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APPLICATION OF VINCENT'S THEOREM IN CRYPTOGRAPHY

OR

ONE-TIME PADS MADE PRACTICAL

ALKIVIADIS 6. AKRITAS

It is a well known fact that one-time pads are unconditionally crypto secure. 
As an example consider the scheme based on c^ = + k^ (mod 26) where the
i-th symbol of the ciphertext, cis obtained by adding modulo 26 the i-th 
message (plaintext) symbol m^ and the i-th key symbol k^. Clearly, without 
knowledge of the key k^, i = 1,2,... it is impossible to recover the plain­
text, because all messages of the same length are equiprobable. The basic 
drawback, however, of known one-time pads is that an enormous amount of key 
must be generated and distributed before the commencement of communications. 
Because of the high cost involved in the key management, one-time pads are 
used only for highly sensitive communications, e.g. Moscow-Washington hot-line 
and high-level military communications.

In what follows, we propose a new one-time pad scheme where key management 
doe snot present a problem. As we will immediately see, with our scheme the 
key is "concealed" in a polynomial equation which can be easily exchanged 
using the public key-distribution methods described in 141. Our approach is 
based on the following:

Vincent's Theorem Let P(x) = 0 be a polynomial equation of degree 
n > 1, with rational coefficients and without multiple roots, and let 
A > 0 be the smallest distance between any two of its roots. Let m 
be the smallest index such that

A
^m-l 2 and VlFm A > 1 + ^

where is the k-th member of
1,1,2,3,5,8,13,... and

the Fibonacci sequence
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Then the continued fraction transformation 
x = aj + 1 +

a2

. + _1_ + 1
yin ^

(which is equivalent to the series of successive transformations of 
the form x = a. + ~\~f * ~ with arbitrary, positive,
integral elements a^; aj,..., am, transforms the equation P(x) = 0 
into the equation P(y) = 0, which has not more than one sign 
variation in the sequence of its coefficients.

The theorem, as stated above, is an extension of Vincent's original theorem 
which was published in 1836 [8], and it has been used to isolate the real 
roots of a polynomial equation [7], [1] .

To see how it is applied, observe the following:

(i) The continued fraction transformation (1) can be also written as

_ V + Vi
X - V + Vl (2)

where P^/Q^ is the k-th convergent to the continued fraction

x = a-, + 1
a2 + _1_

a3 + .

and as we recall
Pk+1 = ^+1 Pk + Pk-1 

%+l = ak+l % + %-l

(ii) Provided there are positive roots, when the partial quotients a^ are 
properly chosen (explained below) (2) (or (1)) leads to an equation P(y) = 0 
with exactly one sign variation in the sequence of its coefficients. Then 
from the Cardano-Descartes rule of signs we know that P(y) = 0 has one root in 
the interval (0,«>). If y was this pos itive root, then the corresponding root 
x of P(x) could be easily obtained from (2). We only know though that y lies 
in the interval (0,®); therefore, substituting y in (2) once by 0 and once by 
00 we obtain for the positive root x its isolating interval whose unordered
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endpoints are Pm-i/Qm-l and Pm/Qm* Note that to each positive root there 
corresponds a different continued fraction: at most m partial quotients have 
to he computed for the isolation of any positive root. (Negative roots can he 
isolated if we replace x hy -x in the original equation.)

We now present a recurs ive description of the way in which we obtain an 
equation with one sign variation in the sequence of its coefficients (or 
equivalently, how we choose the partial quotients; see also [1]).

Recursive description of the isolation procedure:

Let
P(x) = 0 (3)

he a polynomial equation with (i sign variations in the sequence of it's 
integer coefficients and without multiple roots.

BASE: p = 0 or p = 1. From the Cardano-Des cartes rule of signs we know that 
p - 0 implies that (3) has no positive roots, whereas p = 1 indicates that (3) 
has exactly one positive root, in which case (0,“) is its isolating interval; 
in either case, no transformation of (3) is necessary, and the method stops.

RECURSION: p > 1. In this case (3) has to he further investigated. We first 
compute the lower hound h on the values of the positive roots and then we 
obtain the translated equation Pfo(x) = P(b+x) = 0, which also has p sign 
variations provided P(b) £ 0 (if P(b) = 0 we have found an integer root of the 
original equation and p is decreased). P^(x) = 0 is now transformed hy the 
substitutions x ■<— 1+x and x <— l/(l+x) and the procedure is applied again 
twice, once with P^(l/(l-hx)) = 0 in place of (3) and once with P^d+x) = 0.

The lower hound on the positive roots is computed with the help of Cauchy's 
rule [1], Detailed algorithms can he found in [2], As an illustration let us 
isolate the positive roots of the Chehyshev polynomial equation

8x^ - 8x^ +1=0 (4)

(Recall that Chehyshev polynomials have symmetric roots.) Using our recursive 
procedure we first observe that p = 2, which implies that we need to compute 
the lower hound, h, on the positive roots, h = 0 and so P^(x) = P(x) = 0, 
which is now transformed by the substitutions x -i— 1+x and x -i— 1/(1+x). The 
resulting equations 8x^+32x^+40x^+16x = 0 and x^+4x^-2x^-12x+l = 0 respec­
tively, are easily obtained us ing the Ruff ini-Horner method ([7] ppJ.29-130).
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The first of the transformed equations has no sign variations, indicating that 
there are no positive roots.

Continuing our process with the second transformed equation we obtain two new 
equations, x^+8x^+16x^-8 = 0 and x^-8x -32x -32x-8 = 0, each with only one sign 
variation in the sequence of its coefficients. In a tree form we have:

8x4-8x2+1 = 0

The transformations of the form (2) which lead to the last two equations are 
(l+x)/(2+x) and l/(2+x) from which we see that the isolating intervals for the 
positive roots of the original equation are (1/2,1) and (0,1/2) (the corre­
sponding lists of the partial quotients are (0,1,1) and (0,2)).

Besides real root isolation, Vincent's theorem has been used to approximate 
the real roots of a polynom ial equation to any degree of accuracy [5], [6]. 
(Note that the approach followed in [6] has an exponential computing time 
bound; that is, in certain cases it will not terminate within any reasonable 
amount of time.) One sees that the approximation of the real roots can be 
easily achieved by extending (in various ways) the continued fraction (1) as 
long as desired. The point used in our scheme is that it some of the real 
roots are irrational, then there will be an infinite expansion of the corres­
ponding continued fractions. In Table 1, we approximate to within s = 10 
the two roots we isolated above [5].

Having explained the ideas involved we can now proceed to our cryptographic 
scheme.

315



CRYPTOLOGIA VOLUME 6 NUMBER 4

Table 1

List of Partial Quotients for: Approximating Intervals

Isolation Approximation

(0,14) (11,7,3,2,1,1,1,1,20,5
3,11,1,7)

0.92387953251128634045
0.92387953251128676332

(0,2) (0,1,1,1,1,2,2,4,3,1 
19,6,8,3,2,9)

0.38268343236508971655 
0.38268343236509064218

Proposed one-time-pad scheme: The key, a polynom ial equation of arbitrary 
degree n, P(x) = 0 fulfilling the requirements of Vincent's theorem, is 
distributed to the parties wishing to communicate. (It is assumed, that they 
have implemented the algorithms described in [2] and [5]). In the simplest 
case P(x) = 0 has one positive, irrational root. The party transmitting 
obtains a partial quotient a^ for each plaintext symbol and transmits

(5)ci = m| + (mod 26)

At the other end of the line, for each c^ received there is an computed and 
m^ is easily recovered from (5). Anyone who intercepts the c^'s must find 
(guess) the polynomial equation in order to decipher the message, an impos­
sible task.

Advantages of the new scheme: The proposed scheme provides, once and for all, 
an infinite amount of key. No other polynomial equation ever need be 
exchanged because at the end of each enciphering-deciphering process both 
parties will have obtained a new polynomial equation F(x) = 0, which can be 
used as above for subsequent communications. (Actually P(x) = 0 constitutes 
the new key which both parties already possess.)

Things to watch for and topics for further research: Caution should be 
exercised in selecting the polynomial equation so that its real root is not a 
quadratic irrational which is represented by a periodic continued fraction. 
Moreover, from [3] we know that for almost all numbers a, the probability that 
the n-th partial quotient an» in the continued fraction expansion of a, equal 
to a positive integer j is given by

(6)
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For j = 1 and almost all numbers, this means that the probability for aQ = 1 
is approximately .41 (see also Table 1). Therefore in order to better conceal 
messages, our scheme has to be modified. Two possible modifications (which 
need more study) are the following: (m^) After the computation of each 
partial quotient , calculate the decimal expansion of the root and use the 
next decimal digit d^ as the next key k^ (I am indebted to a referee for this 
suggestion.) (n^) Use a counter initialized to some constant so that

Ci = m^ + a^ + counterj (mod 26) 

where counter^ = counter^^ + 1.

Another problem that needs further investigation is how to speed up computa­
tions. The algorithms described in [2] and [5] have been implemented in the 
computer algebra system SAC-1 (Symbolic and Algebraic Computations-Version 1) 
which provides exact (infinite precision) integer arithmetic. This implies 
that, in our scheme, as the continued fraction expands, the coefficients of 
the polynomial equation will continuously grow, and the speed of the computa­
tions will slow down. The most obvious solution seems to be to reduce the 
coefficients modulo a certain prime p, after the computation of 1 partial 
quotients (p and X could form part of the key exchanged).

We are currently investigating these, and other alternatives and we hope to 
come up with interesting results. It is our hope that this paper will 
stimulate the reader for further research on the subject.
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