Council, Taiwan, under
Contract NSC 95-2221-E-007-030.

H.-M. Sun, M.-E. Wu, and W.-C. Ting are with the Department of Com-
puter Science, National Tsing Hua University, Hsinchu, Taiwan 300 (e-mail:
hmsun@cs.nthu.edu.tw; mn@is.cs.nthu.edu.tw; sd@is.cs.nthu.edu.tw).

M. J. Hinek was with the David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: mjhinek@
alumni.uwaterloo.ca).

Communicated by E. Okamoto, Associate Editor for Complexity and Cryp-
tography.

Color version of Figure 1 is available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2007.901248

systems simultaneously. To this end, we introduce a variant of RSA,
called Dual RSA, which consists of two distinct instances RSA that
have the same public and private exponents. The memory needed to
store both keys in Dual RSA is thus reduced since there is no need to
store the same public/private exponent twice. Another variant of RSA
that can be used to reduce the (key) storage requirement when two RSA
systems are used is Twin RSA [26], proposed by Lenstra and de Weger.

The remainder of this work is organized as follows. In Section II , we
review the RSA and some of its variants. In Section III, we present key
generation algorithms for three variants of Dual RSA. In Section IV,
we discuss two scenarios in which Dual RSA can be used. In Section V,
we consider the security of Dual RSA. Finally, we end with Section VI,
where we make some concluding remarks and comment on some open
questions.

II. RSA AND ITS VARIANTS

In this section, we review the RSA cryptosystem, as originally pre-
sented, and some of its variants. For a survey on fast variants of RSA see
Boneh and Shacham [8] and Sun et al. [36]. In this work, we are mainly
concerned with three variants: RSA-Small-e, RSA-Small-d, and Gen-
eralized Rebalanced-RSA.

We also mention Twin RSA, another variant of RSA that allows for
reduced (key) storage when two instances of RSA are required.

A. Original RSA and Small Exponent RSA

The original RSA cryptosystem [33] consists of three algorithms:
key generation, encryption, and decryption. Below, we describe each
algorithm from the original description of RSA, sometimes called the
textbook or simplified version of RSA, and then discuss some simple
variants of the original presentation. In practice, an appropriate padding
scheme, such as OAEP [2], is required to ensure the security of the
cryptosystem.
Key Generation: Let N = pq be the product of two randomly chosen
large prime numbers p and q that are distinct. Let e be a randomly
chosen integer that is relatively prime to '(N) = (p � 1)(q � 1),
where '(�) is Euler’s phi function, and let d be its multiplicative in-
verse modulo '(N) (i.e., ed � 1 (mod '(N))). The pair (e;N) is
the public key and the pair (d;N) is the private key.
Encryption: A plaintext message M 2 N is encrypted by raising it
to the eth power modulo N . The result, C = M e mod N 2 N , is
called the ciphertext of M . All of the different variants of RSA in this
correspondence use this method for encryption.
Decryption: A ciphertext C 2 N , for a given plaintext message
M 2 N , is decrypted by raising it to the dth power modulo N . From
Lagrange’s theorem, it follows that

C
d mod N =M

ed mod N =M mod N =M:

The integerN is called the RSA modulus or simply the modulus. The
integer e is called the public (or encryption) exponent and the integer
d is called the private (or decryption) exponent. When computed in the
manner described above, the private exponent d will, with high proba-
bility, be roughly the same order of magnitude as'(N). The public and
private exponents are defined so that ed � 1 (mod '(N)). We call
this the RSA key relation, or simply the key relation. From the key re-
lation, it follows that there exists a unique positive integer k satisfying

ed = 1 + k'(N): (1)

We call this the RSA key equation or simply the key equation.

0018-9448/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2923

The main computational costs of RSA are the modular exponenti-
ations found in the encryption and decryption operations. For a fixed
modulus size a simple method to decrease these operations is to use
small exponents. We consider RSA with one of the public or private
exponents chosen significantly smaller than '(N) to be a fast variant
of RSA.
RSA-Small-e: When the public exponent is much smaller than '(N)
the encryption costs can be significantly reduced. The key generation
algorithm can be trivially modified to generate instances of RSA with
a public key of a specified size; the only change is to let e be a random
integer of specified size satisfying gcd((p� 1)(q� 1); e) = 1. Rather
than wanting a random public exponent with a specific size it is often
convenient to use a fixed value for the public exponent such as e = 3
or e = 216+1. Using public exponents this small is very desirable as it
reduces encryption to only a few modular multiplications. However, in
this case the key generation algorithm must be altered so that it is guar-
anteed to terminate. The following modification achieves this: given a
specified public exponent e, letN = pq be the product of two randomly
chosen large distinct primes p and q such that gcd((p�1)(q�1); e) =
1. The private exponent d is then computed using p, q and e in the same
way.

The security of RSA-Small-e under various threat assumptions is
considered by Coppersmith et al. [12], Coppersmith [11], and Boneh
et al. [7]. When used properly (i.e., using a proper padding scheme,
protecting the private key from side channel attacks, not sending re-
lated messages, etc.), RSA-Small-e is considered to be safe for public
exponents as small as e = 3. The public key e = 216 + 1 is the most
popular choice in practice though.

Since the private exponent d in RSA-Small-e is always computed
as the inverse of e modulo '(N), it is expected with high probability
that d will be the same size as '(N). So, while the encryption costs
are reduced in this variant, the decryption costs remain the same as for
original RSA.
RSA-Small-d: When the private exponent is much smaller than '(N)
the decryption costs can be significantly reduced. Generating instances
of RSA with a small private exponent is easy with the observation
that the key relation (and equation) are symmetric with respect to the
public and private exponent. To generate an instance of Small-RSA-d
we simply follow the same key generation for RSA-Small-e and ex-
change the public and private exponents (i.e., swap the values of e
and d).

Unlike the small public exponent scenario RSA-Small-e, it is not
safe to use very small private exponents. In particular, Boneh and
Durfee [6] have shown that any private exponent d < N0:292 should
be considered unsafe.

Since the public exponent e in RSA-Small-d is always computed as
the inverse of d modulo '(N), it is expected with high probability that
e will be the same size as '(N). Thus, in this variant the decryption
costs are reduced while the encryption costs remain the same as for
original RSA.

In each of the small exponent variants above one of the exponents is
much smaller than '(N) while the other is, with high probability, the
same size as '(N). Thus, either the encryption costs or the decryption
costs, but not both, can be decreased. The choice of which variant to
employ then depends on which operation cost (encryption or decryp-
tion) needs to be decreased. It is also possible to generate instances of
RSA in which both the public and private exponents are much smaller
than '(N). For more information see Sun and Yang [38].

B. CRT-Decryption

In practice, the RSA decryption computations are performed in p

and q and then combined via the Chinese Remainder Theorem (CRT)
to obtain the desired solution in N , instead of directly computing the

exponentiation in N . This decreases the computational costs of de-
cryption in two ways. First, computations in p and q are more effi-
cient than the same computations in N since the elements are much
smaller. Second, from Lagrange’s Theorem, we can replace the private
exponent d with dp = d mod (p � 1) for the computation in p and
with dq = d mod (q � 1) for the computation in q , which reduce
the cost for each exponentiation when d is larger than the primes. It is
common to refer to dp and dq as the CRT-exponents. The first method
to use the CRT for decryption was proposed by Quisquater and Cou-
vreur [32].

Since the method requires knowledge of p and q, the key generation
algorithm needs to be modified to output the private key (d; p; q) in-
stead of (d;N). Given the private key (d; p; q) and a valid ciphertext
C 2 N , the CRT-decryption algorithm is as follows:

1) Compute Cp = Cd mod p.
2) Compute Cq = Cd mod q.
3) Compute M0 = (Cq � Cp) � p

�1 mod q.
4) Compute the plaintext M = Cp +M0 � p.
This version of CRT-decryption is simply Garner’s Algorithm

for the Chinese Remainder Theorem applied to RSA. If the key
generation algorithm is further modified to output the private key
(dp; dq; p; q; p

�1 mod q), the computational cost of CRT-decryption
is dominated by the modular exponentiations in steps 1) and 2) of the
algorithm. When the primes p and q are roughly the same size (i.e.,
half the size of the modulus), the computational cost for decryption
using CRT-decryption (without parallelism) is theoretically 1=4 the
cost for decryption using the original method.

Using RSA-Small-e along with CRT-decryption allows for ex-
tremely fast encryption and decryption that is at most four times faster
than standard RSA.

C. Rebalanced-RSA

In some situations it is desirable to reduce decryption costs as much
as possible (see, for example, [8, Sec. 4]. Rebalanced-RSA is a variant,
proposed by Wiener [44], that accomplishes this by shifting the cost of
decryption to encryption. Essentially, one chooses a private exponent
d so that the CRT-exponents, dp and dq, are small.

The following key generation algorithm, taken from [8], will com-
pute an instance of Rebalanced-RSA with an n-bit modulus and `-bit
CRT-exponents:

1) Randomly select two distinct (n=2)-bit primes p = 2p1 + 1 and
q = 2q1 + 1 such that gcd(p1; q1) = 1. Let N = pq.

2) Randomly select two `-bit integers dp and dq such that
gcd(dp; p � 1) = 1; gcd(q � 1; dq) = 1 and dp � dq
(mod 2).

3) Compute d such that d � dp (mod (p � 1)) and d � dq
(mod (q � 1)).

a) Let a = dp mod 2 = dq mod 2.
b) Using the CRT, compute d0 such that d0 �

d �a

2

(mod (p�1

2
)) and d0 � d �a

2
(mod (q�1

2
)).

c) Let d = 2d0 + a.
4) Compute e = d�1 mod '(N)

The public key is (e;N) and the private key is (dp; dq; p; q). The re-
quirement that dp � dq (mod 2) in step 2) is necessary to allow the
determination of d in step 3. The structure of d (from step 3) implies
that there exist positive integers kp and kq such that

edp = 1 + kp(p� 1)

edq = 1 + kq(q� 1): (2)

We call these equations the RSA-CRT equations.
Since the public exponent e is computed as the inverse of d modulo

'(N), it is expected that the e will have roughly the the same order

2924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

of magnitude as '(N). Thus, the decryption costs have been lowered
at the expense of maximizing the encryption costs (i.e., the encryption
costs are the same as original RSA). While the CRT-exponents can be
chosen smaller thanN0:292 (the limit for RSA-Small-d), they cannot be
chosen arbitrarily small. Notice that the knowledge of one CRT-expo-
nent allows to factor N in probabilistic polynomial time by computing
gcd(med �m;N) for randomm [5]. Thus Baby-Step Giant-Step pro-
posed by Qiao and Lam [31] can be applied to factor N and the attack
requires the complexity O(minf dp; dqg). For a workload of 280

steps, which is essentially the work required to factor a 1024-bit RSA
modulus with NFS, the CRT-exponents should each be at least 160 bits.

D. Generalized Rebalanced-RSA

New key generation algorithms for Rebalanced-RSA, independently
proposed by Galbraith et al. [14] and Sun and Wu [37], allow for
instances of Rebalanced-RSA with small public exponent and small
CRT-exponents. We call such instances Generalized Rebalanced-RSA.

The key generation algorithms for Generalized Rebalanced-RSA
differ from Rebalanced-RSA in that the private exponent d is never
explicitly computed and the primes p and q are generated at the end of
the algorithm (as opposed to the start). Since the key generation algo-
rithms and security analysis are more complex (and space consuming)
[3] , we refer the reader to Galbraith et al. [15] and Sun et al. [36], (the
most recent versions of their works) for more detail.

We end our discussion about Generalized Rebalanced-RSA by
mentioning that knowledge of dp and dq allow the construction of an
equivalent decryption exponent. Multiplying together the CRT-key
(2), written as fedp � 1 = kp(p� 1); edq � 1 = kq(p� 1)g, yields
after some rearrangement

e(�edpdq + dp + dq) = 1� kpkq(p� 1)(q� 1)

= 1� kpkq'(N):

Letting D = �edpdq+dp+dq , it follows that e and D satisfy the key
relation eD � 1 (mod '(N)). Therefore, D can be used to decrypt
any ciphertext generated by the public exponent e (with modulus N).
The construction of D also applies to Rebalanced-RSA.

E. Twin RSA

Twin RSA [26] is a variant of RSA which consists of pairs of RSA
moduli (N;N+�), where � is a small even integer such as� = �2.
The advantage of this system is that, once � is fixed, there is no need
to store both moduli since N and � specify the second modulus. Thus,
in situations that require two instances of RSA, Twin RSA can be used
to reduce the (key) storage requirements. Since � is small, the storage
requirements is reduced by the size of one RSA modulus.

The algorithms presented by Lenstra and de Weger [26] for Twin
RSA generate pairs of RSA moduli (N;N +�). Once the moduli are
computed, the public and private (or CRT-) exponents are computed.
As a result, it is obvious that Small-e and Small-d variants of Twin
RSA are possible. However, since all known algorithms for General-
ized Rebalanced-RSA compute the exponents in conjunction with the
RSA primes, it is unknown if a Generalized Rebalanced-Twin-RSA
variant is possible.

For more detail of Twin RSA, such as moduli generation algorithms
and security, see [26].

F. Some Notation and Assumptions

In addition to the notation laid out previously, we use the fol-
lowing notation and assumptions throughout the remainder of this
correspondence.

We only consider instances of RSA with balanced primes. That is,
when the RSA primes satisfy 1=2 < p=q < 2. When the RSA primes

are balanced, the difference between N and '(N) is quite small (com-
pared to the size ofN). In particular,N�'(N) = p+q�1 < 3N1=2.
To simplify notation we often use s to denote the difference between
N and �(N) (i.e., s = p + q � 1).

We let jxj denote the bitlength of any x 2 . Thus, we have
2jxj�1 x < 2jxj.

III. DUAL RSA

Dual RSA is essentially two distinct instances of RSA that share the
same public and private exponents. Combining the two instances we
obtain one Dual RSA instance with public key (e;N1; N2) and private
key (d; p1; q1; p2; q2), where e and d satisfy ed � 1 (mod '(N1))
and ed � 1 (mod '(N2)). From these two relations, it follows that
there exists two positive integer k1 and k2 such that

ed = 1 + k1'(N1)

ed = 1 + k2'(N2) (3)

which we call the Dual RSA key equations or simply the key equations.
The main idea behind the key generation algorithms that we present
for Dual RSA comes from the equation k1'(N1) = k2'(N2), which
directly follows from the key (3). The idea is to construct three integers
k1; k2, and k3 such that k2k3 = (p1 � 1)(q1 � 1) and k1k3 = (p2 �
1)(q2 � 1), where p1; q1; p2 and q2 are all primes.

When small CRT-exponents are used, such as in Rebalanced-RSA
and Generalized Rebalanced-RSA, the Dual version has public key
(e;N1; N2) and private key (dp; dq; p1; q1; p2; q2), where e; dp and
dq satisfy edp � 1 (mod (pi � 1)) and edq � 1 (mod (qi � 1))
for i = 1; 2. From these four relations, it follows that there exists four
positive integers kp ,kq ; kp and kq such that

edp = 1 + kp (p1 � 1) edp = 1 + kp (p2 � 1)

edq = 1 + kq (q1 � 1)

for N

; edq = 1 + kq (q2 � 1)

for N

(4)

which we call the Dual RSA-CRT equations, or simply the CRT equa-
tions. The main idea behind the key generation algorithm for Dual RSA
with small CRT-exponents comes from the equations kp (p1 � 1) =
kp (p2� 1) and kq (q1� 1) = kq (q2� 1), which are obtained from
(4). The idea is essentially the same as described above except that we
now need to satisfy two equations when finding the primes p1; q1; p2
and q2.

Below we present the key generation algorithms for three variants
of Dual RSA: Dual RSA-Small-e, Dual RSA-Small-d and Dual Gen-
eralized Rebalanced-RSA. The encryption and decryption algorithms
are the same for each scheme and correspond to what is done, in prac-
tice, with RSA. That is, encryption follows the standard method and
decryption is done using the Chinese Remainder Theorem.

A. Dual RSA-Small-eee (Scheme I)

The first scheme we consider is Dual RSA with small public expo-
nent, which we call Dual RSA-Small-e. The key generation algorithm
takes (ne; n) as input (with ne < n=2) and outputs a valid public/pri-
vate key pair with an ne-bit public exponent and two n-bit moduli. The
Dual RSA-Small-e key generation algorithm, with (ne; n) as input, is
given in Algorithm 1.

Algorithm 1: KEY-GEN-SCHEME-I
Input: (ne; n) such that ne < n=2.

1) Randomly select an ne-bit integer x1 and an (n=2 � ne)-bit in-
teger x2 such that p1 = x1x2 + 1 is prime.

2) Randomly select an (n=2 � ne)-bit integer y2 such that p2 =
x1y2 + 1 is prime.

3) Randomly select an ne-bit integer y1 such that q1 = y1y2 + 1 is
prime.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2925

4) Randomly select an ne-bit integer e such that
gcd(x1x2y1y2; e) = 1. Compute d and k1 satisfying
ed = 1 + k1(p1 � 1)(q1 � 1).

5) If q2 = k1x2 + 1 is not prime then go back to step 4).
6) Let N1 = p1q1; N2 = p2q2, and k2 = y1.
Output: (e;N1; N2) and (d; p1; q1; p2; q2). �

The correctness of the key generation algorithm follows since

ed = 1 + k1'(N1) = 1 + k1(p1 � 1)(q1 � 1)

= 1 + k1(x1x2)(y1y2) = 1 + y1(x1y2)(k1x2)

= 1 + k2(p2 � 1)(q2 � 1) = 1 + k2'(N2): (5)

Therefore, e and d are a valid public/private exponent pair for both N1

and N2 since ed � 1 (mod '(N1)) and ed � 1 (mod '(N2)).
The key generation algorithm outputs a random ne-bit public expo-

nent and, with high probability, an n-bit private exponent. In some situ-
ations a specific public exponent might be desired though. For example,
public exponents e = 2m+1 that have low Hamming weight are often
used to reduce the cost of square-and-multiply algorithms for modular
exponentiation. The key generation algorithm can be easily modified to
generate instances of Dual RSA-Small-e with a fixed public exponent.
For a specified ne-bit public exponent e the modified algorithm, taking
as input (e; ne; n), is given in the Appendix

In standard RSA, public exponents as small as e = 3 are considered
safe when used properly. In Section V-B, we show that this is not the
case for Dual RSA. In particular, Dual RSA is insecure when public
exponents smaller than N1=4 are used.

B. Dual RSA-Small-d (Scheme II)

The second scheme we consider is Dual RSA with small private
exponent, which we call Dual RSA-Small-d. The key generation al-
gorithm takes (nd; n) as input (with nd < n=2) and outputs a valid
public/private key pair with an nd-bit private exponent and two n-bit
moduli.

The key generation algorithm for Dual RSA-Small-d is exactly the
same as the key generation for Dual RSA-Small-e, except replacing
e; ne and d with d; nd and e, respectively. This follows from the sym-
metry of e and d in the key equations (3). Thus, the correctness and effi-
ciency of generating Dual RSA instances with small private exponents
are the same as shown in the previous section for Dual RSA-Small-e.

In standard RSA, private exponents smaller than N0:292 are con-
sidered unsafe. In Section V.C, we show that this bound increases to
N0:333 for Dual RSA-Small-d.

C. Dual Generalized Rebalanced-RSA (Scheme III)

The last scheme, we consider is Dual RSA with small public expo-
nent and small CRT-exponents, which we call Dual Generalized Rebal-
anced-RSA. As the name suggests, this scheme is an extension of Gen-
eralized Rebalanced-RSA to the Dual RSA setting. Thus, the public
exponent e and CRT-exponents dp and dq should be valid exponents
for two moduli (N1 = p1q1 and N2 = p2q2).

The key generation algorithm we present takes (ne; nd; nk; n) as
input (with ne < n=2 and ne + nd = n=2 + nk) and outputs a valid
public/private key pair with anne-bit public exponent, annd-bit private
exponent and n-bit moduli. The value nk is a security parameter which
is the bitlength of the constants kp and kq (for i = 1, 2) from (4). The
following result from number theory (see [17] or [28]) will be used in
the key generation algorithm.

Theorem 1: Let a and b be two relatively prime integers (i.e., ,
gcd(a; b) = 1). For every integer h there exists a unique pair of in-
tegers (uh; vh) satisfying auh� bvh = 1, where (h�1)b < uh < hb
and (h� 1)a < vh < ha. �

The integers (uh; vh) can be efficiently computed using the Ex-
tended Euclidean Algorithm. We use the result of Theorem 1 in the
key generation algorithm to ensure the existence of certain numbers
with a given bitlength. Finally, the Dual Generalized Rebalanced-RSA
key generation algorithm, with (ne; nd; nk; n) as input, is given in Al-
gorithm 2.

Algorithm 2: KEY-GEN-SCHEME-III
Input: (ne; nd; nk; n).
Pre: ne < n=2 and ne + nd = n=2 + nk .

1) Randomly select an ne-bit integer e and let k be the smallest in-
teger larger than (n=2� ne)=nk (i.e., k = d(n=2� ne)=nke).

2) Randomly select k � 1 nk-bit integers pa ; . . . ; pa and an
even integer pa such that pa = pa � � � pa pa has bitlength
(n=2� ne) and gcd(e; pa) = 1.

3) Randomly select an nk-bit integer kp such that gcd(e; kp) = 1.
4) Based on Theorem 1, compute dp and pb such that edp =

(kp pa)pb + 1, where e < pb < 2e and kp pa < dp < 2kp pa.
If p1 = papb + 1 is not prime then go to step 3).

5) If (kp papb=pa) + 1 is prime for some 1 � i0 � k� 1 then let
p2 = (kp papb=pa) + 1. Otherwise, go to step 3).

6) Randomly select k � 1 nk-bit integers qa ; . . . ; qa and an
even integer qa such that qa = qa � � � qa qa has bitlength
(n=2� ne) and gcd(e; qa) = 1.

7) Randomly select an nk-bit integer kq such that gcd(e; kq) = 1.
8) Based on Theorem 1, compute dq and qb such that edq =

(kq qa)qb + 1, where e < qb < 2e and kq qa < dq < 2kq qa If
q1 = qaqb + 1 is not prime then go to step 7).

9) If (kq qaqb=qa) + 1 is prime for some 1 � j0 � k � 1 then let
q2 = (kq qaqb=qa) + 1. Otherwise, go to step 7).

10) Let N1 = p1q1; N2 = p2q2; kp = pa and kq = qa .
Output: (e;N1; N2) and (dp; dq; p1; q1; p2; q2). �

The correctness of the algorithm follows since

edp = 1 + kp (p1 � 1)

= 1 + kp (papb)

= 1 + kp (pa � � � pa � � � pa pb)

= 1 + pa (pa � � � kp � � � pa pb)

= 1 + kp (p2 � 1); (6)

for some i0 2 f1; . . . ; k � 1g. Similarly, edq = 1 + kq (q1 � 1) =
1 + kq (q2 � 1) for some j0 2 f1; . . . ; k � 1g such that kq = qa .
Therefore, the CRT equations (4) are satisfied and e; dp and dq are a
valid public/CRT-exponent pair for both N1 and N2.

From the key generation algorithm of scheme III, notice that p1�1;
p2 � 1; q1 � 1 and q2 � 1 each has some small factors. This follows
since pa and qa each has k factors (not necessarily prime) which are
equal to or smaller than nk(= ne+nd�n=2) bits long (i.e., pa and qa
are 2n �1-smooth). This also implies that the primes p1; q1; p2, and q2
in the Dual Generalized Rebalanced-RSA moduli must not be strong
primes.

Fortunately, the requirement (or suggestion) that RSA primes should
be strong primes is no longer needed due to [16], [20], [34], and [35].
In fact, Rivest and Silverman [34], concluded that the development of
elliptic curve method (ECM) [23] for factoring demotes any special
status that attacks such as Pollard’s p � 1 method may have had. Of
course, this assumes that the primes are randomly generated and since
the primes generated in Algorithm 2 have significant structure imposed
on them, it is clear that they are not randomly sampled from the set of
all n=2-bit primes. Therefore, care must be taken that the special nature
of the primes generated in Algorithm 2 do not lend themselves easily
to a specific factoring attack. In particular, if pb or qb is sufficiently

2926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

TABLE I
PRACTICAL EFFICIENCY OF ALGORITHM 1

smooth, then Pollard’s p � 1 method can be used to factor one of the
moduli. For example, if all the prime-factors of p1�1 are smaller than
B then Pollard’s p� 1 method can factor N1 in B� logB� log2N1

operations. Since pb and qb are each ne-bit numbers, and there is no
apparent structure to their prime composition from their construction in
Algorithm 2, we can assume that each will have a prime-factor that is at
leastne=2 bits long with high probability. Consequently, Pollard’s p�1
method is infeasible for factoring our moduli while using a sufficiently
large public exponent. For example, for 1024-bit moduli and public
exponent satisfying ne > 100, we expect with high probability that
pb and qb will each have a prime-factor larger than ne=2 > 50 bits
long. Thus, the required operations of Pollard’s p � 1 method will be
expected to be at least 280 times and the moduli will not be vulnerable
to this attack.

The parameter selection for Dual Generalized Rebalanced-RSA is
discussed further in Section V.D.

D. Efficiency of the Key Generation Algorithms

Given the correctness of the key generation algorithms, Algorithm 1
and 2, we need to consider their efficiency. For each algorithm we base
the complexity on the total number of random numbers that need to be
sampled in order to successfully generate a valid key pair. For each
random number sampled, both algorithms perform some number of
computations whose complexities are at most polynomial in the size
of the moduli (i.e., n).

In Algorithm 1, steps 1)–4) are essentially sampling random numbers
of specified bitlengths until the four primes (p1; q1; p2; q2) are found
satisfying the key equations for some e and d. From the Prime Number
Theorem, we estimate that the expected number of random numbers
needed to generate a valid key pair with n-bit moduli is O(n). To
demonstrate that this complexity is meaningful for finite moduli sizes
we counted the number of random numbers required to generate valid
key pairs with 1024-bit and 2048-bit moduli. The results are given in
Table I, where we show the average taken over 1000 key pairs for each
public key size. The total number of random numbers needed, averaged
over all keys generated, was 1251 for 1024-bit moduli and 2466 for
2048-bit moduli. The average time1 needed to generate a valid Dual
RSA key pair, averaged over all keys generated, was 18.5 s for 1024-bit
moduli and 356.7 s for 2048-bit moduli. Notice that the average number
of random numbers needed to generate a key pair with 2048-bit moduli
compared to the average number needed to generate a key pair with
1024-bit moduli is 1:97, which is quite close to 2. This is in close
agreement with the theoretical estimation that the number of random
numbers needed increases linearly with the bitsize of the moduli.

In Algorithm 2, we again sample many random numbers of speci-
fied bitlengths until four primes, (p1; q1; p2; q2), are found satisfying
the CRT equations (4) for some e; dp and dq . Of course, the conditions

1The timing measurements for both algorithms were performed using a Java
implementation on a Sun Fire V100 server with one UltraSPARC IIe processor
with 2 GB of memory running at 550 MHz.

TABLE II
PRACTICAL EFFICIENCY OF ALGORITHM 2

are more strict in this algorithm and so we expect the average number
of random numbers needed to be larger than the previous algorithm. In
Table II, we show the average number of random numbers needed to
generate keys with 1024-bit and 2048-bit moduli for various combina-
tions of ne and nd. The averages are based on 50 trials for each combi-
nation. As expected, the average number of random numbers needed is
larger for this algorithm compared to the previous one. In fact, the av-
erage is roughly two orders of magnitude greater. The average number
of random numbers needed for 2048-bit moduli is roughly three to four
times that needed for 1024-bit moduli.

IV. APPLICATIONS

In this section we consider scenarios in which Dual RSA can be used.
Essentially, whenever two RSA key pairs are required, Dual RSA can
be used to decrease the storage requirements. We consider two appli-
cations: blind signatures and authentication/secrecy.

A. Blind Signatures

The first application we consider is blind signatures. The concept of
blind signatures was first introduced by Chaum [9]. Essentially, it al-
lows one user to have a message signed by another user without re-
vealing any information about the message to the signer. There are
many possible applications for blind signatures such as e-cash, untrace-
able electronic mail, electronic election systems, time-stamping, and
anonymous access control. For a bibliography of blind signatures, see
Wang [43].

We are concerned with blind signatures based on RSA. Suppose
Alice has a message m that she wishes to have signed by Bob but
doesn’t want Bob to know anything about. Let (e;N) be Bob’s public
key and (d;N) be his private key. Alice generates a random value r
such that gcd(r;N) = 1 and sends

x = rem mod N

to Bob. Notice that Bob cannot derive any useful information about m
from x. The message m is said to be blinded by the random value r.
Bob then returns the signed value

t = xd mod N

to Alice. Since xd � (rem)d � rmd (mod N), Alice can obtain
the true signature s of m by computing

s = r�1t mod N = md mod N:

Alice now has a message m and a signature of m that is signed with
Bob’s private key.

When using RSA for blind signatures, however, it is important that
Bob uses one key pair exclusively for blind signatures. If Bob uses one
key pair for both encryption/decryption and signing blind signatures,
a person-in-the-middle attack exists which can be used to decrypt en-
crypted messages sent to Bob. To see this, suppose Alice, wanting to

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2927

send an encrypted message m to Bob, uses Bob’s public key (e;N)
and sends

c = me mod N

to Bob. Eve intercepts the ciphertext c and sends

c0 = rec mod N

to Bob asking for a blind signature. Bob computes the signature of c0
with his private key (d;N) and sends

m0 = cd0 mod N

back to Eve. Finally, Eve can compute Alice’s message m since

m = r�1m0 mod N:

Thus, Bob should not use the same RSA key pair for both encryption/
decryption and signing blind signatures.

Therefore, any user wishing to use RSA for both encryption/decryp-
tion and generating blind signatures should have a different key pair
for each usage. Using Dual RSA or Twin RSA in this scenario will
thus allow the user to reduce the amount of information needed to be
stored for the key pairs.

B. Authentication/Secrecy

The second application we consider is authentication/secrecy. In par-
ticular, we consider solutions to the reblocking problem of RSA signa-
tures. The reblocking problem arises when RSA is used to first sign and
then encrypt a message to ensure both authenticity and secrecy of the
message.

Suppose Alice and Bob know each other’s public keys. Alice wishes
to send a message m to Bob such that Bob, upon receiving m, is con-
fident that Alice sent the message (authentication) and Alice is confi-
dent that only Bob can read the message m (secrecy). To accomplish
this, Alice computes c by first signing the message with her private
key (dA; NA) and then encrypting the signature with Bob’s public key
(eB ; NB). She then sends

c = (md mod NA)
e mod NB

to Bob. Since c is encrypted with Bob’s public key, Alice is confident
that only Bob can decrypt the ciphertext. After decrypting the cipher-
text with his private key, Bob then encrypts the result with Alice’s
public key. If the final result is something meaningful, then Bob can
be confident that only Alice could have created it since only she has
knowledge of her private key. Thus, the transmission ensures both
authenticity and secrecy. However, Bob is not guaranteed to recover
the original message m (or anything meaningful at all) if Alice’s RSA
modulus NA is greater than his RSA modulus NB . In this case, when
Bob decrypts the ciphertext he obtains (md mod NA) mod NB

which might be different than (md mod NA). This is the reblocking
problem as originally identified by Rivest, Shamir and Adleman [33,
Sec. X]. When NA > NB , the probability that Bob cannot recover the
original message is (NA � NB)=NA.

We discuss two solutions to the reblocking problem as given in [27,
Sec. 11.3.3]: reordering and using two moduli per user.

1) Reordering: The first solution to the reblocking problem is to
simply reorder the signing and encrypting operations depending on
which RSA moduli is larger. Thus Alice first signs and then encrypts
if NA < NB or encrypts and then signs is NA > NB . This reordering
solution is sometimes called the pre-judgement method. This method
is undesirable for two reasons though. First, when Alice encrypts then
signs, any observer can remove the signature with Alice’s public key

and replace it with their own. Without proper protocols, this may lead
to a simple person-in-the-middle attack: Eve intercepts the transmitted
message, removes Alice’s signature, adds her own signature, sends to
Bob and later asks Bob to send the message m back. A second unde-
sirable property of encrypting before signing is when Alice wishes to
send the same message to a group of users fB1; B2; . . . ; Bng, each
with public key (ei; Ni). When NA < Ni for all i = 1; . . . ; n then
Alice only needs to sign the message once and then perform one en-
cryption for each of the Bi. For each modulus smaller than NA, how-
ever, Alice needs to compute an additional signature. In the worst case,
when NA > Ni for all i, Alice needs to compute n encryptions and
n signatures. Thus the total number of encryptions/signatures in the
worst case (2n) is almost twice as many as the best case (n+ 1).

2) Two Moduli Per User: A second solution to the reblocking
problem was suggested by Rivest, Shamir, and Adleman [33, Sec. X].
The solution consists of each user having two RSA key pairs such that
one modulus is smaller than some threshold, say h, and one modulus
is larger. To send a message with authenticity/secrecy, Alice will first
sign the message with her private key with modulus smaller than h
and then encrypt with Bob’s public key with modulus larger than h.
In this way, the modulus used for signing is always smaller than the
modulus used for encryption and Bob is always able to recover the
original message. Additionally, using this method Alice can send the
same message to a group of n users (as described above) with only
one signature and n encryptions, which is the minimum number of
encryptions/signatures required. We call this method the threshold
technique for authentication/secrecy. In this method, two RSA key
pairs are required for each user. Therefore, Dual RSA can be used
with this method to reduce the amount of information needed to be
stored for the keys.

V. SECURITY ANALYSIS

In this section we provide the security analysis of Dual RSA. For
each scheme we review the known attacks on RSA and present new
attacks specific to Dual RSA. Based on the attacks presented we then
illustrate which parameters are insecure and suggest parameters that
are secure (i.e., , are resistant to all known attacks). We first give a
brief overview of the mathematical tools needed for the new attacks.

A. Mathematical Tools

There are two main mathematical tools that we use in the proposed
attacks against Dual RSA: continued fractions and lattices. From con-
tinued fraction theory we make use of the following well known result
(see, for example, [17]).

Theorem 2: Let a; b; c, and d be integers satisfying j a
b
� c

d
j < 1

2d
.

Then c

d
is one of the convergents in the continued fraction expansion

of a

b
. �

From lattice theory we use extensions of Coppersmith’s methods for
finding small solutions of polynomials and also use a common heuristic
about small vectors in lattices. Before stating the results needed for
the attacks we first give a brief review of lattice theory. For our pur-
pose we will only consider full dimensional integer lattices. Let B =
fb1; . . . ; bmg be a set of m linearly independent elements of n. The
set L = f m

i=1
�ibij�i 2 g, is called an integer lattice, or simply

lattice, spanned by B. The set B is called a basis of L and the bi are
called basis vectors. The dimension of L is simply the number of vec-
tors making up the basis, (i.e., m). Lattices with dimension m � 2
have infinitely many bases. The determinant of L, denoted by det(L),
is equal to the m-dimensional volume of the parallelepiped spanned by
the basis vectors bi and is independent of the choice of basis. When L
is full dimensional (i.e., n = m) det(L) is simply the absolute value of

2928 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

the determinant ofB, where we consider the basisB as a matrix (whose
rows or columns are the basis vectors).

Often we are interested in a smallest vector of a lattice. The following
result by Minkowski gives an upper bound on the size of a smallest
vector in a lattice as a function of the determinant and dimension of the
lattice.

Theorem (Minkowski): Let L be an n-dimensional lattice. There
exists v 2 L such that

kvk � n1=2 det(L)1=n

where k � k denotes the 2-norm. �

Given a basis for a lattice, Lovász’s lattice basis reduction algo-
rithm, usually referred to as the Lenstra–Lenstra–Lovász (LLL) algo-
rithm (see [22]), can be used to find reasonably small vectors in lattices
in polynomial time. The following result gives an upper bound on the
size of the smallest vector computed by the LLL algorithm as a func-
tion of the determinant and dimension of the lattice (cf. Theorem 3).

Theorem 4 (LLL): Let B = fb1; . . . ; bng be a basis of a lattice L
with dimensionn. On inputB, the LLL algorithm outputs another basis
V = fv1; . . . ; vng of L such that

kv1k � 2n=2 det(L)1=n:

Further, the new basis can be computed in time polynomial in n and
the bitlength of the bi. �

Using the LLL algorithm, Coppersmith presented methods for
finding small integer solutions to bivariate polynomials [10] and
for finding small solutions for univariate polynomials modulo some
integer of unknown factorization [11]. These techniques have been
extended to polynomials with more variables, but each extension is
only a heuristic as they all depend on an assumption about algebraic
independence (see Boneh and Durfee [6] for example). Even though
the extensions cannot be proven, as of yet, they do work well in
practice. We will make use of the following result concerning the
solutions of linear multivariate polynomials (see Jochemsz and May
[21] for more details).

Theorem 5: Let f(x1; . . . ; xr) be a linear polynomial with
integer coefficients. Let X1; . . . ; Xr be positive integers, W =
kf(x1X1; . . . ; xrXr)k2 and N be a sufficiently large integer
with unknown factorization. Given (y1; . . . ; yr) 2 r satisfying
jy1j < X1; . . . ; jyrj < Xr , if (y1; . . . ; yr) is a root of f and

r
i=1Xi < W , or if (y1; . . . ; yr) is a root of f modulo N and
r
i=1Xi < N then for sufficiently large W or N , respectively, we

can compute (y1; . . . ; yr) in polynomial time, provided a common
assumption about the algebraic independence of reduced vectors
holds. �

B. Security of Scheme I

In this section we consider the security of Dual RSA when the public
key e is small and the private key d is large (likely the size of the
moduli). We begin with an attack that recovers the parameters k1 and
k2 from the key equations and then present two attacks that use these
values to break the system.

1) Finding k1 and k2: We show that k1 and k2 can be recovered
with a lattice-based method. Given the Dual RSA public information
(e;N1; N2), notice that the difference between the key equations, ed =
1 + k1(N1 � s1) and ed = 1 + k2(N2 � s2), is given by

k1(N1 � s1) = k2(N2 � s2): (7)

Let’s assume that we know ` of the most significant bits of k2 so that we
can write k2 = K2+k

0

2, where k02 is the only unknown and jk02j < ne+
nd�n� ` (the value of K2 will actually be determined by exhaustive
search). Using this representation for k2 in (7), and rearranging, we
obtain

k1N1 � k02N2 + (K2s2 + k02s2 � k1s1) = K2N2 (8)

which suggests that we look for small solutions of the polynomial

f(x; y; z) = N1x�N2y + z �K2N2 (9)

since (x0; y0; z0) = (k1; k
0

2; K2s2 + k02s2 � k1s1) is a root of
f(x; y; z). Defining the bounds X = 2n +n �n; Y = 2n +n �n�`

and Z = 2n +n �n=2 we have that jx0j � X; jy0j � Y
and jz0j � Z . From the integer case of Theorem 5, noting
that W = kf(xX; yY; zZ)k1 = 2n +n , we can recover
(x0; y0; z0) for sufficiently large N provided that XY Z < W ,
or 3ne+3nd�5n=2� ` < ne+nd. Thus, to prevent k1 and k2 from
being recovered from this lattice-based method (with an exhaustive
search with parameter `), the size of the public and private exponents
should satisfy

ne + nd > 5n=4 + `=2: (10)

Since the size of the private exponent in scheme I is, with very high
probability, the same size as the moduli (i.e., nd = n), this lattice
based method is expected to work whenever ne < n=4 + `=2, which
is essentially the same as the bound obtained above using continued
fractions with an exhaustive search for each convergent. Therefore, the
size of the public exponent should satisfy

ne > n=4 + `=2 (11)

in order to prevent k1 and k2 from being recovered using this method.
For 1024-bit moduli, allowing an exhaustive search with ` = 80 , the
size of the private exponent should satisfy ne > 296.

2) Small Public Exponent Attack With k1 and k2: The first attack
using k1 and k2 exploits the special structure of the Dual RSA moduli.
Recall from the key generation algorithm that N1 = p1q1 and N2 =
p2q2, where p1 = x1x2 + 1; q1 = y1y2 + 1; p2 = x1y2 + 1; q2 =
k1x2 + 1 and y1 = k2. This allows us to write N1 � 1 and N2 � 1 as
the following system of equations with five unknowns:

N1 � 1 = x1x2k2y2 + x1x2 + k2y2

N2 � 1 = x1x2k1y2 + k1x2 + x1y2 (12)

where jx1j = jk1j = jk2j = ne and jx2j = jy2j = n=2� ne.
Now, let’s assume that we are given k1 and k2. Notice that the system

of equations forN1�1 andN2�1 in (12) is now reduced to only three
variables: x1; x2, and y2. If ne is small enough, we can perform an ex-
haustive search for x1 and solve the resulting system of two unknowns.
Similarly, if n=2 � ne is small enough, we can perform a brute force
search on x2 (or y2) and solve the resulting system of two unknowns. In
either scenario, for each guess (of x1; x2 or y2) we solve the resulting
system for the remaining unknowns and test if the solution yields the
desired factorization of N1 and N2.

To avoid this brute force attack the size of the public exponent should
be chosen so that guessing x1; x2 or y2 is infeasible. Thus, the size of
the public exponent should satisfy

` � ne � n=2� ` (13)

where ` is chosen so that an exhaustive search of a space of size 2` is
infeasible. For 1024-bit moduli and security parameter ` = 80, the size
of the public exponent should satisfy 80 � ne � 432.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2929

3) Lattice-Based Attack With k1 and k2: Let’s assume, again, that
we are given k1 and k2. Using these we compute k01 = k1=gcd(k1; k2)
and k02 = k2=gcd(k1; k2). Now, notice that dividing the difference
between the key equations, ed = 1 + k1(N1 � s1) and ed = 1 +
k2(N2 � s2), by gcd(k1; k2) yields

k01(N1 � s1) = k02(N2 � s2) (14)

where s1 and s2 are the only unknown values. Since gcd(k01; k
0

2) = 1,
we can reduce this equation modulo k02 to obtain s1 � N1 (mod k02).
Letting �1 = N1 mod k02, we can write s1 = �1 + �1k

0

2, where �1 is
the only unknown part (notice that j�1j = n=2� ne). Substituting s1
in (14) we obtain

k01(N1 � �1 � �1k
0

2) = k02(N2 � s2) (15)

which suggests that we look for small solutions, modulo N1, of the
polynomial

fN (x; y) = k01k
0

2x� k02y + k02N2 + k01�1

since (x0; y0) = (�1; s2) is a root of fN (x; y) modulo N1. Defining
the bounds X = 2n=2�n and Y = 2n=2 we then have jx0j � X and
jy0j � Y . From Theorem 5, we see that �1 and s2 can be computed
provided that N1 is sufficiently large and XY < N1 (or n�ne < n),
which is always satisfied. Therefore, for large enough N1, we should
always be able to recover �1 and s2. Once �1 and s2 are known we
can easily compute '(N1) and '(N2) which then allow us to factor
N1 and N2. Therefore, we conclude that Dual RSA is insecure when-
ever k01 and k02 are known. In order to ensure that k01 and k02 are not
revealed from the method described above, the size of the public expo-
nent should satisfy (11), i.e., ne > n=4+`=2 or ne > 296 for 1024-bit
moduli allowing an exhaustive search with ` = 80.

4) Summary for Scheme I: To summarize, in order to avoid all the
known attacks on Dual RSA-Small-e, allowing an exhaustive search
with parameter `, the size of the public exponent should satisfy

ne + nd > 5n=4 + `=2 (16)

which simplifies to

ne > n=4 + `=2 (17)

when the private exponent is the same size as the moduli (which is the
expected case for scheme I). Also, in the case that k1 and k2 might be
known to the adversary, the public exponent should also satisfy

ne < n=2� ` (18)

to avoid the attack from Section V-B2.

C. Security of Scheme II

In this section we consider the security of Dual RSA when the private
key d is small and public key e is large (likely the size of the moduli).

All of the known small private exponent attacks on RSA also apply
to Dual RSA (scheme II). These include Wiener’s continued fraction
attack [44], Boneh and Durfee’s lattice-based attack [6] and Blömer
and May’s lattice-based attack [4]. We summarize the strongest results,
by Boneh and Durfee, here. From [6, Sec. 6], we see that, in general,
RSA is considered unsafe when the size of the private exponent satisfies

nd <
7n

6
� 1

3
n2 + 6nne: (19)

When the public exponent is the same size as the modulus a stronger
result is known, [6, Sec. 5], which shows that RSA is unsafe when the
size the of private exponent satisfies

nd < (1� 1=
p
2)n � 0:292n (20)

TABLE III
EXPERIMENTAL RESULTS FOR LATTICE-BASED ATTACK ON SCHEME II

In addition to these attacks, notice that each of the attacks on scheme
I from Section V-B can also be mounted against scheme II. Thus, Dual
RSA-Small-d should be considered insecure when the size of the pri-
vate (and public) exponent satisfies

nd + ne < 5n=4 + `=2: (21)

As the size of the public exponent decreases, this attack is stronger than
the attack behind (19). Below, we present a new attack on scheme II that
is stronger than all of these attacks.

1) Lattice-Based Attack: Given the Dual RSA public information
(e;N1; N2), consider the following three equations:

Ad = Ad

ed �k1N1 = 1� k1s1
ed �k2N2 = 1� k2s2:

(22)

This is simply the key equations along with the trivial equation Ad =
Ad, where A is some integer. Letting

B =

A e e

0 �N1 0

0 0 �N2

(23)

we can write the system of (22) as the vector-matrix equation

(d; k1; k2)B = (Ad; 1� k1s1; 1� k2s2): (24)

Let v = (Ad; 1 � k1s1; 1 � k2s2) and let A = eN�1=2 (jAj =
ne � n=2) so that each component of v is the same size and kvk2 <p
3 � 2n +n �n=2. The hope is that v will be the smallest vector in the

lattice L generated by the rows in B. If this is true then we can easily
compute the private exponent d by simply finding the smallest vector
in L and dividing the first component by A.

Now, Theorem 3 tells us that a smallest vector inL is bound in size byp
3det(L)1=3 = p

3 � 2(n +3n=2)=3, sincedet(L) = AN1N2. So, we
see that a necessary condition for v to be a smallest vector in L is that

p
3 � 2n +n �n=2 <

p
3 � 2(n +3n=2)=3

which simplifies to

nd + 2ne=3 < n: (25)

When the public exponent is the same size as the moduli (which is
expected), this condition further simplifies to

nd < n=3: (26)

Using the LLL algorithm with B as input, when the size of the private
exponent satisfies (25) or (26), it is hoped that the smallest vector in the
new reduced lattice basis will be v. This will happen if v is the smallest
vector in L and if all other vectors in L are sufficiently larger than v.
Since we cannot prove that this is the case, we rely on experiments to
demonstrate the effectiveness of the attack. In Table III we show some
experimental results of this attack using 1024-bit Dual RSA moduli and
1000 trials for each private exponent size. As can be seen, the attack
is quite successful until roughly nd > 339 and then quickly becomes
very ineffective. Since 1024=3 = 341 + 1=3, we see that the attack
(for 1024-bit moduli) is practically successful up to almost the heuristic
bound of n=3.

The key generation algorithm for scheme II computes the public key
after choosing the private key. Since the public exponent is computed
as the inverse of the private exponent modulo '(N1), it is expected
that the size of the public exponent will be roughly the same size as

2930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

the moduli. Because of this, it is difficult to generate instances of Dual
RSA-Small-d with public exponents significantly smaller than N , and
is the reason for only testing the attack on instances where the public
exponent is roughly the same size as the moduli. Based on the success
of the attack in this case, we believe that the attack will work when e
is smaller than N .

2) Summary for Scheme II: In summary, in order to avoid all the
known attacks on Dual RSA-Small-d, allowing an exhaustive search
with parameter `, the size of the public exponent should, in general,
satisfy

nd + ne > 5n=4 + `=2 (27)

nd >
7n

6
�

1

3
n2 + 6nne (28)

and

nd > n=3 (29)

when the public exponent is the same size as the moduli (which is the
expected case for scheme II).

D. Security of Scheme III

For the security consideration of Dual Generalized Rebalanced-RSA
we first review the known results for Generalized Rebalanced-RSA and
then present a new attack.

From Sun et al. [36], (see [15] and [3] for a similar analysis) the
public and private CRT-exponents should satisfy

5nd + 2ne < 2n+ `

3nd + 2ne < 3n=2 + `1 or ne < n=4� `2

where ` = `1 + `2

6nd + 3ne > 5n=2 + `

nd > 2` (30)

in order to avoid all known attack allowing at most 2` work.
1) Small nk Attack: In this section we present an attack when the

security parameter in the key generation algorithm is small (i.e., nk is
small). Recall from the key generation algorithm that

N1 = p1q1 N2 = p2q2

p1 = papb + 1 p2 = pa pb + 1

q1 = qaqb + 1 q2 = qa qb + 1

pa = pa pa � � � pa pa pa = pakp =pa

qa = qa qa � � � qa qa qa = qakq =qa (31)

for some i0 and j0 2 f1; . . . ; k � 1g, where k = d(n=2 �
ne)=nke; jpa j= jkp j= jkq j= jqa j=nk for all i2f1; . . . ; k�1g,
and jpbj= jqbj=ne. From this, notice that

N1 � 1

pa pbqa qb
=

papbqaqb + papb + qaqb
pa pbqa qb

=
pa qa

kp kq
+

papb + qaqb
pa pbqa qb

<
pa qa

kp kq
+

2 � 2n=2

1

2
2n=2

2

and
N2 � 1

pa pbqa qb
=

pa pbqa qb + pa pb + qa qb
pa pbqa qb

= 1 +
pa pb + qa qb
pa pbqa qb

> 1:

Dividing the first inequality by the second yields

N1 � 1

N2 � 1
<

pa qa

kp kq
+

8

2n=2
(32)

which suggests that (pa qa)=(kp kq) might be recovered by one of
the convergents in the continued fraction expansion of (N1�1)=(N2�
1). In order to use the result of Theorem 2, we need

N1 � 1

N2 � 1
�

pa qa

kp kq
<

8

2n=2
<

1

2 (kp kq)2

which is satisfied whenever kp kq < 2n=4�2 (or equivalently, when
nk < n=8 � 1). Thus, whenever nk < n=8 � 1, one of the con-
vergents in the continued fraction expansion of (N1 � 1)=(N2 � 1)
will be pa qa =kp kq in lowest terms. As shown by Verheul and
van Tilborg [42] and Dujella [13], we can include an exhaustive search
on each convergent to increase the bound of the sufficient condition.
For an exhaustive search of a search space of size 2`, the bound can be
increased by `=2 (see [42] or [13] for details). Allowing such an ex-
haustive search for each convergent gives the new sufficient condition

nk < n=8� 1 + `=2: (33)

Since pa = kp and qa = kq , if (33) is satisfied then one of
the convergents will give k01 and k02 such that k02=k

0

1 = kp kq =kp kq
(i.e., k01 and k02 are exactly the same as in the previous attack). There-
fore, we can apply the same lattice-based method from Section V-B3
to factor N1 and N2 provided that the moduli are sufficiently large. In
order to avoid this attack, the security parameter nk should satisfy

nk > n=8 + `=2� 1 (34)

where we allow an exhaustive search of a space of size 2` for each
convergent. Combining (34) with the condition that ne +nd = n=2+
nk , we see that the size of the public and CRT exponents should satisfy

ne + nd > 5n=8 + `=2� 1 (35)

in order to avoid this attack.
2) Summary for Scheme III: In summary, to avoid all the known

attacks on Dual Generalized Rebalanced-RSA, allowing an exhaus-
tive search with parameter `, the size of the key generation parameters
ne; nd and nk should satisfy all of

nk > n=8 + `=2� 1

ne + nd > 5n=8 + `=2� 1

5nd + 2ne > 2n+ `: (36)

In Fig. 1, we illustrate which key generation parameters are unsafe
(area under the curves) for Dual Generalized Rebalanced-RSA with
1024-bit moduli. Also included are the attacks against Generalized Re-
balanced-RSA.

E. Summary of Security

In Table IV, we give restrictions on the parameter selection (size
of exponents) for each scheme. When the parameter restrictions are
satisfied, the system is secure against all known attacks requiring no
more than 2` work.

VI. DISCUSSION

The motivation for Dual RSA is to reduce (key) storage require-
ments in systems that require two instances of RSA while retaining
as much of the functionality as simply using two instances of RSA
(e.g., using small public or private exponent, using small public and
CRT-exponents).

We show the minimal memory requirements for three RSA variants,
including Dual RSA, two instances of RSA (2� RSA), and Twin RSA,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2931

Fig. 1. Safe parameter choices for scheme III.

TABLE IV
SUMMARY OF SAFE DUAL RSA PARAMETERS

in Tables V and VI. For each variant we also consider three types, in-
cluding Small-e, Small-d, and Rebalanced-RSA. The modulus form
we consider here is the product of two prime-factors, i.e., N = pq.
For the case of multipower (or multiprime) modulus ([18], [29], [40]),
e.g., N = p2q, Dual RSA still can be designed with multi-power (or
multi-prime) moduli to achieve the purposes of saving memory require-
ment and efficient encryption and decryption. Also, Twin RSA [26] still
can be designed with multi-prime moduli, but we do not compare their
saving requirements here. Tables V and VI show the number of bits
needed to store both public and private keys as a function of the bit
length of the moduli N1 and N2, the difference between moduli� (for
Twin RSA) and the security parameter ` (usually set ` = 80). Notice
that in the case of 2 � RSA, we may choose the same public expo-
nent e (usually set e = 216 + 1) for Small-e type in order to save the
memory requirement. The same way can be applied to Twin RSA with
Small-e type. However, we do not suggest using the same private ex-
ponent in the case of Small-d type for 2 � RSA and Twin RSA due
to the security consideration. As can be seen in the security analysis
of Dual RSA (see Table IV), using the same private exponents results
in the requirement of higher security boundary against small exponent
attacks. Up to now there is no discussion about whether using the same
small private exponents in 2 � RSA or Twin RSA is secure or not.
Thus we use two different small private exponents in 2 � RSA and
Twin RSA with Small-d type. The same strategy is considered in Re-
balanced-RSA type (see Table VI). Also, it is an interesting problem to
look at security bounds when using the same small private exponents
in 2 � RSA or Twin RSA.

TABLE V
MEMORY REQUIREMENTS FOR SMALL EXPONENT RSA

TABLE VI
MEMORY REQUIREMENTS FOR REBALANCED-RSA TYPE

As can be seen in Table V, both Dual RSA and Twin RSA allow
for substantial memory savings when ` and � are relatively small. In
particular, Dual RSA requires the least amount of memory when using
a small public or private exponents compared with 2 � RSA. While
compared with Twin RSA, Dual RSA requires less memory than that
in Twin RSA with Small-d type, but more memory in Small-e type. In
addition, Twin RSA may not be well suited for the threshold technique
for authentication/secrecy in Section IV-B2. For a selected threshold
h , all moduli (for all users) must have the same MSBs as h, that is
approximately (n�j�j) bits. Consequently, the distribution of moduli
will be abnormal because these moduli will be located in a narrow range
(h � �; h + �). This may lead to some powerful attacks if � is not
large enough. A possible solution is to increase the size of�. However,

2932 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

it is still unknown what size of the � is sufficient to make these RSA
keys secure. Moreover making the � large also incurs more storage
cost.

For Rebalanced-RSA type, as can be seen in Table VI, Dual RSA
requires the least amount of memory. Depending on the parameters
used there can be a substantial memory savings when using Dual RSA.
For example, using ne � n=2 in Dual RSA corresponds to a saving of
about 1:3n bits for 2 � RSA and about 0:3n bits for Twin RSA.

From the security analysis, Table IV, we see that there is a trade-off
when using Dual RSA compared to using two instances of RSA (or
Twin RSA). On the one hand, Dual RSA allows for reduced (key)
storage requirements as shown above (i.e., reduced space complexity).
On the other hand, the size of unsafe exponents is increased with
Dual RSA, which increases encryption and/or decryption time (i.e.,
increased computational complexity). In addition, from Section III-D,
the computational complexity of the key generation algorithms is also
increased. Thus, the reduced space complexity of Dual RSA comes at
a cost.

Therefore, in situations that require two instances of RSA (cf. Sec-
tion IV) where reducing memory requirements is more important than
the computational costs, in some constrained devices, for example, we
view Dual RSA as a potentially good candidate. Of course, as with all
new cryptosystems and new variants of trusted cryptosystems, the se-
curity of the system needs to be scrutinized more.

APPENDIX

We give an alternate key generation algorithm for Dual RSA-Small-e
that outputs public/private key pairs with a specified public exponent.
Let e be an ne-bit positive integer. Given (e; ne; n) as input the alter-
nate key generation algorithm is as follows.

Algorithm KEY-GEN-SCHEME-I-ALT

Input: (e; ne; n) such that ne < n=2.
1) Randomly select an ne-bit integer x1 and an (n=2 � ne)-bit in-

teger x2 such that p1 = x1x2+1 is prime and gcd(e; x1x2) = 1.
2) Randomly select an (n=2 � ne)-bit integer y2 such that p2 =

x1y2 + 1 is prime and gcd(e; y2) = 1.
3) Randomly select an ne-bit integer y1 such that q1 = y1y2 + 1 is

prime and gcd(e; y1) = 1.
4) Compute d and k1 satisfying ed = 1 + k1(p1 � 1)(q1 � 1).
5) If q2 = k1x2 + 1 is not prime then go back to step 3.
6) Let N1 = p1q1; N2 = p2q2, and k2 = y1.
7) Output the public key (e;N1; N2) and the private key

(d; p1; q1; p2; q2).
Output: (e;N1; N2) and (d; p1; q1; p2; q2). �

The correctness of this algorithm follows from the same reasoning
as the first algorithm (see (5)).

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for their valu-
able comments and suggestions on the part of security analysis, which
certainly led to improvements of this correspondence.

REFERENCES

[1] S. Berkovits, “Factoring via superencryption,” Cryptologia, vol. 6, no.
3, pp. 229–237, 1982.

[2] M. Bellare and P. Rogaway, “Optimal asymmetric encryption—How
to encrypt with RSA,” in Advances in Cryptology—EUROCRYPT’94,
ser. Lecture Notes in Computer Science, A. D. Santis, Ed. New York:
Springer, 1995, vol. 950, pp. 92–111.

[3] D. Bleichenbacher and A. May, “New attacks on RSA with small secret
CRT-exponents,” in Public Key Cryptology—PKC 2006, ser. Lecture
Notes in Computer Science. New York: Springer, 2006, vol. 3958,
pp. 1–13.

[4] J. Blömer and A. May, Eds., “Low Secret Exponent RSA Revisited,”
in Cryptography and Lattices, Int. Conf., CaLC 2001, J. H. Silverman,
Ed., 2001, vol. 2146, pp. 4–19, Springer, Lecture Notes in Computer
Science.

[5] D. Boneh, “Twenty years of attacks on the RSA cryptosystem,” Notices
of the American Mathematical Society, vol. 46, no. 2, pp. 203–213,
1999.

[6] D. Boneh and G. Durfee, “Cryptanalysis of RSA with private key d less
than N ,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1339–1349,
Jul. 2000.

[7] D. Boneh, G. Durfee, and Y. Frankel, “An attack on RSA given a
small fraction of the private key bits,” in Advances in Cryptology—ASI-
ACRYPT’98, ser. Lecture Notes in Computer Science, K. Ohta and D.
Pei, Eds. New York: Springer, 1998, vol. 1514, pp. 25–34.

[8] D. Boneh and H. Shacham, “Fast variants of RSA,” CryptoBytes, vol.
5, no. 1, pp. 1–9, 2002.

[9] D. Chaum, “Untraceable electronic mail, return address and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, Feb. 1981.

[10] D. Coppersmith, “Finding a small root of a bivariate integer equation;
Factoring with high bits known,” in Advances in Cryptology—EURO-
CRYPT’96, ser. Lecture Notes in Computer Science, U. M. Maurer,
Ed. New York: Springer, 1996, vol. 1070, pp. 178–189.

[11] D. Coppersmith, “Finding a small root of a univariate modular equa-
tion,” in Advances in Cryptology—EUROCRYPT’96, ser. Lecture
Notes in Computer Science, U. M. Maurer, Ed. New York: Springer,
1996, vol. 1070, pp. 155–165.

[12] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, “Low-expo-
nent RSA with related message,” in Advances in Cryptology—EURO-
CRYPT’96, ser. Lecture Notes in Computer Science, U. M. Maurer,
Ed. : Springer, 1996, vol. 1070, pp. 1–9.

[13] A. Dujella, “Continued fractions and RSA with small secret exponent,”
Tatra Mt. Math. Publ., vol. 29, pp. 101–112, 2004.

[14] S. D. Galbraith, C. Heneghan, and J. F. McKee, “Tunable balancing
of RSA,” in Proc. Inf. Security and Privacy, 10th Australasian Conf.,
ACISP 2005, C. Boyd and J. M. G. Nieto, Eds., 2005, vol. 3574, pp.
280–292, Springer, Lecture Notes in Computer Science.

[15] S. D. Galbraith, C. Heneghan, and J. F. McKee, Tunable Balancing
of RSA, Full Version of [4] [Online]. Available: http://www.isg.
rhul.ac.uk/sdg/full-tunable-rsa.pdf

[16] M. Gysin and J. Seberry, “Generalised cycling attacks on RSA and
strong RSA primes,” in Proc. Inf. Security and Privacy, 4th Aus-
tralasian Conf., ACISP 1999, 1999, vol. 1587, pp. 149–163, Springer,
Lecture Notes in Computer Science.

[17] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Num-
bers, 4th ed. Cambridge, U.K.: Oxford Univ. Press, 1960.

[18] D. Hühnlein, M. J. Jacobson, S. Paulus, and T. Takagi, “A cryp-
tosystem based on non-maximal imaginary quadratic orders with
fast decryption,” in Advances in Cryptology—EUROCRYPT’98, ser.
Lecture Notes in Computer Science. New York: Springer, 1998, vol.
1403, pp. 294–307.

[19] M. J. Hinek, “Another look at small RSA exponents,” in Topics in
Cryptology-CT-RSA 2006, ser. Lecture Notes in Computer Science, D.
Pointcheval, Ed. New York: Springer, 2006, vol. 3860, pp. 82–98.

[20] M. Joye, J.-J. Quisquater, and T. Takagi, “How to choose secret pa-
rameters for RSA and its extension to elliptic curves,” Designs, Codes
Cryptogr., vol. 23, no. 3, pp. 297–316, 2001.

[21] E. Jochemsz and A. May, “A strategy for finding roots of multivariate
polynomials with new applications in attacking RSA variants,” in Ad-
vances in Cryptology—ASIACRYPT’06, ser. Lecture Notes in Com-
puter Science. New York: Springer, 2006, vol. 4284, pp. 267–282.

[22] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials with
rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–534,
1982.

[23] H. W. Lenstra, “Factoring integers with elliptic curves,” Ann. Math.,
vol. 126, pp. 649–673, 1987.

[24] A. K. Lenstra, “Generating RSA moduli with a predetermined por-
tion,” in Advances in Cryptology—ASIACRYPT’98, ser. Lecture Notes
in Computer Science, K. Ohta and D. Pei, Eds. New York: Springer,
1998, vol. 1514, pp. 1–10.

[25] A. K. Lenstra, “Unbelievable security. Matching AES security using
public key systems,” in Advances in Cryptology—ASIACRYPT’01,
ser. Lecture Notes in Computer Science, C. Boyd, Ed. New York:
Springer, 2001, vol. 2248, pp. 67–86.

[26] A. K. Lenstra, B. M. M. de Weger, T. RSA, E. Dawson, and S.
Vaudenay, Progress in Cryptology—Mycrypt 2005, ser. Lecture Notes
in Computer Science. New York: Springer, 2005, vol. 3715, pp.
222–228.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007 2933

[27] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC, 1996, Discrete Math-
ematics and Its Applications.

[28] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Num-
bers. New York: Wiley, 1991.

[29] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as se-
cure as factoring,” in Advances in Cryptology—EUROCRYPT’98, ser.
Lecture Notes in Computer Science. New York: Springer, 1998, vol.
1403, pp. 308–318.

[30] J. M. Pollard, “Theorems on factorization and primality testing,” Proc.
Cambridge Philosophical Soc., vol. 76, pp. 521–528, 1974.

[31] G. Qiao and K.-Y. Lam, “RSA signature algorithm for microcon-
troller implementation,” in Smart Card Research and Applications,
CARDIS’98, ser. Lecture Notes in Comput. Sci., J.-J. Quisquater and
B. Schneier, Eds. New York: Springer, 1998, vol. 1820, pp. 353–356.

[32] J.-J. Quisquater and C. Couvreur, “Fast decipherment algorithm for
RSA public key cryptosystem,” Electron. Lett., vol. 18, no. 21, pp.
905–907, Oct. 1982.

[33] R. Rivest, A. Shamir, and L. Aldeman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no.
2, pp. 120–126, 1978.

[34] R. Rivest and R. Silverman, Are “Strong Prime” Needed for RSA?
Cryptology ePrint Archive Report 2001/007, 2001 [Online]. Available:
http://eprint.iacr.org/2001/007

[35] R. D. Silverman, “Fast generation of random, strong RSA primes,”
CryptoBytes, vol. 3, no. 1, pp. 9–13, 1997.

[36] H.-M. Sun, M. J. Hinek, and M.-E. Wu, On the design of Rebalanced-
RSA, revised version of [37] Centre for Applied Cryptographic Re-
search, Technical Report CACR 2005-35, 2005 [Online]. Available:
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf

[37] H.-M. Sun and M.-E. Wu, An approach towards Rebalanced RSA-CRT
with short public exponent Cryptology ePrint Archive, Report 2005/
053, 2005 [Online]. Available: http://eprint.iacr.org/2005/053

[38] H.-M. Sun and C.-T. Yang, “RSA with balanced short exponents and its
application to entity authentication,” in Public Key Cryptology—PKC
2005, Lecture Notes in Computer Science. New York: Springer, 2005,
vol. 3386, pp. 199–215.

[39] H.-M. Sun, W.-C. Yang, and C.-S. Laih, “On the design of RSA with
short secret exponent,” in Advances in Cryptology—ASIACRYPT’99,
ser. Lecture Notes in Computer Science, K.-Y. Lam, E. Okamoto, and
C. Xing, Eds. Berlin: Springer, 1999, vol. 1716, pp. 150–164.

[40] T. Takagi, “Fast RSA-type cryptosystem modulo p q,” in Advances in
Cryptology-CRYPTO’98, ser. Lecture Notes in Computer Science.
New York: Springer, 1998, vol. 1462, pp. 318–326.

[41] S. A. Vanstone and R. J. Zuccherato, “Short RSA keys and their gen-
eration,” J. Cryptol., vol. 8, no. 2, pp. 101–114, Mar. 1995.

[42] E. R. Verheul and H. C. A. van Tilborg, “Cryptanalysis of ‘less short’
RSA secret exponents,” Appl. Algebra Eng. Commun. Comput., vol. 8,
no. 5, pp. 425–435, 1997.

[43] G. Wang, Bibliography on Blind Signatures [Online]. Available:
http://www.i2r.a-star.edu.sg/icsd/staff/guilin/bible/blind-sign.htm
[ONLINE], Available

[44] M. J. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE
Trans. Inf. Theory, vol. 36, no. 3, pp. 553–559, May 1990.

Applications of LDPC Codes to the Wiretap Channel

Andrew Thangaraj, Member, IEEE,
Souvik Dihidar, A. R. Calderbank, Fellow, IEEE,

Steven W. McLaughlin, Fellow, IEEE, and Jean-Marc Merolla

Abstract—With the advent of quantum key distribution (QKD) systems,
perfect (i.e., information-theoretic) security can now be achieved for distri-
bution of a cryptographic key. QKD systems and similar protocols use clas-
sical error-correcting codes for both error correction (for the honest par-
ties to correct errors) and privacy amplification (to make an eavesdropper
fully ignorant). From a coding perspective, a good model that corresponds
to such a setting is the wire tap channel introduced by Wyner in 1975. In
this correspondence, we study fundamental limits and coding methods for
wire tap channels. We provide an alternative view of the proof for secrecy
capacity of wire tap channels and show how capacity achieving codes can be
used to achieve the secrecy capacity for any wiretap channel. We also con-
sider binary erasure channel and binary symmetric channel special cases
for the wiretap channel and propose specific practical codes. In some cases
our designs achieve the secrecy capacity and in others the codes provide
security at rates below secrecy capacity. For the special case of a noiseless
main channel and binary erasure channel, we consider encoder and de-
coder design for codes achieving secrecy on the wiretap channel; we show
that it is possible to construct linear-time decodable secrecy codes based on
low-density parity-check (LDPC) codes that achieve secrecy.

Index Terms—Binary erasure channels, low-density parity-check
(LDPC) codes, secrecy capacity, secrecy codes, wire tap channels.

I. INTRODUCTION AND MOTIVATION

The notion of communication with perfect security was defined in in-
formation-theoretic terms by Shannon [1]. Suppose a k-bit messageM
is to be transmitted securely from Alice to Bob across a public channel.
Perfect security is said to be achieved if the encoding ofM into a trans-
mitted word X is such that the mutual information I(M;X) = 0.
From this definition, Shannon concluded that Alice and Bob should
necessarily share k bits of key for achieving perfect security.

An alternative notion of communication with security was intro-
duced by Wyner [2]. Wyner introduced the wire tap channel, which
has matured into a system depicted in Fig. 1. In a wire tap channel,
the honest parties Alice and Bob are separated by a channel C1 called
the main channel. The important modification when compared to
Shannon’s study of security is that any eavesdropper Eve observes
information transmitted by Alice through another channel C2 called

Manuscript received December 22, 2005; revised October 19, 2006. This
work was performed while A. Thangaraj, S. Dihidar, S. McLaughlin, and J.-M.
Merolla were with the GTL-CNRS Telecom Lab, Metz, France. The material in
this correspondence was presented in part at the IEEE International Symposium
on Information Theory, Adelaide, Australia, September 2005.

A. Thangaraj is with the Department of Electrical Engineering, Indian Insti-
tute of Technology Madras, Chennai 600036, India (e-mail: andrew@iitm.ac.
in).

S. Dihidar is with Marvell Semiconductor, Santa Clara, CA 95054 USA He is
also with the Electrical and Computer Engineering Department, Georgia Insti-
tute of Technology, Atlanta, GA 30332 USA (e-mail: dihidar@ece.gatech.edu).

A. R. Calderbank is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: calderbk@math.princeton.edu).

S. W. McLaughlin is with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA . He is also
with GT-CNRS Unité Mixte Internationale (UMI 2958), Metz, France (e-mail:
swm@ece.gatech.edu).

J.-M. Merolla is with the CNRS FEMTO Lab, Besançon, France (e-mail:
merolla@georgiatech-metz.fr).

Communicated by M. P. C. Fossorier, Associate Editor for Coding Tech-
niques.

Digital Object Identifier 10.1109/TIT.2007.901143

0018-9448/$25.00 © 2007 IEEE

