
Proof Verification and the Hardness of

Approximation Problems

Sanjeev Arora∗ Carsten Lund† Rajeev Motwani‡

Madhu Sudan§ Mario Szegedy¶

Abstract

We show that every language in NP has a probablistic verifier that checks mem-

bership proofs for it using logarithmic number of random bits and by examining a

constant number of bits in the proof. If a string is in the language, then there exists

a proof such that the verifier accepts with probability 1 (i.e., for every choice of its

random string). For strings not in the language, the verifier rejects every provided

“proof" with probability at least 1/2. Our result builds upon and improves a recent

result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits

in the proof (though this number is a very slowly growing function of the input

length).

As a consequence we prove that no MAX SNP-hard problem has a polynomial

time approximation scheme, unless NP=P. The class MAX SNP was defined by Pa-

padimitriou and Yannakakis [82] and hard problems for this class include vertex

cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest

superstring. We also improve upon the clique hardness results of Feige, Goldwasser,

Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists

a positive ε such that approximating the maximum clique size in an N-vertex graph

to within a factor of Nε is NP-hard.

1 Introduction

Classifying optimization problems according to their computational complexity is a

central endeavor in theoretical computer science. The theory of NP-completeness, de-

veloped by Cook [36], Karp [69] and Levin [75], shows that many decision problems

of interest, such as satisfiability, are NP-complete. This theory also shows that deci-

sion versions of many optimization problems, such as the traveling salesman problem,

∗arora@cs.princeton.edu. Department of Computer Science, Princeton University, NJ 08544. This
work was done when this author was a student at the University of California at Berkeley, supported by
NSF PYI Grant CCR 8896202 and an IBM fellowship. Currently supported by an NSF CAREER award, an
Alfred P. Sloan Fellowship and a Packard Fellowship.
†lund@research.att.com. AT&T Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974.
‡rajeev@cs.stanford.edu. Department of Computer Science, Stanford University, Stanford, CA

94305. Supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Partnership Award, NSF grant
CCR-9010517, NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Mitsubishi,
Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
§madhu@lcs.mit.edu. Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA

02139. Parts of this work were done when this author was at the University of California at Berkeley,
supported by NSF PYI Grant CCR 8896202, and at the IBM Thomas J. Watson Research Center.
¶ms@research.att.com. AT&T Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974.

1

bin packing, graph coloring, and maximum clique are NP-complete, thus implying that

those optimization problems are NP-hard. If P ≠ NP, no polynomial-time algorithm can

solve them optimally.

Given this evidence of intractability, researchers have attempted to design polynomial

time approximation algorithms for the NP-hard optimization problems [53, 81]. An

algorithm is said to approximate a problem within a factor c, where c ≥ 1, if it computes,

for every instance of the problem, a solution whose cost (or value) is within a factor c
of the optimum.

While all NP-complete decision problems are polynomial-time equivalent, research over

the past two decades [53, 81], starting with the papers of Johnson [66] and Sahni and

Gonzales [92], suggests that NP-hard optimization problems differ vastly if we are in-

terested in computing approximately optimal solutions. Some NP-hard problems, such

as the knapsack problem [91, 64], have a Fully Polynomial Time Approximation Scheme:

an algorithm that, for any given ε > 0, approximates the problem within a factor 1+ ε
in time that is polynomial in the input size and 1/ε. The class of problems with such

approximation schemes is called FPTAS. Some other NP-hard problems, such as the

problem of scheduling processes on a multiple processor machine so as to minimize

their makespan [60], have a Polynomial Time Approximation Scheme: an algorithm that,

for any given ε > 0, approximates the problem within a factor 1 + ε in time that is

polynomial in the input size (and could depend arbitrarily upon 1/ε). The class of

problems with such approximation schemes is called PTAS. Most problems of interest

are not known to be in PTAS. However, many of the latter problems, such as maximum

cut, vertex cover, and the metric traveling salesman problem, have a constant-factor

approximation algorithm, i.e., algorithms which for some fixed constant c > 1, are able

to approximate the optimal solution to within a factor c in polynomial time. The class

of such problems is called APX. It follows from the definitions that FPTAS ⊆ PTAS ⊆
APX.

Researchers have also tried to show that problems do not belong to some of the classes

above. The notion of strong NP-completeness was introduced by Garey and Johnson [52]

to show that a large collection of problems are not in FPTAS if P ≠ NP. Sahni and

Gonzalez [92] showed that the (unrestricted) traveling salesman problem is not in APX

if P ≠ NP. But the status of many other problems remained open. For example, it was

not known if the clique problem is in APX.

In a recent breakthrough, Feige, Goldwasser, Lovász, Safra, and Szegedy [42] provided

strong evidence that clique is not in APX. They showed that if it is possible to approxi-

mate the clique number to within any constant factor in polynomial time, then every NP

problem can be solved in nO(log logn) time. More recently, Arora and Safra [6] improved

this result to show that if clique is in APX, then P = NP. In other words, approximating

clique within any constant factor is NP-hard. These results relied upon algebraic tech-

niques from complexity theory and the theory of interactive proofs. Arora and Safra

also used these techniques to give a new probabilistic characterization of NP which is

of independent interest (and is described below).

However, there has been less progress in showing that APX problems are not in PTAS.

The one important work in this direction is due to Papadimitriou and Yannakakis [82],

who show that a large subset of APX problems are essentially equivalent in this regard:

either all of them belong to PTAS, or none of them do. They used second order logic to

define a class of NP optimization problems called MAX SNP that is contained within APX.

(The inspiration to use 2nd order logic came from the work of Fagin [40] and Kolaitis

and Vardi [73].) They also defined a notion of approximation-preserving reductions

and, thereby, the notion of completeness and hardness for MAX SNP. We will not define

2

these terms here, except to note that a MAX SNP-complete problem is in PTAS if and only

if MAX SNP ⊆ PTAS, and that if a MAX SNP-hard problem is in PTAS, then MAX SNP ⊆
PTAS. Many APX problems of real interest are MAX SNP-hard, e.g., MAX-3SAT, MAX-

CUT, vertex cover, independent set, and metric traveling salesman problem. Note that

to show that none of the MAX SNP-hard problems is in PTAS, it suffices to exhibit just

one MAX SNP problem that is not in PTAS.

In this paper we show that if P ≠ NP, then the MAX SNP problem MAX-3SAT — the

problem of computing the maximum number of simultaneously satisfiable clauses in a

3-CNF formula — is not in PTAS. Thus, it follows that if P ≠ NP, then all MAX SNP-hard

problems are not in PTAS.

Our result, like those of Feige et al. and Arora and Safra, involves constructing effi-

cient verifiers that probabilistically check membership proofs for NP languages. As a

consequence, we improve upon Arora and Safra’s characterization of NP.

In the concluding section of the paper (Section 8) we discuss related work that has

appeared since the circulation of the first draft of this paper.

1.1 Related Recent Work

As hinted above, a large body of work in complexity theory and the theory of interac-

tive proofs forms the backdrop for our work. We briefly describe the more relevant

developments.

1.1.1 Proof Verification

By definition, NP is the class of languages for which membership proofs can be checked

in deterministic polynomial time in the length of the input. In other words, for every NP

language L, there exists a polynomial time Turing MachineM , called a verifier, that takes

pairs of strings as its input and behaves as follows: if a string x ∈ L, then there exists

a string π of length polynomial in |x| such that M accepts the pair (x,π); conversely,

if x 6∈ L, then for all strings π , M rejects (x,π).

Generalizing the above definition of NP leads to definitions of interesting new com-

plexity classes, which have been the subject of intense research in the past decade.

Goldwasser, Micali and Rackoff [59] and Babai [10, 16] allowed the verifier to be a prob-

abilistic polynomial-time Turing Machine that interacts with a “prover,” which is an

infinitely powerful Turing Machine trying to convince the verifier that the input x is

in the language. A surprising recent result, due to Lund, Fortnow, Karloff and Nisan

[77] and Shamir [94], has shown that every language in PSPACE — which is suspected

to be a much larger class than NP — admits such “interactive” membership proofs.

Another variant of proof verification, due to Ben-Or, Goldwasser, Kilian and Wigderson

[24], involves a probabilistic polynomial-time verifier interacting with more than one

mutually non-interacting provers. The class of languages with such interactive proofs

is called MIP (for Multi-prover Interactive Proofs). Fortnow, Rompel and Sipser [46] gave

an equivalent definition of MIP as languages that have a probabilistic polynomial-time

oracle verifier that checks membership proofs (possibly of exponential length) using

oracle access to the proof. This equivalent definition is described below, using the term

probabilistically checkable proofs introduced by Arora and Safra.

Babai, Fortnow and Lund [13] recently showed that MIP is exactly NEXP, the class of

languages for which membership proofs can be checked deterministically in exponen-

tial time. This result is surprising because NEXP is just the exponential analogue of

3

NP, and its usual definition involves no notion of randomness or interaction. There-

fore researchers tried to discover if the MIP = NEXP result can be “scaled-down” to say

something interesting about NP. Babai, Fortnow, Levin and Szegedy [14] introduced

the notion of transparent membership proofs, namely, membership proofs that can

be checked in polylogarithmic time, provided the input is encoded with some error-

correcting code. They showed that NP languages have such proofs. Feige et al. [42]

showed a similar result, but with a somewhat more efficient verifier. Arora and Safra

[6] further improved the efficiency of checking membership proofs for NP languages.

They also gave a surprising new characterization of NP. We describe their result below,

and describe how we have improved upon it.

Arora and Safra define a hierarchy of complexity classes called PCP (for Probabilistically

Checkable Proofs). This definition uses the notion of a “probabilistic oracle verifier” of

Fortnow et al. [46] and classifies languages based on how efficiently such a verifier can

check membership proofs for them. The notion of “efficiency” refers to the number of

random bits used by the verifier as well as the number of bits it reads in the membership

proof. Note that we count only the bits of the proof that are read - not the bits of the

input which the verifier is allowed to read fully. These parameters were first highlighted

by the work of Feige et al.[42]. In fact, the definition of a class very similar to PCP was

implicit in the work of Feige et al. [42].

Definition 1 ([6]) For functions r , q : Z+ → Z+, a probabilistic polynomial-time verifier

V is (r(n), q(n))-restricted if, for every input of size n, it uses at most r(n) random bits

and examines at most q(n) bits in the membership proof while checking it.

A language L ∈ PCP(r(n), q(n)) if there exists a (r(n), q(n))-restricted polynomial-time

verifier that, for every input x, behaves as follows:

• if x ∈ L, then there exists a membership proof π such that V accepts (x,π) with

probability 1 (i.e., for every choice of its random bits);

• if x 6∈ L, then for any membership proof π , V accepts π with probability at most

1/2.

The PCP notation allows a compact description of many known results,

• NEXP = ∪c>0PCP(nc , nc) (Babai, Fortnow, and Lund [13]).

• NP ⊆ ∪c>2PCP(logc n, logc n,) (Babai, Fortnow, Levin, and Szegedy [14]).

• NP ⊆ ∪c>0PCP(c logn loglogn, c logn loglogn) (Feige, Goldwasser, Lovász, Safra,

and Szegedy [42]).

• NP = ∪c>0PCP(c logn, c
√

logn) (Arora and Safra [6]).

Notice that the first and the last of the above relations are exact characterizations of

the complexity classes NEXP and NP, respectively. In this paper we improve upon the

last result (see Theorem 4).

1.1.2 PCP and Non-approximability

A result due to Feige et al. [42] implies that in order to prove the hardness of approx-

imating the clique number, it suffices to show that some NP-complete language is low

in the PCP hierarchy. The following statement summarizes this result.

4

Theorem 2 ([42]) Suppose q : Z+ → Z+ is a logarithmically bounded non-decreasing

function and c is a constant such that

3-SAT ∈ PCP(c logn,q(n)).

Then there exists a constant k such that approximating the clique number in an N ≥ n-

vertex graph to within a factor of N1/(k+q(N)) is NP-hard.

Remark: The above statement is a well-known implication of the result of Feige et

al. [42]. It uses the idea of reducing the error probability of the verifier using “recycled”

random bits (see [32, 65]). For further details see [6].

Thus, as a consequence of the new characterization of NP due to Arora and Safra [6], it

follows that approximating the clique number within a factor 2θ(
√

logN) is NP-hard.

The discovery of Theorem 2 inspired the search for other connections between proba-

bilistic proof checking and non-approximability (Bellare [18], Bellare and Rogaway [22],

Feige and Lovász[45], and Zuckerman [100]). Another such connection is reported by

Arora, Motwani, Safra, Sudan and Szegedy [5], which shows the connection between

PCP’s and the hardness of approximating MAX 3SAT. The following theorem summa-

rizes this result; for a proof see Section 3.

Theorem 3 ([5]) If NP ⊂ ∪c>0PCP(c logn,q) for some positive integer q, then there exists

a constant ε > 0, such that approximating MAX-3SAT within a factor 1+ ε is NP-hard.

1.2 Our results

The main result of this paper is a new characterization of NP in terms of PCP, which

improves the earlier characterization due to Arora and Safra [6].

Theorem 4 (Main) There is a positive integer q such that

NP = ∪c>0PCP(c logn,q).

The containment ∪c>0PCP(c logn,q) ⊆ NP is trivial, since a verifier that uses O(logn)
random bits can be replaced by a deterministic verifier. The nontrivial containment

NP ⊆ ∪c>0PCP(c logn,q) is a consequence of our Theorem 17 below.

We note that the characterization in Theorem 4 is probably optimal up to constant

factors, since, as observed in [6], if P ≠ NP, then NP 6⊆ PCP(o(logn), o(logn)).

As an immediate consequence of our main theorem and Theorem 3, we have the fol-

lowing.

Theorem 5 There exists a constant ε > 0 such that approximating the maximum num-

ber of simultaneously satisfiable clauses in a 3CNF formula within a factor 1 + ε is NP-

hard.

As noted earlier, Theorem 5 implies that if P ≠ NP then no MAX SNP-hard problem is in

PTAS. The class of MAX SNP-hard problems includes MAX 2SAT, MAX CUT, vertex cover

[82], metric TSP [83], Steiner tree [26], shortest superstrings [27], MAX 3DM [67], and

multiway cut [38]. Our theorem above implies that for every one of these problems Π,

there exists a threshold εΠ such that approximating Π within a factor 1+εΠ is NP-hard.

Also, as a consequence of our main theorem and Theorem 2, we can prove the following

result about the non-approximability of clique number.

5

Theorem 6 There exists a constant ε > 0, such that approximating the maximum clique

size in an N-vertex graph to within a factor of Nε is NP-hard.

The previous best result (in [6]) shows that approximating clique to within a factor of

2
√

logN is NP-hard.

Our techniques. Our proof of Theorem 4 uses techniques similar to those in recent

results about PCPs (Babai, Fortnow, Levin, and Szegedy [14]; Feige, Goldwasser, Lovász,

Safra and Szegedy [42]; and Arora-Safra [6]). The concept of Recursive Proof Checking

invented by Arora and Safra plays a particularly important role (see Section 2). We were

also influenced by work on program checking and correcting, especially Blum, Luby,

and Rubinfeld [30], and Rubinfeld and Sudan [90]. The influence of the former will be

apparent in Section 5, while the latter work (together with a lemma of Arora and Safra

[6]) is used in our analysis of a Low Degree Test described in Section 7.2. Finally, we

were influenced by work on constant prover 1-round interactive proof systems [74, 45].

In fact, our definition of an outer verifier (Definition 8) may be viewed as a generalization

of the definition of such proof systems, and our Theorem 4 provides the first known

construction of a 2-prover 1-round proof system that uses logarithmic random bits and

constant number of communication bits. In fact, prior to this paper, no construction

of constant prover one round proof system using logarithmic random bits and no(1)

communication bits was known. Theorem 14, which presents such a proof system with

logarithmic randomness and polylogarithmic communication bits, already improves

upon the performance of known constructions and plays a central role in the proof of

Theorem 4.

2 Proof of the Main Theorem: Overview

A key paradigm in the proof of Theorem 4 is the technique of recursive proof checking

from [6]. The technique, described in Theorem 13, involves constructing two types of

verifiers with certain special properties, and then composing them. If the first verifier

queries q1(n) bits in the membership proofs while checking it and the second verifier

queries q2(n) bits, where n is the input size, then the composed verifier queries the

proof in approximately q2(q1(n)) bits. Typically, q1 and q2 are sublinear functions of

n (actually, they are closer to logn), so the function q1 ◦ q2 grows slower than either

q1 or q2.

As already mentioned, the above composition is possible only when the two verifiers

have certain special properties, which we describe below. The main contribution of this

paper are some new techniques for constructing such verifiers, which will be described

when we prove Theorems 14 and Theorems 15.

First we introduce some terminology. We define CKT-SAT, an NP-complete language.

An algebraic circuit (or just circuit for short) is a directed acyclic graph with fan-in 2.

Some of the nodes in the graph are input nodes; the others are internal nodes, each

marked with one of the two symbols + and · that are interpreted as operations over

the field GF(2). One special internal node is designated as the output node. We may

interpret the circuit as a device that for every assignment of 0/1 values to the input

nodes, produces a unique 0/1 value for each internal node, by evaluating each node in

the obvious way according to the operation (+ or ·) labeling it. For a circuit C with n
input nodes and an assignment of values x ∈ {0,1}n to the input nodes, the value of

C on x, denoted C(x), is the value produced this way at the output node. If C(x) = 1,

6

we say x is a satisfying assignment to the circuit. The size of a circuit is the number of

gates in it. The CKT-SAT problem is the following.

CKT-SAT

Given: An algebraic circuit C .

Question: Does C have a satisfying assignment?

Clearly, CKT-SAT ∈ NP. Furthermore, a 3-CNF formula can be trivially reformulated as

a circuit, so CKT-SAT is NP-complete.

Oracles. All verifiers in this paper expect membership proofs to have a very regular

structure — the proof consists of oracles. An oracle is a table each of whose entries is a

string from {0,1}a, where a is some positive integer called the answer size of the oracle.

The verifier can read the contents of any location in the table by writing its address on

some special tape. In our constructions, this address is interpreted as an element of

some algebraically defined domain, say D. (That is to say, the oracle is viewed as a

function from D to {0,1}a.) The operation of reading the contents of a location q ∈ D
is called as querying the location q.

2.1 Outer and Inner Verifiers and How They Compose

Now we define two special types of verifiers, the outer and inner verifiers. An outer

verifier can be composed with an inner verifier and, under some special conditions, the

resulting verifier is more efficient than both of them.

The notable feature of both types of verifiers is that their decision process has a suc-

cinct representation as a small circuit. (In our constructions, the size of the circuit

is polylogarithmic in the input size, or less.) By this we mean that the verifier, after

reading the input and the random string, computes a (small) circuit and a sequence of

locations in the proof. Then it queries those locations in the proof, and accepts if and

only if the concatenation of the entries in those locations is a satisfying assignment for

the circuit’s inputs.

Definition 7 For functions r ,p, c, a:Z+ → Z+, an (r(n),p(n), c(n),a(n)) outer veri-

fier is a randomized Turing machine V which expects the membership proof for an input

of size n to be an oracle of answer size a(n). Given an input x ∈ {0,1}n and an oracle

π of answer size a(n), V runs in poly(n) time and behaves as follows:

1. Uses r(n) random bits: V reads x and picks a string R uniformly at random from

{0,1}r(n).

2. Constructs a circuit of size c(n): V computes a circuit C of size c(n).

3. Computes p(n) locations in π : V uses x and R to compute p(n) locations in π .

Let q1, . . . , qp(n) denote these locations.

4. Queries the oracle: V queries the oracle π in locations q1, . . . , qp(n). For i =
1, . . . , p(n), let ai denote the string in the location qi of π .

5. Makes a decision: V outputs accept if a1◦a2◦· · ·◦ap(n) is a satisfying assignment

to circuit C (where ◦ denotes concatenation of strings), and otherwise it outputs

reject. We denote this decision by Vπ(x;R).

7

Remark: Note that the number of entries in the oracle has been left unspecified. But

without loss of generality, it can be upper bounded by 2r(n)p(n), since this is the

maximum number of locations the verifier can query in its 2r(n) possible runs.

Definition 8 For r ,p, c, a:Z+ → Z+ and e < 1, a language L ∈ RPCP(r(n), p(n),
c(n), a(n), e), if there exists a (r(n),p(n), c(n),a(n)) outer verifier which satisfies the

following properties for every input x.

Completeness: If x ∈ L, then there exists an oracle π such that

Pr
R
[Vπ(x;R) = accept] = 1.

Soundness: If x 6∈ L, then for all oracles π ,

Pr
R
[Vπ(x;R) = accept] ≤ e.

In both cases, the probability is over the choice of R in {0,1}r(|x|).

We note that an (r(n),p(n), c(n),a(n)) outer verifier with p(n) = O(1) is very sim-

ilar to a constant prover 1 round interactive proof system [46]. Fairly efficient con-

structions of such verifiers are implicit in [74, 45]; for instance, it is shown that NP ⊆
∪c<∞RPCP((log)cn, O(1), (log)cn, (log)cn, 1/n). We also observe that the definition

of RPCP generalizes that of PCP. In particular, RPCP(r(n), p(n), c(n), a(n), 1/2) ⊆
PCP(r(n),p(n)a(n)), since an (r(n),p(n), c(n),a(n)) outer verifier examinesp(n)a(n)
bits in the oracle. So to prove Theorem 4, it suffices to show L ∈ RPCP(r(n), p(n),
c(n), a(n), 1/2) for some NP-complete language L, where p(n) and a(n) are some

fixed constants and r = O(logn). Not knowing any simple way to achieve this, we give

a 3-step construction (see the proof of Theorem 17). At each step, r remains O(logn),
p remains O(1), and e remains some fixed fraction. The only parameters that change

are c(n) and a(n), which go down from poly(logn) to poly(log logn) to O(1).

First we define an inner verifier, a notion implicit in Arora and Safra [6]. To motivate

this definition, we state informally how an inner verifier will be used during recursive

proof checking. We will use it to perform Step 4 of an outer verifier — namely, checking

that a1 ◦· · ·◦ap(n), the concatenation of the oracle’s replies, is a satisfying assignment

for the circuit C — without reading most of the bits in a1, . . . , ap(n). This may sound

impossible — how can you check that a bit string is a satisfying assignment without

reading every bit in it? But Arora and Safra showed how to do it by modifying a result

of Babai et al. [14] who had shown that if a bit-string is given to us in an encoded

form (using a specific error-correcting code), then it is possible to check a proof that

the string is a satisfying assignment, without reading the entire string! Arora and Safra

show how to do the same check when the input, in addition to being encoded, is also

split into many parts. This is explained further in the definition of an inner verifier.

First we define an encoding scheme, which is a map from strings over one alphabet to

strings over another alphabet. We will think of an encoding scheme as a mapping from

a string to an oracle.

Definition 9 For l, a ∈ Z+, let Fl,a denote the family of functions {f |f : [l] → {0,1}a}.
Equivalently, one can think of Fl,a as the family of l-letter strings over the alphabet

{0,1}a.

8

Definition 10 (Valid Encoding/Decoding Scheme) For functions l, a : Z+ → Z+, an

(l(n),a(n))-encoding scheme is an ensemble of functions E = {En}n∈Z+ , such that

En : {0,1}n → Fl(n),a(n). An (l, a)-decoding scheme is an ensemble of functions E−1 =
{E−1
n }n∈Z+ , such that E−1

n : Fl(n),a(n) → {0,1}n. An encoding/decoding scheme pair

(E, E−1) is valid if for all x ∈ {0,1}∗, E−1
|x|(E|x|(x)) = x.

In other words, an encoding scheme maps an n bits string to an l(n)-letter string over

the alphabet 2a(n). A decoding scheme tries to reverse this mapping and is valid if and

only if E−1 ◦E is the identity function. Notice that the map E−1 could behave arbitrarily

on l(n)-letter strings which do not have pre-images under E.

Now we define inner verifiers. Such verifiers check membership proofs for the language

CKT-SAT, and expect the proof to have a very special structure.

Definition 11 For functions r ,p, c, a : Z+ → Z+, positive integer k and fraction e ∈ R+,

a (k, r(n),p(n), c(n),a(n), e)-inner verifier system is a triple (V , E, E−1), where V is

a probabilistic Turing machine and (E, E−1) is a valid (l(n),a(n))-encoding/decoding

scheme, for some function l : Z+ → Z+.

The input to the verifier is a circuit. The number of input nodes of the circuit is a multiple

of k. Let C be this circuit, let n be its size and km be the number of inputs to C . Then,

V expects the membership proof to consist of k+ 1 oracles X1, . . . , Xk+1, each of answer

size a(n). For clarity, we use the shorthand π for Xk+1. The verifier runs in poly(n)
time and behaves as follows.

1. Uses r(n) random bits: V reads C and picks a random string R ∈ {0,1}r(n).

2. Constructs a circuit of size c(n): Based on C and R, V computes a circuit C′ of

size c(n).

3. Computes p(n) locations in π : V computes p(n) locations q1, . . . , qp(n) in the

oracles. Each location qi is a pair (q1
i , q

2
i) where q1

i ∈ [k+1] denotes the oracle in

which it is contained and q2
i denotes the position within that oracle.

4. Queries the oracles: V uses these p(n) locations computed above to query the

oracles. Let a1, . . . , ap(n) denote the strings received as answers, where each ai ∈
{0,1}a(n).

5. Makes a decision: V outputs accept if a1 ◦ · · · ◦ ap(n) is a satisfying assignment

for C′. Otherwise it outputs reject. We denote this decision by VX1,...,Xk,π(C ;R).

Then the following properties hold.

Completeness: Let x1, . . . , xk be m-bit strings such that x1 ◦ x2 · · · ◦ xk is a sat-

isfying assignment for C . Then there exists an oracle π such that

Pr
R
[VX1,...,Xk,π(C ;R)] = accept] = 1,

where Xj is the encoding Em(xj) for 1 ≤ j ≤ k.

Soundness: If for some oracles X1, . . . , Xk, π , the probability

Pr
R

[
VX1,...,Xk,π(C ;R) = accept

]
≥ e,

then E−1
m (X1) ◦ · · · ◦ E−1

m (Xk) is a satisfying assignment for C .

9

Decision Circuit

X1 X2 Xk+1. . . .

Figure 1: An inner verifier uses its random string to compute a (small) decision circuit

and a sequence of queries to the oracles. Then it receives the oracles’ answers to the

queries. The verifier accepts iff the concatenation of the answers satisfies the decision

circuit.

The previous definition is complicated. The following observation might clarify it a

little, and the proof of Theorem 13 will clarify it further.

Proposition 12 If r ,p, c, a:Z+ → Z+ are any functions, k ∈ Z+, e < 1 and there exists a

(k, r(n),p(n), c(n),a(n), e)-inner verifier system, then CKT-SAT ∈ RPCP(r(n), p(n),
c(n), a(n), e).

Proof: The verifier in a (k, r(n),p(n), c(n),a(n), e) inner verifier system uses r(n)
random bits, expects the proof to be an oracle of answer size a(n) (i.e., we ignore the

special structure of the proof as described in the definition, and think of the k + 1

oracles in it as one long oracle), and queries p(n) locations in the oracle. Its decision is

represented by a circuit of size c(n). Thus it is also an (r(n),p(n), c(n),a(n)) outer

verifier.

Further, by definition, it can checks membership proofs for CKT-SAT: if the input circuit

is satisfiable, then the completeness condition implies that there is an oracle which the

verifier accepts with probability 1. Conversely, if the verifier accepts some oracle with

probability e, then soundness implies that the circuit is satisfiable.

Hence CKT-SAT ∈ RPCP(r(n), p(n), c(n), a(n), e).

The technique of recursive proof checking is described in the proof of the following

theorem.

Theorem 13 (rephrasing of results in [6]) Letp ∈ Z+ be such that a (p, r1(n),p1(n), c1(n),
a1(n), e1)-inner verifier system exists for some functions r1, p1, c1, a1:Z+ → Z+ and 0 <
e1 < 1. Then, for all functions r , c, a:Z+ → Z+ and every positive fraction e,

RPCP(r(n), p, c(n), a(n), e) ⊆ RPCP(r(n)+ r1(τ), p1(τ), a1(τ), c1(τ), e+ e1 − ee1),

where τ is a shorthand for c(n) and r(n)+ r1(τ) is a shorthand for r(n)+ r1(c(n)).

We will prove Theorem 13 at the end of this section. First, we show how to prove

Theorem 4. The main ingredients are Theorems 14 and 15, whose proofs (in Sec-

tions 6 and 7.5 respectively) are the main technical contributions of this paper.

10

Theorem 14 For every constant k ∈ Z+, there exist constants c1, c2, c3, p ∈ Z+ and real

number e < 1, such that for some functions c(n) = O(logc2 n) and a(n) = O(logc3 n),
there exists a (k, c1 logn,p, c(n),a(n), e) inner verifier system.

Theorem 15 For every constant k ∈ Z+, there exist constants c1, p ∈ Z+ and a positive

real number e < 1, such that there exists a (k, c1n2, p,2p,1, e) inner verifier system.

Before proving Theorem 4 we first point out the following simple amplification rule.

Proposition 16 For integer k, real e and functions r(·), p(·), c(·), a(·), if a

(k, r(n),p(n), c(n),a(n), e,) inner verifier system exists, then for every postive inte-

ger l, a (k, lr(n), lp(n), lc(n), la(n), el) inner verifier system also exists.

Proposition 16 is proved easily by sequentially repeating the actions of the given in-

ner verifier l times and accepting only if one accepts in each iteration. As a conse-

quence of Proposition 16 one can reduce the error of the inner verifiers given by The-

orems 15 and 14 to any e > 0. In proving Theorem 4 we will be using this ability for

e = 1/16. Now we prove Theorem 4, our main theorem. It is a simple consequence of

the following theorem.

Theorem 17 There exists a constant C , such that for every language L ∈ NP, there exists

a constant cL so that

L ∈ RPCP(cL logn, C, 2C , 1, 1/2).

Proof: Since CKT-SAT is NP-complete, we are done if we can show that CKT-SAT ∈
RPCP(cL logn, C, 2C , 1, 1/2) for some constants cL, C .

The main idea is to use the verifier of Theorem 14 and use recursive proof check-

ing to construct more efficient verifiers. First we use Theorem 14 with k = 1, and

reduce the error of the inner verifier to 1/16 using Proposition 16. This guarantees

us a (1, c1 logn,p, c(n),a(n),1/16)-inner-verifier system where a(n) = logd1 n and

c(n) = logd2 n for some constants d1, d2, and c1, p are also constants. Then Proposi-

tion 12 implies that

CKT-SAT ∈ RPCP(c1 logn, p, logd2 n, logd1 n, 1/16). (1)

This verifier for CKT-SAT makes p queries to the oracle in the membership proof. Use

this same constant p as the value of k in Theorem 14. We obtain constants c′, c′′, d′

such that a (p, c′ logn, c′′, logd
′
n, logd

′
n,1/16)-inner verifier system exists (again after

applying Proposition 16).

The existence of this inner verifier allows us to apply Theorem 13 to (1) to obtain that

CKT-SAT ∈ RPCP(c1 logn+ c′d1 log logn, c′′, (d1 log logn)d
′
, (d1 log logn)d

′
,

2

16
).

(2)

This verifier for CKT-SAT makes c′′ queries to the oracle in the membership proof.

Using the constant c′′ as k in the statement of Theorem 15, we obtain constants g,h
such that there is a (c′′, gn2, h,2h,1,1/16) inner-verifier system (again after amplifying

using Proposition 16).

11

The existence of this verifier allows us to apply Theorem 13 to the statement (2), to

obtain

CKT-SAT ∈ RPCP(c1 logn+ c′d log logn+ g(d log logn)2d
′
, h, 2h, 1, 3/16). (3)

Since every fixed power of log logn is o(logn) andh, c1 are fixed constants, our theorem

has been proved.

Remark 18 By working through the proofs of the various theorems in this paper and

earlier papers, it will be clear that the result in Theorem 17 is constructive, in the following

sense. Given a satisfying assignment to a circuit, we can in polynomial time construct

a “proof oracle” that will be accepted by the verifier of Theorem 17 with probability

1. Conversely, given a proof oracle that the verifier accepts with probability ≥ 1/2, we

can in polynomial time construct a satisfying assignment. The reader can check this

by noticing throughout that our polynomial-based encodings/decodings are efficiently

computable.

Now we prove Theorem 13.

Proof: (of Theorem 13) First we outline the main idea. Let L be a language in RPCP(r(n),
p, c(n), a(n), e) and let V1 be the outer verifier that checks membership proofs for

it. Let (V2, E, E−1) be the (p, r1(n),p1(n), c1(n),a1(n), e1) inner verifier system men-

tioned in the hypothesis. Observe that once we fix the input and the random string

for V1, its decision to accept or reject is based upon the contents of only p locations

in the oracle. Moreover, these p locations need to satisfy a very simple condition: the

concatenation of their respective entries should be a satisfying assignment to a certain

(small) circuit. The main idea now is that verifier V1 can use the inner verifier V2 to

check that this condition holds. The new verifier thus obtained turns out to be a new

outer verifier, which we denote by V .

Now we fill in the above outline. Let x ∈ {0,1}n be any input. According to the

hypothesis, the outer verifier V1 expects a membership proof for x to be an oracle

of answer size a(n). Also, V1 uses r(n) bits. Let

Y = Number of locations that V1 expects in a proof oracle for input x. (4)

Then the new verifier V that we are going to describe expects a membership proof for x
to be an oracle containing Y +2r(n) sub-oracles. Let this membership proof be denoted

by π . Then each address in π is denoted by a pair [s, t], where s ≤ Y + 2r(n) is index

of the sub-oracle, and t is the position within the sub-oracle. We let π[s, ·] denote

the suboracle of π whose index is s. (Note that we have not specified the number of

locations within each suboracle. This is determined using the program of V2, as will be

clear in a minute.)

The new verifier V acts as follows. First it picks a random string R1 ∈ {0,1}r(n). Then

it simulates the outer verifier V1 for Steps 1 through 3 described in Definition 7, while

using R1 as the random string. Note that these steps do not require any querying of

the oracle. Let

C = the circuit computed by Step 2 of V1. (5)

Q1, . . . ,Qp = the queries generated by Step 3 of V1. (6)

12

Note that C has size c(n), and that each Qi is an integer from 1 to Y .

Next, V picks a random string R2 ∈ {0,1}r1(c(n)) and simulates the inner verifier V2 on

the input C and random string R2. Note that V2 expects a membership proof to contain

p + 1 oracles. The simulation uses the suboracles π[Q1, ·], . . . , π[Qp, ·],π[Y + R, ·]
of π as these p + 1 oracles. (Note that we are thinking of R as an integer between 1

and 2r(n).) If this simulation of V2 ends up producing accept as output, then V outputs

accept and otherwise reject.

This finishes the description of V .

Complexity: It is clear from the above description that V uses r(n)+ r1(c(n)) random

bits. All its other parameters are just those of V2 when given an input of size c(n).
Hence we conclude that V queries the oracle in p1(c(n)) locations, expects the oracle

to have answer size a1(c(n))), and bases its decision upon whether the oracle entries

constitute a satisfying assignment to a circuit of size c1(c(n)). In other words, it is an

(r(n)+ r1(n), p1(c(n)), c1(c(n), a1(c(n))) outer verifier.

Completeness and soundness: We have to show that V satisfies the completeness and

soundness conditions for language L. For each x ∈ {0,1}n, we prove these conditions

separately.

Case: x ∈ L: The completeness condition for V1 implies that there is an oracle π ′

which V1 accepts with probability 1. We describe how to convert π ′ into an oracle

π which V accepts with probability 1. First, replace the string in each location

of π ′ with the encoding of that string using Ec(n). (This encoding is an oracle of

answer size a1(c(n)).) Thus if π ′ had Y locations, we obtain a sequence of Y
oracles. We make these oracles the first Y sub-oracles of π . Next, we construct

the last 2r(n) suboracles of π . For R ∈ {0,1}r(n), let C be the circuit generated

by V1 using R as the random string. Let a1, . . . , ap be the responses given by

the oracle π ′ when the queries were generated by V1 using random string R. The

completeness condition for V1 implies that a1 . . . ap is a satisfying assignment for

C . Then the completeness condition for V2 implies that there exists an oracle τ
such that

Pr
R2∈{0,1}r1(c(n))

[V
X1,...,Xp ,τ
2 (C ;R2) = accept] = 1,

where each Xi is simply the encoding E|ai|(ai). We let this τ be the Y + R-th

sub-oracle of π . This finishes the description of π . Our construction has ensured

that

Vπ(x; (R,R2)) = accept ∀R ∈ {0,1}r(n) , R2 ∈ {0,1}r1(c(n)).

In other words, V accepts π with probability 1.

Case: x 6∈ L: We prove this part by contradiction. Assume that there is an oracle π
such that

Pr
R∈{0,1}r(n),R2∈{0,1}r1(n)

[Vπ(x; (R,R2)) = accept] > e+ e1 − ee1.

We use π to construct an oracle π ′ such that

Pr
R∈{0,1}r(n)

[
Vπ

′
1 (x;R) = accept

]
> e,

thus contradicting the soundness condition for V1.

13

To construct π ′, we take the first Y suboracles in π , and apply E−1
a(n) on each. (Of

course, if π does not have some of these suboracles, we use an arbitrary string for

the missing suboracles.) The last 2r(n) suboracles are discarded. Thus we obtain

an oracle π ′ with Y locations and answer size a(n). Now we show that V1 accepts

π ′ with probability greater than e. Consider the set

R = {R ∈ {0,1}r(n)| Pr
R2∈{0,1}r1(n)

[Vπ(x;R,R2) = accept] > e1}.

Observe thatR constitutes a fraction more than e of {0,1}r(n), since otherwise the

probability that V accepts π would have been less than e1(1−e)+e = e+e1−ee1.

Hence it suffices for us to show that every R ∈ R satisfies Vπ
′

1 (x;R) = accept.

But this follows just by definition of V . Let C denote the circuit generated by

V1 on input x using R ∈ R as random string. Let Q1, . . . ,Qp be the queries

generated by V1. Then the actions of V on input x and random string (R,R2) just

involve simulating the inner verifier V2 on input C , random string R2, and using

the suboracles π[Q1, ·], . . . , π[Qp, ·],π[Y + R, ·]. Since we know that

Pr
R2∈{0,1}r1(n)

[Vπ(x;R,R2) = accept] > e1,

we conclude (by the soundness condition for V2) that the decoded string

E−1
a(n)(π[Q1, ·]) ◦ · · · ◦ E−1

a(n)(π[Q1, ·])

is a satisfying assignment for C . But the corresponding locations in π ′ contain

exactly these decodings. Therefore, Vπ1 (x;R) = accept. This completes the proof.

Thus we have proved that verifier V satisfies all properties claimed for it, and thus

L ∈ RPCP(r(n)+ r1(c(n)), p1(c(n)), a1(c(n)), a1(c(n)), e+ e2 − ee2).

3 PCP and hardness of approximating MAX 3-SAT

Here we define MAX 3-SAT and show how the existence of an (O(logn),O(1))-restricted

verifier for NP implies the hardness of approximating MAX 3-SAT.

Definition 19 (MAX 3-SAT) An instance of this problem is a 3-CNF formula φ. Every

assignment to the variables of the formula is a solution, whose value is the number of

clauses of formula that are satisfied by the assignment. The goal is to find an assignment

with maximum value.

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let L be a language in NP and V be a (cL logn,q)-restricted

verifier for it, where cL, q are constants. We give a polynomial-time reduction that, given

input x of length n, produces a 3-SAT formula φx with at most 2q2cL logn clauses. This

formula satisfies the following conditions.

1. If x ∈ L, then φx is satisfiable.

2. If x 6∈ L, then every assignment fails to satisfy at least 2cL logn−1 clauses in φx .

14

The reduction goes as follows. For every potential query Qi to the oracle π made by

the verifier V , associate a boolean variable vi. (Thus the set of possible assignments

to the variables are in one-to-one correspondence with the set of possible oracles.) For

every choice of the verifier’s random string, do the following. Suppose the random

string is R ∈ {0,1}cL logn and suppose the verifier V asks queries Qi1 , . . . ,Qiq using R.

Let ψx,R: {0,1}q → {0,1} be a boolean function such that ψx,R(ai1 , . . . , aiq) is 1 if and

only if V accepts upon receiving ai1 , . . . , aiq as the responses from the oracle. Express

ψx,R in CNF (conjunctive normal form) over the variables vi1 , . . . , viq . Observe thatψx,R
has at most 2q clauses, each of length at most q. Then express it in the standard way

(see e.g. [53]) as a 3-CNF formula, by using up to q auxiliary variables. (These auxiliary

variables should be unique to R and should not be reused for any other random string.)

Let φx,R denote this 3-CNF formula. Then

φx =
∧

R

φx,R.

Denote the number of clauses of φx by m. Note that m is at most q2q2cL logn.

We now argue the completeness and soundness properties. We first show that if x ∈ L,

then we can find a satisfying assignment to φx . Let π be an oracle such that V accepts

with probability 1. For every i, set vi = π(Qi). Notice that this assignment satisfies

ψx,R for every R. Now we fill in the values of the auxiliary variables so that every

formula φx,R is satisfied. Note that since the auxiliary variables are not shared by

different φx,R’s, there is no conflict in this assignment. Conversely, suppose x 6∈ L.

Suppose for contradiction’s sake that there exists an assignment to the variables vi
and the auxiliary variables such that at most εm clauses in φx are not satisfied, for

ε = 1
q2(q+1) . Construct an oracle π such that π(Qi) = vi. Notice that for every R such

that φx,R is satisfied by the assignment, V accepts Π on random string R. But the

number of R’s such that φx,R is not satisfied is at most εm = 2cLlogn−1. Thus the

probability that V accepts π is at least 1/2, implying x ∈ L. This is a contradiction. We

conclude that no assignment can satisfy more than (1− ε)m clauses of φx .

We conclude by observing that if there exists an algorithm that can distinguish between

the cases that the number of satisfiable formulae in φx is m and the case where the

number of satisfiable formulae in φx is less than (1 − ε)m, then this distinguishes

between the cases x ∈ L and x 6∈ L. Thus we conclude that no algorithm can approx-

imate the number of satisfiable clauses in a 3-CNF formula to within a 1 − ε factor in

polynomial time, unless P=NP.

4 Terminology

Recall that an encoding/decoding scheme is central to the notion of an inner verifier.

Such a scheme maps strings to oracles (in other words, it maps a string to a function

from some domain D to some range R). The following definition is used to define the

distance between the encodings of two strings.

Definition 20 LetD and R be finite sets. Let f ,g be functions fromD to R and letF be a

family of functions fromD to R. The relative distance between f and g, denoted∆(f , g),
is the fraction of inputs from D on which they disagree. The relative distance between

f and F , denoted ∆(f ,F), is the minimum over g ∈ F of ∆(f , g). If ∆(f , g) ≤ ε, we

say that f is ε-close to g. Similarly, if ∆(f ,F) ≤ ε, we say that f is ε-close to F .

15

Everywhere in this paper, the domain and range are defined using finite fields. Let

F = GF(q) be a field and m be an integer. By specializing the above definition, the

distance between two functions f ,g:Fm → F , denoted ∆(f , g), is the fraction of points

in Fm they differ on.

∆(f , g) = 1

qm
∣∣{x : f(x) ≠ g(x)

}∣∣ .

The function families considered in this paper are families of multivariate polynomials

over finite fields of “low degree”. A function f :Fm → F is a degree k polynomial if it

can be described as follows. There is a set of coefficients


ai1,...,im ∈ F : i1, . . . , im ≥ 0 and

∑

j≤m
ij ≤ k





such that for every (x1, . . . , xm) ∈ Fm,

f(x1, . . . , xm) =
∑

i1,...,im

ai1,...,im
∏

j≤m
x
ij
j .

We let F (d)m denote the family of m-variate polynomials of degree d. Specializing our

definition of closeness above to such families, we see that a function f :Fm → F is

δ-close to F (d)m (or just δ-close when d is understood from the context) if there is a

polynomial g ∈ F (d)m such that ∆(f , g) ≤ δ. The following lemma is often attributed to

Schwartz [93].

Lemma 21 If f ,g ∈ F (d)m and f 6= g, then ∆(f , g) ≥ 1− d/ |F|.

Remark 22 From the above lemma, it follows that the nearest polynomial g is unique if

δ < 1/4 and d/ |F| ≤ 1/2. This fact will be used many times.

In the following sections we will be using the space F (d)m to represent and encode infor-

mation. Two very different representations of this space will be used. The first is the

“terse” representation. In this representation, an element of F (d)m , i.e., anm-variate poly-

nomial of degree d, will be represented using
(
m+d
d

)
coefficients from F . In particular,

in this representation an element of F (d)1 can be specified using at most (d+1)dlog |F|e
bits. The other representation is the “redundant” representation. In this we first map

F (d)m to Fm → F , i.e., to the space of all functions onm variables from F to F , using the

natural map — every polynomial in m variables is a function from Fm → F . We then

represent elements of Fm → F as |F|m elements from F , i.e., by a listing of values of

the function on all possible inputs. For all choices ofm and d that will be used in this

paper, the “redundant” representation is significantly longer that the “terse” represen-

tation. However this redundancy renders the representation “robust”. Lemma 21 above

tells that two polynomials represented this way differ on most indices (provided d/|F|
is small). The “terse” representation will be the default representation for elements of

F (d)m . We will specify explicitly whenever we use the “redundant” representation.

5 The constant bit verifier: Ingredients

In this section, we prove Theorem 15 by constructing the appropriate inner verifier. We

will use techniques developed in the context of program checking.

16

Linear Encoding/Decoding scheme. Through this section we work with vector spaces

over GF(2) and all operations (additions and multiplications) are assumed to be over

GF(2). We will use an encoding/decoding scheme that encodes bit-strings with linear

functions over GF(2). We will describe algebraic procedures using which the verifier can

check, after a few queries, that the provided function encodes a satisfying assignment

to the input circuit (or at least is ε-close to the encoding of a satisfying assignment).

Think of n-bit strings as n-dimensional vectors over GF(2). For an n-bit string x,

we let x(i) represent its i-th coordinate. We encode this string by a linear function

Lx : GF(2)n → GF(2) that maps y to
∑n
i=1 x

(i)y(i). Note that every linear function from

GF(2)n to GF(2) is the encoding of some n bit string.

Definition 23 (parity encoding) The parity encoding scheme E⊕n maps the n-bit string

x to Lx .

The following fact is easy to verify

Proposition 24 For x 6= y , ∆(E⊕n(x), E⊕n(y)) = 1/2.

We now define the corresponding decoding scheme.

Definition 25 (parity decoding) Given a function f : GF(2)n → GF(2), the parity decod-

ing scheme (E⊕n)
−1 maps f to the string x which minimizes the distance ∆(E⊕(x), f).

Ties are broken arbitrarily.

Remark 26 From Remark 22 it follows that if there exists a function f and string x such

that ∆(f , E⊕(x)) < 1/4, then (E⊕n)
−1(f) = x.

Testing/Correcting Given an oracle f : GF(2)n → GF(2), we would like to determine

very efficiently, probabilistically, if there exists a string x ∈ GF(2)n, such that ∆(Lx, f)
is small. The following procedure due to Blum, Luby and Rubinfeld [30] achieves this

with just 3 queries to the oracle f .

Linearity-test(f ;n):
/* Expects an oracle f : GF(2)n → GF(2). */

Pick x,y ∈R GF(2)n;
If f(x)+ f(y) 6= f(x +y) then reject else accept.

The following theorem describes the effectiveness of this test.

Theorem 27 ([30])

1. If f is a linear function, then the test Linearity-test(f ;n) accepts with probability

1.

2. If the probability that the test Linearity test accepts is more than 1 − δ for some

δ < 2/9 then there exists a linear function g such that ∆(f , g) ≤ 2δ.

17

Remark: The exact bound stated above in part 2 of Theorem 27 may not match the

bound as stated in [30]. However this bound can be easily reconstructed from some of

the subsequent papers, for instance, in the work of Bellare et al. [19]. In any case, the

exact bound is unimportant for what follows.

A useful aspect of the linear encoding is that one can obtain the value of the linear

function at any point using few (randomly chosen) queries to any function that is very

close to it. This procedure, described below, is also due to Blum, Luby and Rubinfeld

[30].

Linear-self-corr(f ,x;n):
/* Expects an oracle f : GF(2)n → GF(2) and x ∈ GF(2)n. */

Pick y ∈R GF(2)n;
Output f(x +y)− f(y).

Proposition 28 ([30])

1. If f is a linear function, then the procedure Linear-self-corr(f ,x;n) outputs f(x)
with probability 1.

2. Given a function f that is δ-close to some linear function g, and any point x ∈
GF(2)n, the procedure Linear-self-corr(f ,x;n) outputs g(x) with probability at

least 1− 2δ.

Concatenation It will be in our interest to construct a single oracle which represents

the information content of many different oracles. We describe such a procedure next.

Definition 29 For positive integers n1, . . . , nk, if f1, . . . , fk are linear functions with fi :

GF(2)ni → GF(2), their concatenated linear function linear-concatf1,...,fk is the function

f : GF(2)n1+···+nk → GF(2) defined as follows:

for x1 ∈ GF(2)n1 , . . . , xk ∈ GF(2)nk f(x1, . . . , xk) =
k∑

i=1

fi(xi).

We remark that every linear function f : GF(2)n1+···+nk → GF(2) is a concatenation of

some k functions f1, . . . , fk, where fi : GF(2)ni → GF(2) is defined as

fi(xi) = f(0, . . . ,0, xi,0, . . . ,0) ∀xi ∈ GF(2)ni , (7)

where the xi on the right hand side is the i-th argument of f .

Suppose we are given f : GF(2)n1+···+nk → GF(2) and wish to test if fi as defined in (7) is

equal to some given linear function f ′ : GF(2)ni → GF(2). A randomized test suggests

itself: pick xi ∈ GF(2)ni at random and test if f(0, . . . ,0, xi,0, . . . ,0) = f ′(xi). We now

show that a simple variant of this test works even if f and f ′ are not linear functions

but only ε-close to some linear functions.

First we introduce some notation: For i ∈ {1, . . . , k} and xi ∈ GF(2)ni , the inverse

projection of xi is the vector y = π−1
i (xi;n1, n2, . . . , nk) ∈ GF(2)n1+···+nk which is 0

on all coordinates except those from n1 + · · · + ni−1 + 1 to n1 + · · · + ni, where it is

equal to xi.

18

Linear-concat-corr-test(i, f , f ′;n1, . . . , nk):
/* Expects oracles f : GF(2)n1+···+nk → GF(2)

and f ′ : GF(2)ni → GF(2). */

Pick xi ∈R GF(2)ni;
If Linear-self-corr(f ,π−1

i (xi;n1, . . . , nk);
∑k
i=1ni) = f ′(xi)

then accept else reject.

Proposition 30

1. If f and f ′ are linear functions such that f is the concatenation of k linear functions

f1, . . . , fk where fj : GF(2)nj → GF(2) with the i-th function being f ′, then the

procedure Linear-concat-corr-test(i, f , f ′;n1, . . . , nk) accepts with probability 1.

2. If f and f ′ are ε-close to linear functions g and g′ respectively, for some ε < 1/4,

and the probability that the procedure Linear-concat-corr-test(i, f , f ′;n1, . . . , nk)
accept is greater than 1/2 + 3ε, then g is the concatenation of linear functions

g1, . . . , gk where gj : GF(2)nj → GF(2) with the i-th function being g′.

Proof: The proof of the completeness part is straightforward. For the second part, we

use the fact that since g is linear it is the concatenation of linear functions g1, . . . , gk,
where gj(·) = g(π−1

j (·;n1, . . . , nk)) for j = 1, . . . , k. Assume for contradiction that

gi(·) 6= g′(·). Then since both gi and g′ are linear, for a randomly chosen element xi,
g(π−1

i (xi;n1, . . . , nk)) does not equal g′(xi) with probability 1/2. In order for the test

to accept it must be the case that either xi is such that g(π−1
i (xi;n1, . . . , nk)) = g′(xi)

or Linear-self-corr(f , (π−1
i (xi;n1, . . . , nk));n1 + · · · + nk) 6= g(π−1

i (xi;n1, . . . , nk)) or

g′(xi) 6= f ′(xi). We upper bound the probability of these events by the sum of their

probabilities. The middle event above happens with probability at most 2ε (by Propo-

sition 28) and the final event with probability at most ε (since ∆(f ′, g′) ≤ ε). Thus the

probability of any of these events happening is at most 1/2+ 2ε + ε. The proposition

follows.

Quadratic Functions Before going on to describe the inner verifier of this section we

need one more tool. Recall that the definition of Lx described it as a table (oracle) of

values of a linear function at all its inputs. A dual way to think of Lx is as a table of the

values of all linear functions at the input x ∈ GF(2)n. (Notice that there are exactly 2n

linear functions Ly from GF(2)n to GF(2); and the value of the function Ly at x equals

the value of Lx at y .) This perspective is more useful when trying to verify circuit

satisfiability. For the sake of verifying circuit satisfiability it is especially useful to have

a representation which allows one to find the values of all degree 2 functions at x. The

following definition gives such a representation.

Definition 31 For x ∈ GF(2)n, the function quadx is the map from GF(2)n
2

to GF(2) de-

fined as follows: For then2 bit string c = {c(ij)}n,ni=1,j=1, quadx(c) =
∑n
i=1

∑n
j=1 c

(ij)x(i)x(j).

Observe that any quadratic function in x, i.e., any n-variate polynomial in the variables

x(1), . . . , x(n) of degree at most two, can be computed from the value of quadx at one

19

point, even if x is unknown. Suppose one is interested in the value of the polynomial

p(x) = ∑i6=j p(ij)x(i)x(j) +
∑
i p
(i)x(i) + p(00). Then p(x) = quadx(c) + p(00), where

c(ij) = p(ij) if i 6= j, and cii = pi. (Notice that since we are working over GF(2),
the identity x2 = x holds for all x ∈ GF(2) and hence p will not contain any terms

of the form (x(i))2.) Given any polynomial p of degree 2 with p(00) = 0, we use the

notation coeffp to denote the n2 bit vector which satisfies p(x) = quadx(coeffp) for all

x ∈ GF(2)n.

The following observation will be useful in dealing with the quadratic representations.

Proposition 32 For any x ∈ GF(2)n, the function quadx is linear.

We now show how to check if two linear functions f : GF(2)n → GF(2) and f ′ :

GF(2)n
2 → GF(2) correspond to the linear and quadratic function representations

respectively of the same string x ∈ GF(2)n. First we need some notation: Given

x,y ∈ GF(2)n, the outer product of x and y , denoted x@y , is the n2 bit vector with

(x@y)(ij) = x(i)y(j).

Quadratic-consistency(f , f ′;n);

/* Expects f : GF(2)n → GF(2) and f ′ : GF(2)n
2 → GF(2). */

Pick x,y ∈R GF(2)n.
If f(x) · f(y) = f ′(x@y) then accept else reject.

The test above is based on Freivalds test [47] for matrix multiplication and its correct-

ness is established as follows.

Proposition 33

1. Given linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2 → GF(2), if for some

x ∈ GF(2)n, f = Lx and f ′ = quadx , then the procedure Quadratic-consistency(f , f ′;n)
accepts with probability 1.

2. For linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2 → GF(2), if the procedure

Quadratic consistency(f , f ′;n) accepts with probability greater than 3/4, then

there exists x ∈ GF(2)n, such that f = Lx and f ′ = quadx .

Proof: Every linear function is of the form Lx for some x ∈ GF(2)n. Let x be such that

f = Lx . Since f ′ is linear, there existsb ∈ GF(2)n
2

, such that f ′(z) =∑ni=1

∑n
j=1 b

(ij)z(ij).

Part (1) follows from the fact that if b(ij) = x(i)x(j) then f ′(z1@z2) = f(z1)f (z2). For

part (2) we look at the n× n matrix B = {b(ij)}. We would like to compare B with the

n × n matrix C = xxT . Assume for the sake of contradiction that the two matrices

are not identical. Then Freivalds’ probabilistic test [47] for matrix identity guarantees

that for a randomly chosen bit vector z2, the probability that the vectors Bz2 and Cz2

turn out to be distinct is at least 1/2. Now assume that Bz2 6= Cz2 and consider their

respective inner products with a randomly chosen vector z1. We get

Pr
z1∈GF(2)

n

[
zT1 Bz2 6= zT1Cz2|Bz2 6= Cz2

]
≥ 1

2
.

20

By taking the product of the two events above we get

Pr
z1,z2∈GF(2)

n

[
zT1 Bz2 6= zT1Cz2

]
≥ 1

4
.

But the left hand side in the above inequality is exactly f ′(z1@z2) and the quantity on

the right hand side is f(z1)f (z2). Thus if f ′ is not equal to quadx , then the probability

that f ′(z1@z2) 6= f(z1)f (z2) is at least 1/4.

We now give an error-correcting version of the above test, when the functions f and f ′

are not linear but only close to linear functions.

Quadratic-corr-test(f , f ′;n):

/* Expects oracle f : GF(2)n → GF(2) and f ′ : GF(2)n
2 → GF(2).*/

Pick z1, z2 ∈R GF(2)n;
If f(z1) · f(z2) 6= Linear-self-corr(f ′, z1@z2;n2)

then reject

else accept.

The following proposition can be proved as an elementary combination of Proposi-

tions 33 and 28.

Proposition 34

1. Given linear functions f : GF(2)n → GF(2) and f ′ : GF(2)n
2 → GF(2), if for

some x ∈ GF(2)n, f = Lx and f ′ = quadx , then the procedure Quadratic-corr-

test(f , f ′;n) accepts with probability 1.

2. Given functions f : GF(2)n → GF(2), which is ε-close to some linear function g, and

f ′ : GF(2)n
2 → GF(2), which is ε-close to some linear function g′, if the procedure

Quadratic-corr-test(f , f ′;n) accepts with probability greater than 3/4 + 4ε, then

there exists x ∈ GF(2)n, such that g = Lx and g′ = quadx .

6 The Constant Bit Verifier: Putting it together

We now show how a verifier can verify the satisfiability of a circuit. Let C be a circuit of

size n on km inputs. Suppose x1, . . . , xk form a satisfying assignment to C . To verify

this suppose the verifier is given not only x1, . . . , xk but also the value of every gate

on the circuit. Then the verifier only has to go check that for every gate the inputs

and the output are consistent with each other and that the value on the output gate is

accepting. This forms the basis for our next two definitions.

For strings x1, . . . , xk of length m, the C-augmented representation of x1x2 . . . xk, de-

noted C-aug(x1 . . . xk) is an n bit string z indexed by the gates of C , where the ith
coordinate of z represents the value on the i-th gate of the circuit C , on input x1 . . . xk,
with the property that the first km gates correspond to the input gates (i.e., x1 . . . xk
is a prefix of C-aug(x1 . . . xk)). Given an n-bit string z, let πi(z) be the projection

21

Oracle Contents What contents mean to V⊕

X1

X2

· · ·
Xk

Each Xi is a function from

GF(2)m to GF(2)
Each Xi is a linear function

and encodes a bit string us-

ing the encoding E⊕m. The con-

catenation of these bit strings

is a satisfying assignment s.

Xk+1:

(has 2 suboracles)

A A : GF(2)n → GF(2) A = E⊕(z), where z is the C-

augmented representation of

the satisfying assignment s.

B B : GF(2)n
2 → GF(2) B = quadz

Figure 2: Different oracles in the proof and what V⊕ expects in them

of z on to the coordinates (i − 1)m + 1 to im. Notice that πi is defined so that

πi(C-aug(x1, . . . , xk)) = xi.
Given a circuit C of size n with km inputs, we associate with the circuit n − km + 1

polynomials Pj , 1 ≤ j ≤ n−km+1. For any fixed j, Pj is a polynomial of degree at most

2 on n variables z(1), . . . , z(n), and is defined as follows. For 1 ≤ j ≤ n−km, if the j-th
gate of C is an addition gate with inputs being gates j1 and j2 and output being the gate

j3, then Pj(z) = z(j1)+z(j1)−z(j3). Similarly if the j-th gate is a multiplication gate then

Pj(z) would be z(j1)z(j1) − z(j3). Lastly the polynomial Pn−km+1(z) is the polynomial

which is zero if and only if the output gate is accepting.

Thus C accepts on input x1 . . . xk iff

∃z ∈ GF(2)n s.t. ∀j ∈ [n− km+ 1], Pj(z) = 0 and ∀i ∈ [k], πi(z) = xi. (8)

However, the verifier will be given notx1, . . . , xk but merely functions that are purported

to be Lx1 , . . . , Lxk and some extra functions that will be useful in the above checking.

The intuition behind the use of the polynomials Pj is that since all these polynomials

are quadratic polynmials in z, the process of “evaluating” them may hopefully reduce

to making a few queries to oracles that purport to be Lx1 , . . . , Lxk and quadz for z =
C-aug(x1, . . . , xk). In what follows we define a verifier V⊕ that validates this hope. The

verifier preceeds in two steps. First it checks that the provided functions are close

to linear functions. Then, to check that the decodings of these functions satisfy the

conditions in (8), it uses the procedures described in Section 5.

Parity Verifier V⊕. Given a circuit C of size n on km inputs, the verifier V⊕ accesses

oracles X1, . . . , Xk+1 all of which have answer size 1. The oracles X1 to Xk take m bit

strings as queries. For notational clarity we think of the oracle Xk+1 as consisting of

two suboracles. Thus it takes as input a pair (b, q) where b ∈ {0,1}. Let A denote the

oracle Xk+1(0, ·) and let B denote the oracle Xk+1(1, ·). The contents of these oracles

are described in Figure 2. The verifier performs the following actions.

1. Linearity tests:

(a) Linearity-test(A;n).

(b) Linearity-test(B;n2).

22

(c) For i = 1 to k Linearity-test(Xi;m).

2. Consistency tests: For i = 1 to k Linear-concat-corr-test(i,A,Xi;m, . . . ,m︸ ︷︷ ︸
k

, n−mk).

3. Quadratic test: Quadratic-corr-test(A, B;n).

4. Circuit tests:

(a) Pick r ∈R GF(2)n−km+1.

(b) Let P : GF(2)n → GF(2) be the degree 2 polynomial P(z) =∑n−km+1
j=1 r (j)Pj(z).

(c) If Linear-self-corr(B, coeffP ;n2) 6= 0 then reject.

5. If none of the tests above reject then accept.

We start by observing that it is easy to reorganize the description above so that V⊕ first

tosses its random strings, and then generates a circuit C′ and then queries the oracles

X1, . . . , Xk+1 such that the function computed by C′ on the responses of the oracles is

the output of V⊕. The following proposition lists the parameters used by V⊕.

Proposition 35

1. V⊕ tosses 2km+n(k+ 5)+ 4n2 random coins.

2. V⊕ probes the oracles in 6k+ 12 places.

3. The computation of V⊕’s verdict as a function of the oracle responses can be ex-

pressed as a circuit of size at most 26k+12.

We now show that the verifier (V⊕, E⊕, (E⊕)−1) satisfies the completeness condition.

Lemma 36 For a circuit C of size n with km inputs, let the m bit strings x1, . . . , xk
satisfy C(x1 . . . xk) = accept and for 1 ≤ i ≤ k, let Xi = E⊕(xi). Then there exists

an oracle Xk+1 such that for every R ∈ {0,1}r (V⊕)X1,...,Xk+1(C ;R) = accept (where

r = 2km+n(k+ 5)+ 4n2).

Proof: Let z be the C-augmented representation of the string x1 . . . xk. Let A = E⊕(z)
and let B = quadz and let Xk+1 be given by Xk+1(0, ·) = A and Xk+1(1, ·) = B. It can be

easily verified that the X1, . . . , Xk+1 as defined pass every one of the tests performed by

V⊕.

Lemma 37 There exists a constant e < 1 (specifically, e = 35/36), such that if the ver-

ifier V⊕ accepts input C with probability > e given access to oracles X1, . . . , Xk+1, then

C((E⊕m)
−1(X1), . . . , (E⊕m)

−1(Xk)) = accept.

23

Proof: Let δ be chosen so as to minimize e = max{1− δ,1/2+ 6δ,3/4+ 8δ}, subject

to the condition δ < 2/9. (This happens at δ = 1/36.) We will show that this value of e
suffices to prove the assertion.

Let X1, . . . , Xk and Xk+1 = (A, B) be oracles such that V⊕ accepts C with probability

greater than e. Then by the fact that the linearity tests (Step 1) accept with probability

greater than e ≥ 1− δ and by Theorem 27 we find that there exist strings x1, . . . , xk, z
and z′ such that the oracles Xi are 2δ close to the functions E⊕m(xi) respectively; and

the oracles A and B are 2δ close to Lz and Lz′ respectively.

Based on the fact that the quadratic consistency test (Step 3) accepts with probability

greater than 3/4 + 8δ, and the soundness condition of Proposition 33, we find that

Lz′ = quadz and thus B is 2δ-close to quadz.

Let z1, . . . , zk be m bit strings which form the prefix of z. Next we use the fact that

the acceptance probability of the verifier V⊕ in Step 4(c) is high to show that z =
C-aug(z1 . . . zk) and that C accepts on input z1 . . . zk.

Claim 38 If V⊕ accepts in Step 4(c) with probability more than 1/2 + 4δ, then z =
C-aug(z1, . . . , zk) and C(z1, . . . , zk) = accept.

Proof: Assume for contradiction that either z 6= C-aug(z1 . . . zk) or C does not accept

on input z1 . . . zk. Then it must be the case that there exists an index j ∈ {1, . . . , n −
mk+1} such that the polynomial Pj(z) 6= 0. In such a case, then for a randomly chosen

vector r ∈ GF(2)n−mk+1, the polynomial P = ∑j r (j)Pj , will also be non-zero at z with

probability 1/2 (taken over the random string r .)

Now consider the event that the verifier V⊕ accepts in Step 4(c). For this event to occur,

at least one of the following events must also occur:

• P(z) = 0: The probability of this event is at most 1/2, as argued above.

• quadz(coeffP) 6=Linear-self-corr(B, coeffP ;n2): Since B is 2δ close to quadz this

event happens with probability at most δ, by Proposition 28.

Thus the probability that the verifier will accept in Step 4(c) is at most 1/2+ 4δ.

Finally we use the fact that concatenation tests (Step 2) accept with high probability to

claim that zi must equal xi for every i. Recall that for every i ∈ [k] the concatenation

test with oracle access to A and Xi accepts with probability at least 1/2+ 6δ. Further-

more, A and Xi are 2δ close to linear functions Lz and Lxi respectively. By applying the

soundness guaranee in Proposition 30, we find that Lz is the concatenation of functions

f1, . . . , fk+1 where fi(·) = Lxi = E⊕(xi). Combining these conditions for i = 1 to k we

find that Lz is the concatenation of of E⊕(x1), . . . , E⊕(xk), f for some linear function

f : GF(2)n−km → GF(2). This implies that the prefix of imply zi = xi for all i.

Thus we conclude that if V⊕ accepts C with probability greater than e given oracle

access to X1, . . . , xk+1, then C accepts on input (E⊕m)
−1(X1) . . . (E⊕m)

−1(Xk).

Proof of Theorem 15: The inner verifier system (V⊕, E⊕, (E⊕)−1) yields the required

system. Given k < ∞, let c1 = 3k + 9 and let p = 6k + 12 and let e be as given by

Lemma 37. Then, by Proposition 35 and Lemmas 36 and 37, it is clear that (V⊕, E⊕, (E⊕)−1)
forms a (k, c1 logn,p,2p,1, e) inner verifier system.

24

7 Parallelization

The goal of this section is to prove Theorem 14 by constructing the inner verifier men-

tioned in it (i.e., one that only makes a constant number of queries, expects an oracle

with polylogarithmic answer size, and uses logarithmic number of random bits). The

theorem will be proved in Section 7.5. The starting point is a verifier constructed

by Arora and Safra [6], which uses O(logn) random bits and queries the proof in

poly(logn) places. (Actually the number of queries in their strongest result is (log logn)O(1)

but we don’t need that stronger result. In fact, even the weaker verifier of Babai, Fort-

now, Levin and Szegedy [14] would suffice for our purpose after some modification.

This modification would cut down the number of random bits needed in [14] by using

the idea of recycling randomness [32, 65].)

The following theorem was only implicit in the earlier versions of [6] but is explicit in

the final version.

Theorem 39 ([6]) For every constant k, there exist constants c1, c2, c3 and e < 1 such

that a (k, c1 logn, logc2 n, logc3 n,1, e) inner verifier exists.

The shortcoming of this verifier is that it makes logc2 n queries to the proof. We will

show how to “aggregate” its queries into O(1) queries, at the cost of a minor increase

in the answer size (though the answer size remains poly(logn)). The aggregation uses

the idea of a multivariate polynomial encoding [13] and a new, efficient, low-degree test

for checking the correctness of its codewords. It also uses a procedure described in

Section 7.4.

7.1 Multivariate polynomial encodings

Let F be any finite field. The following fact will be used over and over again.

Proposition 40 For every k distinct elements x1, . . . , xk ∈ F and k arbitary elements

y1, . . . , yk ∈ F , there exists a univariate polynomial p of degree at most k− 1 such that

p(xi) = yi for all i = 1,2, . . . , k.

Proposition 40 has an analogue for the multivariate case. Recall that F (d)m is the family

of m-variate polynomials over F of total degree at most d. Let H be a subset of F and

h = |H| − 1. The multivariate analogue states that for each sequence of values for the

set of points inHm, there is a polynomial in F (mh)m that takes those values onHm. (This

polynomial need not be unique.)

Proposition 41 Let H ⊆ F and h = |H| − 1. For each function s:Hm → F , there is a

polynomial ŝ ∈ F (mh)m such that

ŝ(u) = s(u) ∀u ∈ Hm.

Clearly, if s1 and s2 are two distinct functions fromHm to F , then ŝ1 ≠ ŝ2. Furthermore,

ifmh/ |F| < 0.25, then Lemma 21 implies that the distance between ŝ1 and ŝ2 is at least

0.75.

Proposition 41 defines a mapping from F (h+1)m to F (mh)m . Since 0,1 ∈ F , we can so use

this mapping to define a map from bit strings in {0,1}(h+1)m to polynomials in F (mh)m .

25

This map will be called a polynomial encoding in the rest of the paper. If the bit string

has length n < (h + 1)m, we first extend it to a bit string of length (h + 1)m in some

canonical way.

Definition 42 For n,m,H, F satisfying |H|m ≥ n and |F| ≥ 2mh, the (n,m,H, F) poly-

nomial encodingPn,m,H,F mapsn-bit strings to functions from Fm to F that was described

in the previous paragraph.

The polynomial decoding functionP−1
n,m,H,F maps {Fm → F} ton-bit strings and is defined

as follows. Given any r :Fm → F , first find the nearest polynomial r̃ in F (mh)m (if there is

more than one choice, break ties arbitrarily), then construct the sequence s of values of

r̃ on Hm, then truncate s to its first n values, and finally, interpret each value as a bit

in some canonical way (e.g., the most significant bit in its binary representation).

Notice that for every bit string s ∈ {0,1}n, the encoding/decoding pair defined above

satisfy P−1
n,m,H,F ◦ Pn,m,H,F(s) = s,

Note that if we are encoding a string of length n, we can choose Hm = O(n) and

|F| = poly(h), so that the size of the encoding, which is essentially |Fm| is still poly(n).

Such a choice requires m ≤ O(logn
loglogn) and h = Ω(log(O(1)n). Our parameters will be

chosen subject to these conditions.

7.2 Lines representation of polynomials: Testing and correcting

In designing the verifier we will need two algebraic procedures. The first, called the low

degree test, efficiently determines if a given oracleO : Fm → F is δ-close to some degree

d polynomial, where δ is some small constant. Low degree tests were invented as part

of work on proof checking [13, 14, 42, 6, 56, 90]. Efficiency is of paramount concern

to us, so we would like the test to make as few queries to the oracle as possible. Most

low degree tests known make poly(m,d,1/δ) queries. However, Rubinfeld and Sudan

[90] give a test (which requires an auxiliary oracle in addition to O) whose number of

queries depends on d but not on m. Arora and Safra [6] give a test whose number of

queries depends only onm but not on d. We observe in this paper that the two analyses

can be combined to give a test whose number of queries is independent of d and m.

This test and its analysis is essentially from [90]. Our only new contribution is to use

a result from [6] (Theorem 69 in the appendix) instead of a weaker result from [90].

The second procedure in this section does the following: Given an oracle O : Fm → F
which is δ-close to a polynomial p, find the value of p at some specified point x ∈ Fm.

This procedure is described below in Section 7.2.2.

7.2.1 Low degree test

To describe the low degree test, we need the notion of a line in Fm.

Definition 43 Given x,h ∈ Fm, let lx,h : F → Fm denote the function lx,h(t) = x + th.

With some abuse of notation, we also let lx,h denote the set {lx,h(t)|t ∈ F} and call it the

line through x with slope h.

Remark: Note that different (x,h) ∈ F2m can denote the same line. For instance, the

lines lx,h and lx,c·h are the same for every c ∈ F − {0}.

26

Let p:Fm → F be a degree d polynomial and lx,h be any line. Let g be the function

that is the restriction of p to line lx,h, i.e., g(t) = p(lx,h(t)). Then g is a univariate

polynomial of degree d. Thus we see that the restriction of p to any line is a univariate

polynomial of degree d. It is a simple exercise to see that the converse is also true if |F|
is sufficiently large: If a function p:Fn → F is such that the restriction of p to every line

in Fm is a univariate degree d polynomial, then f itself is a degree d polynomial (see,

for example, [90] or [49] — the latter contains a tight analysis of condition under which

this equivalence holds). As we will see, the low degree test relies on a stronger form of

the converse: if for “most" lines, there is a univariate degree d polynomial that agrees

with f on “most" points of the line, then f itself is δ-close to a degree d polynomial.

The test receives as its input two oracles: the first a function f :Fm → F , and the second

an oracle B : F2m → F (d)1 where, for each pair (x,h) ∈ F2m, B(x,h) is a univariate

polynomial of degree d. In what follows we use the notation B(x,h)[t], for t ∈ F , to

denote the evaluation of this polynomial at t. (It may be useful to the reader to think

of B as a function from L to F (d)1 , where L is the set of all lines in Fm.) The oracle B is

motivated by the following alternate representation of a degree d polynomial.

Definition 44 Let p ∈ F (d)m be anm-variate polynomial of degree d. The line represen-

tation of p is the function linesp : F2m → F (d)1 defined as follows: Given x,h ∈ Fm, the

univariate polynomial p′ = linesp(x,h) is the polynomial p′(t) = p(lx,h(t)).

We now describe our test.

Poly-test(f , B;m,d, F):
/* Tests if f : Fm → F is close to a degree d polynomial.

Expects an auxiliary oracle B : F2m → F (d)1 . */

Pick x,h ∈R Fm and t ∈R F;
Let q(·) = B(x,h). /* q(·) ∈ F (d)1 . */

If f(x + th) 6= q(t) then reject else accept.

The properties of the test are summarized below.

Theorem 45 (follows by combining [90, 6]) There exist constants δ0 > 0 and α < ∞
such that for δ ≤ δ0, d ∈ Z+ if F is a field of cardinality at least α(d + 1)3, then the

following holds:

1. For any function p ∈ F (d)m , the probability that Poly-test(p, linesp;m,d, F) accepts

is 1.

2. If oracles f and B satisfy Pr[Poly-test(f , B;m,d, F) accepts] ≥ 1 − δ, then there

exists a polynomial p ∈ F (d)m such that ∆(f ,p) ≤ 2δ.

We note that Part 1 is trivial from the comments made above. The nontrivial part, Part

2, is proved in Appendix (Section A).

27

7.2.2 Correcting Polynomials

The procedure in this section is given an oracleO : Fm → F which is known to be close to

a polynomial p. It needs to find the value of p at some specified point x ∈ Fm. We now

describe a procedure which computes p(x) using few probes into O and an auxiliary

oracle B. The procedure owes its origins to the work of Beaver and Feigenbaum [17] and

Lipton [76]. The specific analysis given below is borrowed from the work of Gemmell,

Lipton, Rubinfeld, Sudan and Wigderson [56] and allows the number of queries to be

independent of d, for error bounded away from 1.

Poly-self-corr(A, B,x;m,d, F):

/* Expects A : Fm → F, B : F2m → F (d)1 and x ∈ Fm. */

Pick h ∈R Fm and t ∈R F − {0};
Let q(·) = B(x,h) /* q(·) ∈ F (d)1 */

If q[t] 6= A(x + th) then reject else output B(x,h)[0].

Proposition 46

1. For a polynomial p ∈ F (d)m and its associated lines representation linesp, the output

of the procedure Poly-self-corr(p, linesp, x;m,d, F) is p(x) with probability 1, for

every x ∈ Fm.

2. If there exists a polynomial p ∈ F (d)m such that ∆(A,p) = ε, then ∀x ∈ Fm, ∀B :

F2m → F (d)1 ,

Pr
h,t

[
Poly-self-corr(A, B,x;m,d, F) 6= p(x) or reject

]
≤ 2

√
ε+ d

|F| − 1
.

Proof: The proof of the first part is straightforward. We now prove the second part.

For any x ∈ Fm and t ∈ F − {0}, notice that the random variable x + th is distributed

uniformly in Fm, if h is picked uniformly from Fm. Thus since ∆(A.p) = ε, we have

Pr
h∈Fm,t∈F−{0}

[
p(x + th) 6= A(x + th)

]
= ε.

For x,h ∈ Fm call the line lx,h bad if

Pr
t∈F−{0}

[p(x + th) 6= A(x + th)] > √ε.

By Markov’s inequality, we have

Pr
h∈Fm

[
lx,h is bad

]
<
ε√
ε
= √ε.

Now consider the random choices of h and t. We have the following cases:

Case: The line lx,h is bad: This event happens with probability at most
√
ε, taken over

random choices of h. In this case the procedure Poly-self-corr may output some-

thing other than reject or p(x).

28

Case: lx,h is not bad: We now fix x and h and consider the random choice of t. We

have the following subcases:

Case: B(x,h) = p|lx,h : In this case the output is either B(x,h)[0] = p(x) or

reject.

Case: B(x,h) 6= p|lx,h : Again we have the following subcases:

Case: B(x,h)[t] 6= A(x + th): In this case the procedure rejects.

Case: B(x,h)[t] = A(x + th) 6= p(x + th): This happens with probability

at most
√
ε (taken over the choice of t), since the line lx,h is not bad.

In this case the procedure’s output is not necessarily p(x,h).

Case: B(x,h)[t] = A(x + th) = p(x + th): For this event to happen the poly-

nomials B(x,h) and p|x,h must agree at t, an event which happens with

probability at most d/(|F| − 1) for distinct degree d polynomials.

Thus, summing up over all the choices of the bad events, we find that the probability

of not rejecting or producing as output p(x) is at most 2
√
ε+ d

|F|−1 .

7.3 Concatenation and testing

Recall that an inner verifier is presented a proof with many oracles. Each oracle contains

an encoding of a binary string using some fixed encoding scheme. For purposes of this

section the encoding used is the multivariate polynomial encoding. The procedure de-

scribed next allows the verifier to do the following: given k+1 oracles X,X1, X2, . . . , Xk,
to check that X contains the concatenation of the information in X1, . . . , Xk.

Let ζ1, . . . , ζ|F| be some enumeration of the elements of F .

Definition 47 For k ≤ |F|, given polynomials p1, . . . , pk ∈ F (d)m , their concatenated poly-

nomial concatp1,...,pk is an element of F (d+k−1)
m+1 that, for every i ∈ {1, . . . , k} and x ∈ Fm,

satisfies concatp1,...,pk(x, ζi) = pi(x).

Remark: (i) Notice that concatp1,...,pk does exist, one such polynomial can be obtained

by an interpolation on p1, . . . , pk using Proposition 40. This interpolation maintains

the individual degrees in the first m variables and leads to degree at most k − 1 in

the variable x(m+1)). However, such a polynomial may not be unique. We assume

that in such a case some such polynomial is picked arbitrarily. (ii) To understand the

usefulness of this definition, see Lemma 50 below.

Next we describe a procedure to test if a given polynomial p is indeed the concatena-

tion of k polynomials with the i-th one being q. In what follows, we switch notation

and assume that the concatenated polynomial has degree d and the polynomials being

concatenated have degree d− k+ 1.

Poly-concat-test(t, p, q;m,F):
/* Expects t ∈ F, p : Fm+1 → F, and q : Fm → F.*/

Pick x ∈R Fm;
If p(x, t) 6= q(x) then reject else accept.

29

Proposition 48 For positive integers d,k, polynomials p1, . . . , pk, q ∈ F (d−k+1)
m , let p =

concatp1,...,pk ∈ F (d)m . If pi = q, then Poly-concat-test(ζi, p, q;m,F) accepts with proba-

bility 1, else Poly-concat-test(ζi, p, q;m,F) accepts with probability at most d/|F|.

Proof: Both parts are straightforward and follow from Proposition 21.

In general the functions we will work with may not be actually be polynomials but only

close to some polynomial. We now modify the above test appropriately to handle this

situation.

Poly-corr-concat-test(t,A, B,C ;m,d, F):

/* Expects t ∈ F, A : Fm+1 → F, B : F2(m+1) → F (d)1 ,

and C : Fm → F. */

Pick x ∈R Fm;
If Poly-self-corr(A, B, (x, t);m+ 1, d, F) 6= C(x)

then reject else accept.

Lemma 49 Let A : Fm+1 → F be an oracle which is ε-close to a polynomial p ∈ F (d)m+1

for some ε. For any index i ∈ {1, . . . , k}, let pi ∈ F (d)m be the polynomial given by

pi(·) = p(·, ζi). Given oracles B : F2(m+1) → F (d)1 and C : Fm → F the procedure

Poly-corr-concat-test(ζi, A, B, C ;m,d, F) behaves as follows:

1. If A = p, B = linesp and C = pi, then the procedure accepts with probability 1.

2. If there exists an oracle B such that the above procedure accepts with probability

ρ, then ∆(C,pi) < 1− ρ + 2
√
ε+ d

|F|−1 .

Proof: The first part is straightforward. For the second part we enumerate the dif-

ferent possible ways in which the procedure Poly-corr-concat-test may accept. For this

to happen it is necessary that Poly-self-corr does not reject. Furthermore, at least one

of the following events must occur: (1) Poly-self-corr(A, B, (x, ζi);m+1, d, F) does not

output p(x,ζi); or (2) p(x,ζi) = C(x).
Now let δ = ∆(C,pi). Then

Pr
x∈Fm

[p(x,ζi) = C(x)] ≤ 1− δ.

From Proposition 46, we have

Pr
x∈Fm

[
Poly-self-corr(A, B, (x, ζi);m+ 1, d, F) 6= p(x,ζi) or reject

]
≤ 2

√
ε+ d

|F| − 1
.

Thus the probability that the procedure Poly-corr-concat-test accepts is at most 1−δ+
2
√
ε+ d

|F|−1 . The lemma follows by substituting ρ = 1− δ+ 2
√
ε+ d

|F|−1 .

To finish up, we mention an important property of concatenations of polynomials.

Roughly speaking if s1, . . . , sk are any bit strings and s1 ◦ s2 ◦ · · · ◦ sk denotes their

concatenation as strings, then the (polynomial) concatenation of their polynomial en-

codings is simply the polynomial encoding of s1 ◦ s2 ◦ · · · ◦ sk. This property will be

used in the proof of Lemma 60 later.

30

Lemma 50 (A structural property of polynomial concatenation) Let H ⊆ F be such

that |H| ≥ k. Let n,m be such that n = |H|m. Suppose s1, . . . , sk ∈ {0,1}n are any

bitstrings and p1, . . . , pk:Fm → F are their polynomial encodings, that is, Pn,m,H,F(si) =
pi. Then the polynomial encodings satisfy the following property

P−1
n,m+1,H,F(concatp1,...,pk) = s1 ◦ s2 ◦ · · · sk ◦ T , (9)

where T is some bitstring of length n(|H| − k).

Proof: Follows trivially from the definition of polynomial encoding.

7.4 Curves and testing

This last section is the crucial part for parallelization. Here we are interested in the

following task. We are given a polynomial p ∈ Fm and we are interested in the value

of p at l points x1, . . . , xl ∈ Fm. The procedure Curve-check described in this section

allows us to find all the values by making only O(1) queries to the oracle for p and

some auxiliary oracle O. We emphasize that the number of queries does not depend

upon l, the number of points for which we desire the value of p. Intuitively speaking,

the procedure Curve-check allows us to “aggregate” queries.

We first introduce the notation of a curve.

Definition 51 A curve through the vector space Fm is a function C : F → Fm, i.e., C
takes a parameter t and returns a point C(t) ∈ Fm. A curve is thus a collection of m

functions c1, . . . , cm, where each ci maps elements from F to F . If each function ci ∈ F (d)1 ,

then C is a curve of degree d.

Remark: As in the case of lines, it will be convenient to think of a curve C as really

the set C = {C(t)}. Thus curves really form a generalization of lines, with lines being

curves of degree 1.

The following lemma will be useful in our next definition.

Lemma 52 Given l points x1, . . . , xl ∈ Fm, and l distinct elements t1, . . . , tl ∈ F , there

exists a degree l − 1 curve C such that C(ti) = xi. Furthermore, C can be constructed

using poly(l,m) field operations and in particular given t ∈ F , the point C(t) can be

computed using poly(l,m) field operations.

Proof: Follows from Proposition 40 and the fact that polynomial interpolation and

evaluation can be performed in polynomial time.

For the next definition, recall that ζ1, . . . , ζ|F| is a fixed enumeration of the elements of

F .

Definition 53 For l ≤ |F|, given points x1, . . . , xl ∈ Fm, the curve curvex1,...,xl through

x1, . . . , xl is a curve of degree l− 1 with C(ζi) = xi for i ∈ {1, . . . , l}.

Remark 54 By Lemma 52 we know that such a curve exists and can be constructed and

evaluated efficiently.

31

We will need one more fact before we can go on. For a function f : Fm → F and a curve

C : F → Fm, we let p|C : F → F denote the function p|C(t) = p(C(t)).

Proposition 55 Given a curve C : F → Fm of degree l and a polynomial p ∈ F (d)m , the

function p|C(t) is a univariate polynomial in t of degree at most (l− 1)d.

The basic idea that allows us to aggregate queries is that instead of simply asking for

the value of the polynomial p at the points x1, . . . , xl, we will ask for the univariate

polynomial p|C , where C = curvex1,...,xl .

Curve-check(p,O,x1, . . . , xl;m,d, F):

/* Expects p : Fm → F, O : Fml → F (d(l−1))
1 , x1, . . . , xl ∈ Fm. */

Let q(·) = O(x1, . . . , xl).
Pick t ∈R F.
If q(t) 6= p(curvex1,...,xl)[t]

then reject

else output q(ζ1), . . . , q(ζl).

Proposition 56 Given a degreed polynomialp : Fm → F , ifO(x1, . . . , xl) = p|curvex1 ,...,xl
,

then Curve-check outputsp(x1), . . . , p(xl)with probability 1. Conversely, ifO(x1, . . . , xl) 6=
p|curvex1 ,...,xl

, then Curve-check accepts with probability at most
d(l−1)
|F| .

The proof of the above proposition is a straightforward consequence of the fact that

two distinct degree d(l− 1) univariate polynomials can agree in at most d(l−1)
|F| places.

Finally we present a version of the above curve-check which works for functions which

are only close to polynomials but not equal to them. Note that this algorithm needs

access to an oracle B that contains, for every line in Fm, a univariate degree d polyno-

mial.

Curve-corr-check(A, B,O,x1, . . . , xl;m,d, F):

/* Expects A : Fm → F, B : F2m → F (d)1 ,

O : Fml → F (d(l−1))
1 , and x1, . . . , xl ∈ Fm. */

Let q(·) = O(x1, . . . , xl).
Pick t ∈R F.
If q(t) 6= Poly-self-corr(A, B, curvex1,...,xl(t);m,d, F)

then reject

else output q(ζ1, . . . , q(ζl).

Remark: Notice that Curve-corr-check only looks at one location in each of its three

oracles.

The following Lemma proves the correctness of this procedure.

32

Lemma 57 Let A : Fm → F be an oracle which is ε-close to some polynomial p ∈ F (d)m
for ε < .01. Given oracles B : Fm → F and oracle O, and points x1, . . . , xl ∈ Fm, the

procedure Curve-corr-check behaves as follows:

1. If A = p, B = linesp and O(x1, . . . , xl) = p|curvex1 ,...,xl
, then Curve-corr-check

outputs p(x1), . . . , p(xl) with probability 1.

2. The probability that Curve-corr-check does not reject and outputs a tuple other

than (p(x1), . . . , p(xl)) is at most 2
√
ε+ d

|F|−1 +
dl−1
|F| .

Lemma 57 follows by a straightforward combination of Propositions 46 and 56, since

Proposition 46 says that the result of Poly-self-corr(A, B, curvex1,...,xl(t);m,d, F) is p(x)
with high probability.

7.5 Parallelization: Putting it together

In this section we prove Theorem 14.

Let k ∈ Z+ be any constant. Let V seq be a (k, c1 logn, logc2 n, logc3 n,1, e) inner verifier

as guaranteed to exist by Theorem 39. We construct a new inner verifier V par with the

desired parameters.

Let C be a circuit of size n and km input nodes. Given such a circuit as input, the

inner verifier V par expects the proof to contain k + 1 oracles X1, X2, . . . , Xk+1. These

oracles contain some information which V par can examine probabilistically (by using

O(k) queries). This information is meant to convince V par that there exist some other

k + 1 oracles Y1, . . . , Yk+1 which make V seq accept input C with high probability (and

consequently, that C is a satisfiable circuit).

The main idea is that X1, . . . , Xk, Xk+1 each contains a polynomial that (supposedly) en-

codes a bit string. These k+1 bit strings (supposedly) represent a sequence of k+1 or-

acles that would have been accepted by V seq with probability 1. Given such oracles V par

first performs low degree tests (using only O(k) queries to the proof; see Section 7.2.1)

to check that the provided functions are close to polynomials. Next, V par tries to sim-

ulate the actions of V seq on the preimages of the polynomials (i.e., the strings encoded

by the polynomials). The simulation requires reconstructing poly(logn) values of the

polynomials, which can be done using Procedure Curve-corr-check of Section 7.2. Note

that this step requires only O(k) queries to the proof, even though it is reconstructing

as many as poly(logn) values of the polynomials.

Now we formalize the above description. First we recall how V seq acts when given C as

input. V seq expects the proof to contain k+ 1 oracles Y1, Y2, . . . , Yk+1. Let

N = Maximum number of bits in any of Y1, . . . , Yk+1 (10)

r = number of random bits used by V seq on input C (11)

(Eseq, (Eseq)−1) = encoding/decoding scheme of V seq (12)

On random string R ∈ {0,1}r , let the queries of V seq be given by the tuples (i1(C,R),
q1(C,R)), . . . , (il(C,R), ql(C,R)), where a pair (i, q) indicates that the i-th oracle Yi is

being queried with question q. By Theorem 39, the number of queries l ≤ logc3 n and

the maximum size of an oracle N ≤ nc1l (this is because the verifier uses only c1 logn
random bits, each of which results in ≤ l queries to the oracles; each query results in

an answer of 1 bit).

33

Oracle Contents What contents mean to V par

X1

X2

· · ·
Xk

Each Xi is a function from Fw

to F
EachXi is a polynomial encod-

ing of a bit string; the ith bit-

string is the ith oracle for V seq.

Xk+1:

(has 4 suboracles)

Z Z :Fw → F Polynomial that encodes the

k+ 1th oracle needed by V seq

A A:Fw+1 → F Encodes the concatenation of

X1, . . . , Xk and Z as defined in

Definition 47.

B B:F2(w+1) → F (d)1 . Contains,

for each line in Fw+1, a uni-

variate degree d polynomial.

Allows low degree test to be

performed on A

O O:F (w+1)l → F (d(l−1))
1 Con-

tains, for each degree l curve

in F (w+1)l, a univariate degree

d(l− 1) polynomial

Allows the procedure Curve-

corr-check to reconstruct up

to l values of the polynomial

closest to A.

Figure 3: Different oracles in the proof and what V par expects in them

The verifier V par fixes w = logN
log logN , F to be a finite field of size Θ(logmax{2+c3,6}N), and

picks a subset H of cardinality logN (arbitrarily). Let d = log2N
log logN + k − 1. Notice that

under this choice of H and w, we have |H|w ≥ N . The encoding scheme used by the

parallel verifier system is Epar = PN,w,H,F ◦Eseq, where PN,w,H,F is the polynomial encod-

ing defined in Section 7.1. (In other words, computing Epar(s) involves first computing

Eseq(s), and then using PN,w,H,F to encode it using a polynomial.) The decoding scheme

is (Epar)−1 = (Eseq)−1 ◦ (PN,w,H,F)−1. Recall that the encoding PN,w,H,F used a canonical

mapping from [N] toHw . We need to refer to this mapping while describing the actions

of the verifier V par, so we give it the name #. Thus the image of q ∈ [N] is #(q) ∈ Hw .

Of the k+1 oracles in the proof, the verifier V par views the last oracle Xk+1 as consisting

of four suboracles, denoted by Xk+1(1, ·),Xk+1(2, ·),Xk+1(3, ·) and Xk+1(4, ·) respec-

tively. Let us use the shorthand Z , A, B, O respectively for these suboracles. Figure 7.5

describes the contents of all the oracles.

Notice that the oracle O as described in Figure 7.5 above has |F|(w+1)l entries, which

for our choices of l,w is superpolynomial in n. However, we shall see below —in Step

3(d)— that the verifier will need only 2r = poly(n) entries from this oracle (and so the

rest of the entries need not be present). Specifically, step 3(d) requires an entry in O
only for the curve that passes through the points z1, . . . , zl mentioned in that step. The

tuple of points z1, . . . , zl is generated using a random string R ∈ {0,1}r , so there are

only 2r such tuples that the verifier can generate in all its runs.

Now we describe the verifier V par. (After each step we describe its intuitive meaning in

parentheses.) Recall that ζ1, . . . ζ|F| are the elements of field F .

1. Run Poly-test(A, B;w+1, d, F). (If this test accepts, the verifier can be reasonably

confident that A is close to a degree d polynomial.)

2. Concatenation tests:

34

For i = 1 to k, run Poly-concat-corr-check(ζi, A, B,Xi;w,d, F).
Run Poly-concat-corr-check(ζk+1, A, B, Z ;w,d, F).
(If all these tests accept, then the verifier can be reasonably confident that the Xi’s
and Z are close to degree d polynomials and that A is their concatenation in the

sense of Definition 47.)

3. (Next, the verifier tries to simulate V seq using P−1
N,w,H,F(X1), . . . ,P−1

N,w,H,F(Xk), and

P−1
N,w,H,F(Z) as the k+1 oracles. It uses the Curve-corr-check procedure to produce

any desired entries in those oracles.)

(a) Pick R ∈ {0,1}r .
(b) Let (i1(C,R), q1(C,R)), . . . , (il(C,R), ql(C,R)) be the questions generated by

V seq on random stringR. For conciseness, denote these by just (i1, q1), . . . , (il, ql).

(c) For j = 1 to l, Let hj = #(qj) and zj = (hj , ζij). Note that each zj ∈ Fw+1.

(d) Run Curve-corr-check(A, B,O, z1, . . . , zl;w+1, d, F) and let (a1, . . . , al) be its

output.

(e) If any of the responses a1, . . . , al is not a member of {0,1} then reject.

(f) If V seq rejects on random string R and responses a1, . . . , al, then reject.

4. If none of the above procedures rejects then accept.

Proposition 58 Given a circuit C of size n on km inputs, for some k < ∞, the verifier

V par has the following properties:

1. There exists a constant αk such that V par tosses at most αk logn coins.

2. V par probes the oracles 3k+ 5 times.

3. There exists a constant βk such that the answer size of the oracles are bounded by

logβk n.

4. There exists a constant γk such that the computation of V par’s verdict as a function

of the oracles responses can be expressed as a circuit of size logγk n.

Proof: Step 1 (low degree test) makes 2 queries one each into the oracles A and B. The

total randomness used here is (2(w+1)+1) log |F|. Step 2 (concatenation tests) makes 3

queries into the oracles A, B, Xi for each value of i ∈ {1, . . . , k}. The number of random

coins tossed in this step is k(2(w+2)) log |F|. In Step 3(a) V par tosses r random coins. In

addition in Step 3(d) it tosses log |F|(w+3) coins. Step 3(d) also makes three additional

queries. Thus the total number of coins tossed is (2wk + 3w + 2k + 6) log |F| + r ≤
13wk log |F| + r . By the choice of the parameters w and |F| above this amounts to

at most 13k(2 + c2) logN + c1 logn which in turn is at most 13k(2 + c2 + 1)c1 logn.

Lastly we bound the size of the circuit that expresses its decision. Note that all of the

verifier’s tasks, except in Step 3(f), involve simple interpolation and field arithmetic,

and they can be done in time polynomial (more specifically in time cubic) in log |F| and

d, k and l. By Theorem 39 the action in Step 3(f) involves evaluating a circuit of size

logc3 n. Thus the net size of V par’s circuit is bounded by some polynomial in logn.

We now analyze the completeness and soundness properties of V par.

Lemma 59 Let C be a circuit with km inputs and size n. Let x1, . . . , xk be such that

C(x1, . . . , xk) accepts. For i = 1 to k, let Xi = PN,w,H,F(Eseq(xi)). Then, there exists an

oracle Xk+1 such that, for all R,

(V par)X1,...,Xk+1(C ;R) = accept.

35

Proof: By the definition of an inner verifier, there is a stringπ such that (V seq)E
seq(x1),...,Eseq(xk),π

accepts C with probability 1. Let Z be the polynomial PN,w,H,F(π) that encodes π .

Notice that the Xi’s as well as Z are polonomials of degree m|H| = log2N
log logN . Let

A = concatX1,...,Xk,Z . Then A is a polynomial of degree at most d = m|H| + k − 1. Let

B = linesA. Let O be the oracle which, given any tuple of points z1, . . . , zl ∈ Fw+1 as a

query, returns the univariate degree d(l−1) polynomialA|curvez1 ,...,zl
, where curvez1,...,zl

is the curve defined in Definition 53. Let Xk+1 be the oracle combining Z , A, B and O,

i.e., such that Xk+1(1, ·) = Z(·), Xk+1(2, ·) = A(·), Xk+1(3, ·) = B(·), Xk+1(4, ·) = 0(·),
Then it is clear that (V par)X1,...,Xk+1 accepts C with probability 1.

Lemma 60 There exists an error parameter e < 1, such that for oracles X1, . . . , Xk+1,

if the verifier (V par)X1,...,Xk+1 accepts C with probability greater than e, then for xi =
(Eseq)−1(P−1

N,w,H,F(Xi)), the circuit C accepts on input x1 . . . xk.

Proof: Let δ0 be as in Theorem 45. Let eseq < 1 denote the error of the verifier V seq.

We will show that e = max{.999,1−δ0,1− (1−eseq)(.4)} satisfies the stated condition.

Suppose the test Poly-test(A, B;w+1, d, F) acceptsAwith probability max{.999,1−δ0}.
Then, by the soundness condition of Theorem 45, there exists a degree d polynomial p :

Fw+1 → F , such that∆(A,p) ≤ min{2δ0, .002} ≤ .002. (Notice that to apply Theorem 45

we need to ensure that |F| ≥ α(d+1)3. This does hold for our choice of F and d— the

latter is o(log2N) and the former is Ω(log6N).)

Now suppose each of the concatenation tests accepts with probability at least .999.

Let ε = ∆(A,p) and let pi(·) = p(·, ζi). Then, by Lemma 49, the distance ∆(Xi, pi) ≤
(1− .999)+ 2

√
ε + d

|F| which (given the choice of d and |F|) is at most 1/4. Thus pi is

the unique polynomial with distance at most 1/4 from Xi. Similarly, pk+1 is the unique

degree d polynomial with distance at most 1/4 to Z .

For i = 1, . . . , k+1, let Yi = P−1
N,w,H,F(Xi) = P−1

N,w,H,F(pi) be the decodings of the pi’s. We

now show that V seq accepts the proof oracles Y1, . . . , Yk+1 with reasonable probability,

thus implying — sinceV seq is an inner verifier — that (Eseq)−1(Y1)(Eseq)−1(Y2) · · · (Eseq)−1(Yk)
is a satisfying assignment to the input circuit C . This will prove the theorem.

In the program of V par, consider fixing R ∈ {0,1}r . Suppose further that R is such that

verifier V par accepts after Step 3 with probability more than 0.6 (where the probability

is over the choice of the randomness used in Step 3(d)). We show that then the verifier

(V seq)Y1,...,Yk+1 accepts on random string R. Recall that whether or not V par accepts

after Step 3 depends upon whether or not (a1, . . . , al), the output of Curve-corr-check,

is a satisfactory reply to the queries of verifier V seq using the random string R. By

Proposition 46, the probability that the procedure Curve-corr-check outputs something

other than p(z1), . . . , p(zl) is at most 2
√
ε + d

|F|−1 +
dl
|F| . By our choice of |F|, d, and ε,

we have 2
√
ε+ d

|F|−1 +
dl
|F| < 0.6. Thus if the probability that the verifier V par accepts in

step 3 is more than 0.6 it must be the case that p(z1), . . . , p(zl) is a satisfactory answer

to the verifier V seq. But p is simply a polynomial encoding of the concatenation of

Y1, . . . , Yk, Yk+1. Lemma 50 implies that if we were to run V seq on the oracles Y1, . . . , Yk+1

using random string R, then the answer it would get is exactly p(z1), . . . , p(zl)! We

conclude that V seq accepts the oracles Y1, . . . , Yk+1 on random string R.

Now we finish the proof. Suppose V par accepts in Step 3(f) with probability more than 1−
(1−eseq)(1−0.4). Then the fraction of R ∈ {0,1}r for which it accepts with probability

more than 0.6 must be at least 1 − eseq. We conclude that V seq accepts the oracles

Y1, . . . , Yk, Yk+1 with probability at least 1−eseq, whence we invoke soundness property

36

of V seq to conclude that (Eseq)−1(Y1), . . . , (Eseq)−1(Yk) is a satisfying assignment to the

circuit C . Since Yi = P−1
N,h,w,F(Xi), the theorem has been proved.

Finally, we prove Theorem 14.

Proof of Theorem 14: The system (V par,P ◦Eseq, (Eseq)−1 ◦ (P)−1) shall be the desired

inner verifier system. Given k < ∞, let αk, βk and γk be as in Proposition 58. We

let c1 = αk, p = 3k + 5, c2 = γk, c3 = βk. Further, let e be as in Lemma 60. Then,

by Proposition 58 and Lemmas 59 and 60, we see that (V par,P ◦ Eseq, (Eseq)−1 ◦ (P)−1)
forms a (k, c1 logn,p, logc2 n, logc3 n, e) inner verifier system.

37

8 Conclusions

We briefly mention some new results that have appeared since the first circulation of

this paper.

New non-approximability results. Many new results have been proved regarding the

hardness of approximation. Lund and Yannakakis [78] show that approximating the

chromatic number of a graph within a factor nε is NP-hard, for some ε > 0. They also

show that if NP 6⊆ Dtime(npoly(logn)), then Set Cover cannot be approximated within a

factor 0.5 logn in polynomial time. In a different work, Lund and Yannakakis [79] show

hardness results for approximation versions of a large set of maximum subgraph prob-

lems. (These problems involve finding the largest subgraph that satisfies a a property

Π, where Π is a nontrivial graph property closed under vertex deletion.) Khanna, Linial

and Safra [71] study the hardness of coloring 3-colorable graph. They show that color-

ing a 3-colorable graph with 4 colors is NP-hard. Arora, Babai, Stern, and Sweedyk [3]

prove hardness results for a collection of problems involving integral lattices, codes, or

linear equations/inequations. These include Nearest Lattice Vector, Nearest Codeword,

and the Shortest Lattice Vector under the `∞ norm. Karger, Motwani, and Ramkumar

[70] prove the hardness of approximating the longest path in a graph to within a 2log1−ε n

factor, for any ε > 0.

There are many other results which we haven’t mentioned here; see the compendium

[37] or the survey [4].

Improved analysis of outer verifiers. Our construction of an efficient outer verifier

for NP languages (Theorem 17) can be viewed as constructing a constant prover 1-

round proof system that uses O(logn) random bits. (The “constant prover" means the

same as “constant number of queries" in our context.) Recent results have improved

the efficiency of this verifier. Bellare, Goldwasser, Lund and Russell [21] construct

verifiers that use only 4 queries and logarithmic randomness to get the error down

to an arbitrarily small constant (with polyloglog sized answer sizes). Feige and Kilian

[43] construct verifiers with 2 queries, arbitrarily small error, and constant answer

sizes. Tardos [96] shows how to get verifier that makes 3 queries and whose error goes

down subexponentially in the answer size. Finally, all these constructions have been

effectively superseded by Raz’s proof [87] of the “parallel repetition conjecture.” This

conjecture was open for a long time, and allows constructions of a verifier that makes 2

queries, and whose error goes down exponentially with the answer size. Very recently,

Raz and Safra [88] have constructed verifiers making constant number of queries with

logarithmic randomness and answer size, where the error is as low as 2− log1−ε n for

every ε > 0. An alternate construction is given in Arora and Sudan [7].

Better non-approximability results. Part of the motivation for improving the con-

struction of outer verifiers is to improve the ensuing non-approximability results. The

result for MAX-3SAT in this paper, we only demonstrate the existence of an ε > 0 such

that approximating MAX-3SAT within a factor 1+ε is NP-hard. But the improved verifier

constructions mentioned above have steadily provided better and better values for this

ε. This line of research was initiated by Bellare, Goldwasser, Lund, and Russell [21] who

provided improved non-approximability results with explicit constants for a number

of problems, such as MAX 3SAT, MAX CLIQUE, Chromatic Number and Set Cover. Since

then a number of works [20, 23, 41, 43, 44, 50, 61, 62, 63] have focussed on improving

38

the non-approximability results. These results have culminated with some remarkably

strong inapproximability results listed below. The attributions only cite the latest re-

sult in a long sequence of papers - the interested reader can look up the cited result for

details of the intermediate results.

1. Håstad [63] has shown that MAX 3SAT is NP-hard to approximate within a factor

7/8− ε, for every ε > 0.

2. Håstad [62] has shown that MAX CLIQUE is hard to approximate to within a factor

n1−ε, for every positive ε, unless NP = RP.

3. Feige and Kilian [44], combined with Håstad [63], show that Chromatic number is

hard to approximate to within a factor n1−ε, for every positive ε, unless NP = RP.

4. Feige [41] shows that Set Cover is hard to approximate to within (1 − o(1)) lnn
unless NP ⊂ DTIME(nlog logn.

We note all the results above are tight.

A related issue is the following: “What is the smallest value of q for which NP =
∪c>0PCP(c logn,q)?" We have shown that q < ∞, but did not give an explicit bound

(though it could potentially be computed from this paper). But q has since been com-

puted explicitly and then reduced through tighter analysis. It has gone from 29 [21]

to to 22 [43] to 16 [20] to at most 9 (which is the best that can be inferred directly

from [63] - though this result is not optimized.) Parameters that are somewhat related

to q are the free-bit parameter introduced by Feige and Kilian [43] and the amortized

free-bit parameter introduced by Bellare and Sudan [23]. Reducing the latter parameter

is necessary and sufficient for proving good inapproximability results for MAX CLIQUE

[20], and Håstad [61, 62] has shown how to make this parameter smaller than every

fixed δ > 0 .

Other technical improvements. As a side-product of our proof of the main theorem,

we showed how to encode an assignment to a given circuit so that somebody else can

check that it is a satisfying assignment by looking at O(1) bits in the encoding. Babai

[11] raised the following question: How efficient can this encoding be? In our paper,

encoding an assignment of size n requires poly(n) bits. This was reduced to n2+ε by

Sudan [95]. The main hurdle in further improvement seemed to be Arora and Safra’s

proof [6] of Theorem 69, which requires a field size quadratic in the degree. Polishchuk

and Spielman [86] present a new proof of Theorem 69 that works when the field size is

linear. By using this new proof, as well as some other new ideas, they bring the size of

the encoding down to n1+ε.

Some of the other results of this paper have also found new proofs with a careful

attention to the constants involved. In particular, the low-degree test Theorem 45

has been improved significantly since then. Arora and Sudan [7] show that part 2 of

Theorem 45 can be improved to show that if a function passes the low degree test with

probability ε then it is 1− ε-close to some degree d polynomial. A similar result for a

different test was shown earlier by Raz and Safra [88]. The proof of the correctness of

the linearity test (Theorem 27) has also been improved in works by Bellare, Goldwasser,

Lund and Russell [21] and Bellare, Coppersmith, Hastad, Kiwi and Sudan [19].

39

Transparent math proofs. We briefly mention an application that received much at-

tention in the popular press. Consider proofs of theorems of any reasonable axiomatic

theory, such as Zermelo-Fraenkel set theory. A turing machine can check such proofs

in time that is polynomial in the length of the proof. This means that the language

{
(φ,1n) : φ has a proof of length n in the given system

}

is in NP (actually, it is also NP-complete for most known systems). Our main theorem

implies that a certificate of membership in this language can be checked probabilisti-

cally by using only O(logn) random bits and while examining only O(1) bits in it. In

other words, every theorem of the axiomatic system has a “proof" that can be checked

probabilistically by examining only O(1) bits in it. (Babai, Fortnow, Levin, and Szegedy

[14] had earlier shown that proofs can be checked by examinining only poly(logn) bits

in them.)

Actually, by looking at Remark 18, a stronger statement can be obtained: there is a

polynomial-time transformation between normal mathematical proofs and our “prob-

abilistically checkable certificates of theoremhood."

Surprising algorithms: There has also been significant progress on designing better

approximation algorithms for some of the problems mentioned earlier. Two striking re-

sults in this direction are those of Goemans and Williamson [57] and Arora [2]. Goemans

and Williamson [57] show how to use semidefinite programming to give better approxi-

mation algorithms for MAX-2SAT and MAX-CUT. Arora [2] has discovered a polynomial

time approximation scheme (PTAS) for Euclidean TSP and Euclidean Steiner tree prob-

lem. (Mitchell [80] independently discovered similar results a few months later.) These

were two notable problems not addressed by our hardness result in this paper since

they were not known to be MAX SNP-hard. Arora’s result finally resolves the status of

these two important problems.

8.1 Future Directions

Thus far our main theorem has been pushed quite far (much further than we envi-

sioned at the time of its discovery!) in proving non-approximability results. We feel

that it ought to have many other uses in complexity theory (or related areas like cryp-

tography). One result in this direction is due to Condon et al. [34, 35], who use our

main theorem (actually, a stronger form of it that we did not state) to prove a PCP-style

characterization of PSPACE. We hope that there will be many other applications.

Acknowledgments

This paper was motivated strongly by the work of Arora and Safra [6] and we thank

Muli Safra for numerous discussions on this work. We are grateful to Yossi Azar, Mihir

Bellare, Tomas Feder, Joan Feigenbaum, Oded Goldreich, Shafi Goldwasser, Magnus

Halldorsson, David Karger, Moni Naor, Steven Phillips, Umesh Vazirani and Mihalis

Yannakakis for helpful discussions since the early days of work on this paper. We

thank Manuel Blum, Lance Fortnow, Jaikumar Radhakrishnan, Michael Goldman and

the anonymous referees for pointing out errors in earlier drafts and giving suggestions

which have (hopefully) helped us improved the quality of the writeup.

40

References

[1] S. Arora. Probabilistic Checking of Proofs and

Hardness of Approximation Problems. PhD thesis, U.C. Berkeley, 1994. Available

from http://www.cs.princeton.edu/˜arora .

[2] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other

geometric problems. Proceedings of 37th IEEE Symp. on Foundations of Computer

Science, pp 2-12, 1996.

[3] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate op-

tima in lattices, codes, and systems of linear equations. Journal of Computer and

System Sciences, 54(2):317-331, April 1997.

[4] S. Arora and C. Lund. Hardness of approximations. In Approximation Algorithms

for NP-hard problems, D. Hochbaum, ed. PWS Publishing, 1996.

[5] S. Arora, R. Motwani, S. Safra, M. Sudan, and M. Szegedy. PCP and approxi-

mation problems. Unpublished note, 1992.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization

of NP. To appear Journal of the ACM. Preliminary version in Proceedings of the

Thirty Third Annual Symposium on the Foundations of Computer Science, IEEE,

1992.

[7] S. Arora and M. Sudan. Improved low degree testing and its applications. Pro-

ceedings of the Twenty Eighth Annual Symposium on the Theory of Computing,

ACM, 1997

[8] G. Ausiello, A. D’Atri, and M. Protasi. Structure Preserving Reductions among

Convex Optimization Problems. Journal of Computer and Systems Sciences, 21:136-

153, 1980.

[9] G. Ausiello, A. Marchetti-Spaccamela and M. Protasi. Towards a Unified Ap-

proach for the Classification of NP-complete Optimization Problems. Theoretical

Computer Science, 12:83-96, 1980.

[10] L. Babai. Trading group theory for randomness. Proceedings of the Seventeenth

Annual Symposium on the Theory of Computing, ACM, 1985.

[11] L. Babai. Transparent (holographic) proofs. Proceedings of the Tenth Annual Sym-

posium on Theoretical Aspects of Computer Science, Lecture Notes in Computer

Science Vol. 665, Springer Verlag, 1993.

[12] L. Babai and L. Fortnow. Arithmetization: a new method in structural complexity

theory. Computational Complexity, 1:41-66, 1991.

[13] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-

prover interactive protocols. Computational Complexity, 1:3-40, 1991.

[14] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-

logarithmic time. Proceedings of the Twenty Third Annual Symposium on the The-

ory of Computing, ACM, 1991.

[15] L. Babai and K. Friedl. On slightly superlinear transparent proofs. Univ. Chicago

Tech. Report, CS-93-13, 1993.

41

[16] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a

hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254-

276, 1988.

[17] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. Proceed-

ings of the Seventh Annual Symposium on Theoretical Aspects of Computer Sci-

ence, Lecture Notes in Computer Science Vol. 415, Springer Verlag, 1990.

[18] M. Bellare. Interactive proofs and approximation: reductions from two provers in

one round. Proceedings of the Second Israel Symposium on Theory and Computing

Systems, 1993.

[19] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi and M. Sudan. Linearity testing

in characteristic two. IEEE Transactions on Information Theory 42(6):1781-1795,

November 1996.

[20] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCPs and non-approximability

— towards tight results. To appear SIAM Journal on Computing. Preliminary ver-

sion in Proceedings of the Thirty Sixth Annual Symposium on the Foundations of

Computer Science, IEEE, 1995. Full version available as TR95-024 of ECCC, the Elec-

tronic Colloquium on Computational Complexity, http://www.eccc.uni-trier

.de/eccc/.

[21] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically

checkable proofs. Proceedings of the Twenty Fifth Annual Symposium on the The-

ory of Computing, ACM, 1993. (See also Errata sheet in Proceedings of the Twenty

Sixth Annual Symposium on the Theory of Computing, ACM, 1994).

[22] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear pro-

gram. Journal of Mathematical Programming B, 69(3):429-441, September 1995.

Also in Complexity of Numerical Optimization, Ed. P. M. Pardalos, World Scien-

tific, 1993.

[23] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings of

the Twenty Sixth Annual Symposium on the Theory of Computing, ACM, 1994.

[24] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive

proofs: How to remove intractability assumptions. Proceedings of the Twentieth

Annual Symposium on the Theory of Computing, ACM, 1988.

[25] P. Berman and G. Schnitger. On the complexity of approximating the indepen-

dent set problem. Information and Computation 96:77–94, 1992.

[26] M. Bern and P. Plassmann. The steiner problem with edge lengths 1 and 2. Infor-

mation Processing Letters, 32:171–176, 1989.

[27] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of

shortest superstrings. Journal of the ACM, 41(4):630-647, July 1994.

[28] M. Blum. Program checking. Proc. FST&TCS, Springer L.N.C.S. 560, pp. 1–9.

[29] M. Blum and S. Kannan. Designing Programs that Check Their Work. Proceedings

of the Twenty First Annual Symposium on the Theory of Computing, ACM, 1989.

[30] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications

to numerical problems. Journal of Computer and System Sciences, 47(3):549-595,

December 1993.

42

[31] J. Cai, A. Condon, and R. Lipton. PSPACE is provable by two provers in one round.

Journal of Computer and System Sciences, 48(1):183-193, February 1994.

[32] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak

random sources. Proceedings of the Thirtieth Annual Symposium on the Founda-

tions of Computer Science, IEEE, 1989.

[33] A. Condon. The complexity of the max word problem, or the power of one-way

interactive proof systems. Proceedings of the Eighth Annual Symposium on Theo-

retical Aspects of Computer Science, Lecture Notes in Computer Science Vol. 480,

Springer Verlag, 1991.

[34] A. Condon, J. Feigenbaum, C. Lund and P. Shor. Probabilistically Checkable De-

bate Systems and Approximation Algorithms for PSPACE-Hard Functions. Proceed-

ings of the Twenty Fifth Annual Symposium on the Theory of Computing, ACM,

1993.

[35] A. Condon, J. Feigenbaum, C. Lund and P. Shor. Random debaters and the

hardness of approximating stochastic functions. SIAM Journal on Computing,

26(2):369-400, April 1997.

[36] S. Cook. The complexity of theorem-proving procedures. Proceedings of the Third

Annual Symposium on the Theory of Computing, ACM, 1971.

[37] P. Crescenzi and V. Kann, A compendium of NP optimization problems.

Technical Report, Dipartimento di Scienze dell’Informazione, Università di

Roma “La Sapienza”, SI/RR-95/02, 1995. The list is updated continuously.

The latest version is available by anonymous ftp from nada.kth.se as

Theory/Viggo-Kann/compendium.ps.Z.

[38] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis.

The complexity of multiway cuts. SIAM Journal on Computing, 23:4, pp. 864–894,

1994.

[39] W. De la Vega and G. Lueker. Bin Packing can be solved within 1 + ε in Linear

Time. Combinatorica, vol. 1, pages 349–355, 1981.

[40] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.

In Richard Karp (ed.), Complexity of Computation, AMS, 1974.

[41] U. Feige. A threshold of ln n for Set Cover. In Proceedings of the Twenty Eighth

Annual Symposium on the Theory of Computing, ACM, 1996.

[42] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs

and the hardness of approximating cliques. Journal of the ACM, 43(2):268-292,

March 1996.

[43] U. Feige and J. Kilian. Two prover protocols – Low error at affordable rates. Pro-

ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing,

ACM, 1994.

[44] U. Feige and J. Kilian. Zero knowledge and chromatic number. Proceedings of

the Eleventh Annual Conference on Complexity Theory , IEEE, 1996.

[45] U. Feige and L. Lovász. Two-prover one-round proof systems: Their power and

their problems. Proceedings of the Twenty Fourth Annual Symposium on the The-

ory of Computing, ACM, 1992.

43

[46] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive

protocols. Theoretical Computer Science, 134(2):545-557, November 1994.

[47] R. Freivalds. Fast Probabilistic Algorithms. Proceedings of Symposium on Mathe-

matical Foundations of Computer Science, Springer-Verlag Lecture Notes in Com-

puter Science, v. 74, pages 57–69, 1979.

[48] K. Friedl, Zs. Hátsági and A. Shen. Low-degree testing. Proceedings of the Fifth

Symposium on Discrete Algorithms, ACM, 1994.

[49] K. Friedl and M. Sudan. Some improvements to low-degree tests. Proceedings of

the Third Israel Symposium on Theory and Computing Systems, 1995.

[50] M. Fürer. Improved hardness results for approximating the chromatic number.

Proceedings of the Thirty Sixth Annual Symposium on the Foundations of Com-

puter Science, IEEE, 1995.

[51] M. Garey and D. Johnson. The complexity of near-optimal graph coloring. Journal

of the ACM, 23:43-49, 1976.

[52] M. Garey and D. Johnson. “Strong” NP-completeness results: motivation, exam-

ples and implications. Journal of the ACM, 25:499-508, 1978.

[53] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[54] M. Garey, D. Johnson and L. Stockmeyer. Some simplified NP-complete graph

problems. Theoretical Computer Science 1:237-267, 1976.

[55] P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Informa-

tion Processing Letters, 43(4):169-174, September 1992.

[56] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. Proceedings

of the Twenty Third Annual Symposium on the Theory of Computing, ACM, 1991.

[57] M. Goemans and D. Williamson. Improved approximation algorithms for maxi-

mum cut and satisfiability problems using semidefinite programming. Journal of

the ACM, 42(6):1115-1145, November 1995.

[58] O. Goldreich. A Taxonomy of Proof Systems. In Complexity Theory Retrospective

II, L.A. Hemaspaandra and A. Selman (eds.), Springer-Verlag, New York, 1997.

[59] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active proof-systems. SIAM J. on Computing, 18(1):186-208, February 1989.

[60] R. Graham. Bounds for certain multiprocessing anomalies, Bell Systems Technical

Journal, 45:1563-1581, 1966.

[61] J. Håstad. Testing of the long code and hardness for clique. Proceedings of the

Twenty Eighth Annual Symposium on the Theory of Computing, ACM, 1996.

[62] J. Håstad. Clique is hard to approximate within n1−ε. Proceedings of the Thirty

Seventh Annual Symposium on the Foundations of Computer Science, IEEE, 1996.

[63] J. Håstad. Some optimal inapproximability results. Proceedings of the Twenty

Eighth Annual Symposium on the Theory of Computing, ACM, 1997,

44

[64] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum

of subset problems. Journal of the ACM, 22:463-468, 1975.

[65] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. Proceedings of

the Thirtieth Annual Symposium on the Foundations of Computer Science, IEEE,

1989.

[66] D. Johnson. Approximation algorithms for combinatorial problems. J. Computer

and Systems Sci. 9:256-278, 1974.

[67] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Infor-

mation Processing Letters, 37:27-35, 1991.

[68] N. Karmakar and R. Karp. An Efficient Approximation Scheme For The One-

Dimensional Bin Packing Problem. Proceedings of the Twenty Third Annual Sym-

posium on the Foundations of Computer Science, IEEE, 1982.

[69] R. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, Advances in Comput-

ing Research, pages 85–103. Plenum Press, 1972.

[70] D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest path

in a graph. Algorithmica, 18(1):82-98, May 1997.

[71] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chro-

matic number. Proceedings of the Second Israel Symposium on Theory and Com-

puting Systems, 1993.

[72] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus compu-

tational views of approximability. To appear SIAM Journal on Computing. Prelim-

inary version in Proceedings of the Thirty Fifth Annual Symposium on the Foun-

dations of Computer Science, IEEE, 1994.

[73] P. Kolaitis and M. Vardi. The decision problem for the probabilities of higher-

order properties. Proceedings of the Nineteenth Annual Symposium on the Theory

of Computing, ACM, 1987.

[74] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-

time. Journal of Computer and System Sciences, 54(2):215-220, April 1997.

[75] L. Levin. Universal’ny̆ıe pereborny̆ıe zadachi (Universal search problems : in Rus-

sian). Problemy Peredachi Informatsii, 9(3):265–266, 1973. A corrected English

translation appears in an appendix to Trakhtenbrot [97].

[76] R. Lipton. New directions in testing. In J. Feigenbaum and M. Merritt, editors,

Distributed Computing and Cryptography, volume 2 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, pages 191–202. American Mathe-

matical Society, 1991.

[77] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive

Proof Systems. J. ACM, 39, 859–868, 1992.

[78] C. Lund and M. Yannakakis. On the hardness of approximating minimization

problems. Journal of the ACM, 41(5):960-981, September 1994.

[79] C. Lund and M. Yannakakis. The approximation of maximum subgraph prob-

lems. Proceedings of ICALP 93, Lecture Notes in Computer Science Vol. 700,

Springer Verlag, 1993.

45

[80] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: Part II-

A simple PTAS for geometric k-MST, TSP, and related problems. Preliminary

manuscript, April 30, 1996. To appear in SIAM J. Computing.

[81] R. Motwani. Lecture Notes on Approximation Algorithms. Technical Report, Dept.

of Computer Science, Stanford University (1992).

[82] C. Papadimitriou and M. Yannakakis. Optimization, approximation and com-

plexity classes. Journal of Computer and System Sciences 43:425-440, 1991.

[83] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with dis-

tances one and two. Mathematics of Operations Research, 1992.

[84] A. Paz and S. Moran. Non-deterministic polynomial optimization problems and

their approximation. Theoretical Computer Science, 15:251-277, 1981.

[85] S. Phillips and S. Safra. PCP and tighter bounds for approximating MAXSNP.

Manuscript, Stanford University, 1992.

[86] A. Polishchuk and D. Spielman. Nearly Linear Sized Holographic Proofs. Pro-

ceedings of the Twenty Sixth Annual Symposium on the Theory of Computing,

ACM, 1994.

[87] R. Raz. A parallel repetition theorem. Proceedings of the Twenty Seventh Annual

Symposium on the Theory of Computing, ACM, 1995.

[88] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. Proceedings of the Twenty

Eighth Annual Symposium on the Theory of Computing, ACM, 1997.

[89] R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-Testing and Self-

Correcting Programs. Ph.D. thesis, U.C. Berkeley, 1990.

[90] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with ap-

plications to program testing. SIAM Journal on Computing 25(2):252-271, April

1996.

[91] S. Sahni. Approximate algorithms for the 0/1 knapsack problem, Journal of the

ACM, 22:115-124, 1975.

[92] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the

ACM, 23:555-565, 1976.

[93] J. Schwartz. Probabilistic algorithms for verification of polynomial identities.

Journal of the ACM, 27:701-717, 1980.

[94] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

[95] M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Ap-

proximation Problems. Ph.D. Thesis, U.C. Berkeley, 1992. Also appears as ACM Dis-

tinguished Theses, Lecture Notes in Computer Science, no. 1001, Springer, 1996.

[96] G. Tardos. Multi-prover encoding schemes and three prover proof systems. Pro-

ceedings of the Ninth Annual Conference on Structure in Complexity Theory , IEEE,

1994.

[97] B. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force search)

algorithms. Annals of the History of Computing 6:384-400, 1984.

46

[98] L. Welch and E. Berlekamp. Error correction of algebraic block codes. US Patent

Number 4,633,470 (filed: 1986).

[99] M. Yannakakis. On the approximation of maximum satisfiability. Journal of Al-

gorithms, 17(3):475-502, November 1994.

[100] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM

Journal on Computing, 25(6):1293-1304, December 1996

A Correctness of the low degree test

This section proves the correctness of the Low Degree test by proving part (2) of The-

orem 45. Let m and d be arbitrary positive integers that should be considered fixed

in the rest of this section. Let F be a finite field. Recall that the test receives as its

input two oracles: the first a function from Fm to F , and the second an oracle B that

gives, for each line in Fm, a univariate polynomial of degree d. As already explained in

Section 7.2, we will view B as a function from F2m to F (d)1 (recall that F (d)1 is the set of

univariate degree d polynomials over F). We will call any such oracle a d-oracle.

Definition 61 Let f :Fm → F be any function, (x,h) ∈ F2m, and g be a univariate degree

d polynomial. For t ∈ F , we say that g describes f at the point lx,h(t) if

f(x + th) = g(t).

Recall that the test picks a random line and a random point on this line, and checks

whether the univariate polynomial provided in B for this line describes f at this point.

Therefore we define the failure rate of B with respect to f , denoted δ(B)f , as

δ(B)f ≡ Pr
x,h∈Fm,t∈F

[f (x + th) 6= B(x,h)[t]] . (13)

We wish to prove part (2) of Theorem 45, which asserts the existence of some δ0 > 0

(independent of d,q,m) for which the following is true: if f :Fm → F is any function

and B is any d-oracle such that δ(B)f ≤ δ0, then f is 2δ(B)f -close to F (d)m . (Note that the

Theorem also has a technical requirement, namely that |F| is sufficiently large.)

To simplify the proof exposition, we first give a simple characterization of the d-oracle

B that minimizes δ(B)f .

Definition 62 For a function f : Fm → F and points x,h ∈ Fm, a degree d line polyno-

mial for f on the line lx,h (or just line polynomial on lx,h, when d and f are understood

from context) is a univariate degree d polynomial that describes f on more (or at least

as many) points on lx,h than every other univariate degree d polynomial. We let P
(f ,d)
x,h

denote this polynomial. (If there is more than one choice possible for P
(f ,d)
x,h , we choose

between them arbitrarily.)

Remark 63 The line polynomial may be equivalently defined as a univariate degree d
polynomial that is closest to the restriction of f to the line. Thus it follows from Lemma 21

that if the restriction is (1/2 − d/ |F|)-close to some degree d polynomial, then the line

polynomial is uniquely defined. In the case when the line polynomial is not uniquely

47

defined, we assume that some polynomial is picked arbitrarily but consistently. More

specifically, notice that the lines lx,h and lx+t1h,t2h are identical for every t1 ∈ F and

t2 ∈ F − {0}. We will assume that P
(f ,d)
x,h = P (f ,d)x+t1h,t2h. This will simplify our notation in

the following proof.

For f :Fm → F , we denote by B(f ,d) a d-oracle in which B(f ,d)(x,h) = P (f ,d)x,h for every

(x,h) ∈ F2m. We denote by δf ,d the quantity δ
(B(f ,d))
f , i.e., the failure rate of B(f ,d) with

respect to f . Notice that by Remark 63, we have that

δf ,d = Pr
x,h∈Fm,t∈F

[
P
(f ,d)
x,h [t] = f(x + th)

]

= Pr
x,h∈Fm,t∈F

[
P
(f ,d)
x+th,h[0] = f(x + th)

]

= Pr
x′=x+th,h∈Fm

[
P
(f ,d)
x′,h [0] = f(x′)

]
(14)

Proposition 64 If f :Fm → F is any function and d > 0 any integer, then every d-oracle

has failure rate at least δf ,d with respect to f .

Proof: Let C be any oracle. The definition of a line polynomial implies that for every

pair (x,h) ∈ F2m, the number of points in lx,h at which the polynomial C(x,h) de-

scribes f is no more than the number at which B(f ,d) describes f . By averaging over

all (x,h), the proposition follows.

It should be clear from Proposition 64 that the following result suffices to prove part 2

of Theorem 45.

Theorem 65 (The Section’s Main Theorem) There are fixed constants δ0 > 0 and α <
∞ such that the following is true. For all integersm,d > 0 and every field F of size αd3,

if f :Fm → F is a function such that δf ,d ≤ δ0, then f is 2δf ,d-close to F (d)m .

We note that our proof of Theorem 65 will provide an explicit description of the poly-

nomial closest to f . For any function f : Fm → F , define another function f̂d:Fm → F
as follows:

f̂d(x) ≡ plurality1
h∈Fm

{
P
(f ,d)
x,h (0)

}
∀x ∈ Fm. (15)

(Note that the line lx,h passes through x. Further, x is the point x+0·h, so P
(f ,d)
x,h (0) is

the value produced by the line polynomial P
(f ,d)
x,h at x. Thus f̂d(x) is the most popular

value produced at x by the line polynomials of the lines passing through x.)

The proof of Theorem 65 will show, first, that f is close to f̂d and second, that f̂d is a

degree d polynomial. The first statement is easy and is proved in the next lemma. The

proof of the second statement takes up the rest of the section.

Lemma 66 For any function f : Fm → F and any integer d, ∆(f , f̂d) ≤ 2δf ,d.

1The plurality of a multiset of elements is the most commonly occuring element, with ties being broken
arbitrarily.

48

Proof: Let B be the set given by

B =
{
x ∈ Fm| Pr

h∈Fm
[f (x) 6= P (f ,d)x,h (0)] ≥ 1/2

}
.

Now imagine picking (x,h) ∈ F2m randomly. We have

Pr
x,h
[f (x) 6= P (f ,d)x,h (0)] ≥ 1

2
· Pr
x
[x ∈ B] (16)

= |B|
2 |F|m . (17)

But by (14), we also know that

Pr
x,h
[f (x) 6= P (f ,d)x,h (0)] = δf ,d. (18)

From (17) and (18) we conclude that |B|
2|F|m ≤ δf ,d. Furthermore, the definition of f̂d

implies that every x 6∈ B satisfies f̂d(x) = f(x). Hence we have

∆(f , f̂d) ≤
|B|
|F|m ≤ 2δf ,d.

Thus the lemma has been proved.

For the rest of the proof of Theorem 65, we will need a certain lemma regarding bivariate

functions. The following definition is required to state it.

Definition 67 For the bivariate domain F×F , the row (resp., column) through x0 (resp.,

y0), is the set of points {(x0, y)|y ∈ F} (resp., {(x,y0)|x ∈ F}).

Notice that rows and columns are lines. The notion of a line polynomial specializes to

rows and columns as follows.

Definition 68 For a function f : F2 → F and a row through x0 the row polynomial, is

a univariate polynomial of degree d that agrees with f on more (or at least as many)

points on the row as any other univariate degree d polynomial. We let r
(f ,d)
x0 denote this

polynomial. (If there is more than one choice for r
(f ,d)
x0 , we pick one arbitrarily.) We

likewise define the column polynomial c
(f ,d)
y0 for the column through y0 ∈ F .

The next result (which we will not prove) shows that if f is a bivariate function such

that its row and column polynomials agree with it in “most" points, then f is close to a

bivariate polynomial. This result can be viewed as proving the subcase of Theorem 65

when the number of variables, m, is 2. This subcase will be crucial in the proof for

general m.

Theorem 69 ([6]) There are constants ε0, c > 0 such that the following holds. Let d be

any positive integer, ε ≤ ε0, and F a field of cardinality at least cd3. For f : F2 → F , let

R,C : F2 → F be the functions defined as R(x,y) = r (f ,d)x (y) and C(x,y) = c(f ,d)y (x).
If f satisfies ∆(f ,R) ≤ ε and ∆(f , C) ≤ ε, then there exists a polynomial g : F2 → F of

degree at most d in each of its variables, such that ∆(f , g) ≤ 4ε.

49

Corollary 70 Let ε0, c be as given by Theorem 69. Let ε < min{ε0,
1
5 −

d
5|F|}, d be any

non-negative integer and F a field of cardinality at least cd3. Let f :F2 → F satisfy the

hypothesis of Theorem 69. Let ε′ be such that 0 < ε′ < 1
2 −

2d
|F| − 5ε.

Then if x0, y0 ∈ F satisfy

Pr
x
[f (x,y0) 6= r

(f ,d)
x (y0)] ≤ ε′ (19)

Pr
y
[f (x0, y) 6= c

(f ,d)
y (x0)] ≤ ε′ (20)

then r
(f ,d)
x0 (y0) = c(f ,d)y0 (x0).

Proof: Theorem 69 implies there exists a polynomial g of degree d each in x and y
such that ∆(f , g) ≤ 4ε. Since ∆(f , C) ≤ ε and ∆(f ,R) ≤ ε, we conclude from the

triangle inequality that ∆(g,C),∆(g,R) ≤ 5ε.

To prove the desired statement it suffices to show that r
(f ,d)
x0 (y0) and c

(f ,d)
y0 (x0) are

both equal to g(x0, y0). For convenience, we only show that c
(f ,d)
y0 (x0) = g(x0, y0); the

other case is identical.

For x ∈ F , let g(x, ·) denote the univariate degree d polynomial that describes g on

the row that passes through x. We first argue that

Pr
x∈F
[g(x, ·) 6= r (f ,d)x (·)] ≤ 5ε+ d

|F| (21)

The reason is that r
(f ,d)
x (·) and g(x, ·) are univariate degree d polynomials, so if

they are different, then they disagree on at least |F| − d points. Since ∆(g,R) =
Prx,y[g(x,y) ≠ f(x,y)], we have

∆(g,R) ≥ (1− d
|F|)Prx∈F[g(x, ·) 6= r (f ,d)x (·)],

which implies Prx[g(x, ·) 6= R(x, ·)] ≤ 5ε/(1− d
|F|), and it is easily checked that 5ε/(1−

d
|F|) ≤ 5ε+ d

|F| , provided 5ε ≤ 1− d
|F| .

Immediately from (21) it follows Prx[g(x,y0) 6= r (f ,d)x (y0)] ≤ 5ε+ d
|F| . The hypothesis

of the corollary implies that y0 ∈ F is such that Prx[f (x,y0) 6= r (f ,d)x (y0)] ≤ ε′. Thus

we find that

Pr
x

[
f(x,y0) 6= g(x,y0)

]
≤ Pr

x

[
f(x,y0) 6= r (f ,d)x (y0)

]
+ Pr
x

[
r
(f ,d)
x (y0) 6= g(x,y0)

]

≤ 5ε+ ε′ + d

|F| .

But the previous statement just says that the univariate polynomial g(·, y0) describes

f on all but (5ε+ε′+ d
|F|) |F| points on the column through y0. Further, the hypothesis

also says that 5ε + ε′ + d
|F| < 1/2 − d

|F| , so we conclude that g(·, y0) is simply the

column polynomial for the column through y0, namely, c
(f ,d)
y0 . Hence it follows that

c
(f ,d)
y0 (x0) = g(x0, y0), which is what we desired to prove.

Now we return to them-variate case of Theorem 65. The next lemma shows that if the

failure rate δf ,d is small, then the line polynomials of f are mutually quite consistent.

50

Lemma 71 Let ε0 and c be as given in Theorem 69. Let d be any positive integer, F be a

field of size at least max{6d, cd3}, and ε be any constant satisfying 0 < ε <min{ 1
36 , ε0}.

Then every function f : Fm → F satisfies:

∀x ∈ Fm, t0 ∈ F, Pr
h1,h2

[
P
(f ,d)
x,h1

(t0) 6= P (f ,d)x+t0h1,h2
(0)
]
≤ 4δf ,d

ε
+ 4

|F| .

Remark: Note that when h1 ∈ Fm is random, the line lx,h1 is a random line through

x. When h2 ∈ Fm is also random, the line lx+t0h1,h2 is a random line through x + t0h1.

The two lines intersect at the point x + t0h1.

Proof: We use the shorthand δ for δf ,d. Pick h1, h2 ∈R Fm and letM = Mh1,h2 : F2 → F
be the function given by M(y,z) = f(x +yh1 + zh2).

The Lemma will be proved by showing that with probability at least 1− 4(δ/ε+ 1/|F|)
(over the choice of h1 and h2), M satisfies the conditions required for the application

of Corollary 70 for y0 = t0 and z0 = 0 and ε′ = ε. Then it will follow that c
(M,d)
z0 (y0) =

r
(M,d)
y0 (z0). But note that by definition ofM , c

(M,d)
z0 = P (f ,d)x,h1

and r
(M,d)
y0 = P (f ,d)x+t0h1,h2

. This

suffices to prove the lemma since now we have

P
(f ,d)
x,h1

(t0) = c(M,d)z0 (y0)r
(M,d)
y0 (z0) = P (f ,d)x+t0h1,h2

(0).

We first verify that the first hypothesis for Corollary 70 holds: i.e., that ε and ε′ satisfy

5ε + ε′ + (2d)/|F| < 1/2. Since by the hypothesis of the lemma we have |F| ≥ 6d, we

find that 2d/|F| ≤ 1/3 and thus we need to show that 5ε+ ε′ = 6ε < 1/2− 1/3 = 1/6.

The finally inequality holds since ε < 1/36 by the hypothesis of the lemma.

Next, note that x + yh1 and h2 are random and independent of each other. Thus, by

the definition of δ, we have

∀y 6= 0, ∀z, Pr
h1,h2

[
P
(f ,d)
x+yh1,h2

(z) 6= f(x +yh1 + zh2)
]
≤ δ. (22)

Note that the event P
(f ,d)
x+yh1,h2

(z) 6= f(x +yh1 + zh2) may be rephrased as r
(M,d)
y (z) 6=

M(y,z). We now argue that

Pr
h1,h2

[
Pr

y 6=0,z
[M(y, z) 6= r (M,d)y (z)] ≥ ε

]
≤ δ
ε
. (23)

To see this, consider the indicator variable Xh1.h2,y,z = 1 that is 1 if P
(f ,d)
x+yh1,h2

(z) 6=
f(x+yh1+zh2) and 0 otherwise. In what follows, let Er [A(r)] denote the expectation

of A as a function of the random variable r . In this notation, (22) can be expressed as

∀y 6= 0, ∀z, Eh1,h2

[
Xh1,h2,y,z

]
≤ δ.

For h1, h2 ∈ Fm, define Yh1,h2 to be Ey 6=0,z[Xh1,h2,y.z] where y and z are chosen uni-

formly and independently at random from F − {0} and F respectively. >From (22) it

follows that

Eh1,h2[Yh1,h2] = Eh1,h2,y 6=0,z[Xh1,h2,y,z] ≤ max
y 6=0,z

{Eh1.h2[Xh1,h2,y,z]} ≤
δ

ε
.

(23) now follows by applying Markov’s inequality to the random variable Yh1,h2 .2

2Recall that Markov’s inequality states that for a non-negative random variable Y , Pr[Y ≥ k] ≤ E[Y]/k.

51

Going back to (23), by accounting for the probability of the event y = 0, we conclude:

Pr
h1,h2

[
Pr
y,z
[M(y, z) 6= r (M,d)y (z)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (24)

Applying Markov’s inequality again to (22) (in a manner similar to the derivation of (23))

but this time fixing z = z0, we get

Pr
h1,h2

[
Pr
y
[M(y, z0) 6= r (M,d)y (z0)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (25)

We can similarly argue that

Pr
h1,h2

[
Pr
y,z
[M(y, z) 6= c(M,d)z (y)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (26)

and Pr
h1,h2

[
Pr
z
[M(y0, z) 6= c(M,d)z (y0)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (27)

Thus with probability at least 1 − 4(δ/ε + 1/|F|), none of the events (24)-(27) happen

and all the hypotheses of Corollary 70 are satisfied.

The next corollary relates the values produced by the line polynomials to the values of

the “corrected" function f̂d.

Corollary 72 Let ε0, c be as given by Theorem 69. Let 0 < ε <min{ 1
36 , ε0}. Then every

function f : Fm → F satisfies

∀x ∈ Fm, t ∈ F, Pr
h∈Fm

[
f̂d(x + th) 6= P (f ,d)x,h (t)

]
≤ 8δf ,d

ε
+ 8

|F| (28)

if F is a finite field of size at least max{6d, cd3}.

Proof: Let δ = δf ,d. Let Bx,t be the set defined as

Bx,t =
{
h ∈ Fm|P (f ,d)x,h (t) 6= pluralityh′{P (f ,d)x+th′(0)}

}
.

Note that every h 6∈ B, automatically satisfies f̂d(x+ th) = P (f ,d)x,h (t). So the probability

appearing on the left hand side of (28) is bounded from above by
|Bx,t|
|F|m . We will show

that
|Bx,t|
|F|m ≤ 2 · (4δ/ε+ 4/|F|).

Imagine picking h,h1 ∈ Fm randomly. Using Lemma 71 we have,

Pr
h,h1

[P
(f ,d)
x+th,h1

(0) ≠ Px,h(t)] ≤ (4δ/ε+ 4/|F|).

But for each h ∈ Bx,t , (by the definition of Bx,t) we have

Pr
h1∈Fm

[
P
(f ,d)
x+th,h1

(0) 6= Px,h(t)
]
≤ 1

2
.

Thus Pr
h,h1∈RFm

[
P
(f ,d)
x+th,h1

(0) ≠ Px,h(t)
]
≥ |Bx,t|

2|F|m .

52

Hence we conclude that
|Bx,t|
|F|m ≤ 2(4δ/ε+ 4/|F|).

Even the specialization of the lemma above to the case t = 0 is particularly interesting,

since it says that the “plurality" in the definition of f̂d is actually an overwhelming

majority, provided δf ,d is sufficiently small. The next lemma essentially shows that f̂d
is a degree d polynomial.

Lemma 73 Let ε0 and c be as in Theorem 69. Let F be a finite field of size at least

max{6d, cd3} and ε = min{1/36, ε0}. If f : Fm → F is any function for which δ = δf ,d
satisfies

256δ

ε2
+ 256

ε|F| +
56δ

ε
+ 40

|F| < 1,

then

∀x,h ∈ Fm f̂d(x) = P (f̂d,d)x,h (0).

Proof: Pick h1, h2 ∈R Fm and define M : F2 → F to be

M(y,0) = f̂d(x +yh) and M(y,z) = f(x +yh+ zh1 +yzh2) for z 6= 0.

Notice that by the definition of M , for every y , r
(M,d)
y (z) = P (f ,d)x+yh,h1+yh2

(z) and for

every z 6= 0, c
(M,d)
z (y) = P (f ,d)x+zh1,h+zh2

(y). Finally c
(M,d)
0 (y) = P (f̂d,d)x,h (y). Thus the

0-th column of M is independent of h1, h2 and the goal of the lemma is to show that

M(0,0) = c(M,d)0 (0). We will show, by an invocation of Corollary 70, that the event

c
(M,d)
0 (0) = r (M,d)0 (0) happens with probability strictly greater than 8δ/ε + 8/|F| over

the random choices of h1 and h2. But by Corollary 72, we have M(0,0) = f̂d(x) =
P
(f ,d)
x,h1

(0) = r (M,d)0 (0) with probability at least 1− 8δ/ε− 8/|F|. (Of the three equalities

in the chain here — the first and the third are by definition and the middle one uses

Corollary 72.) Our choice of ε, δ implies that the following event happens with with

positive probability (over the choice of h1 and h2): “f̂d(x) = r (M,d)0 (0) = P (f̂d,d)x,h (0)."
But this event does not mention h1 and h2 at all, so its probability is either 1 or 0.

Hence it must be 1, and the Lemma will have been proved.

Thus to prove the Lemma it suffices to show that the conditions required for Corol-

lary 70 are true for the function M , with ε′ = ε and y0 = z0 = 0.

For z = 0 and all y , we haveM(y,z) = f̂d(x+yh+z(h1+yh2)), by definition. For any

z 6= 0 and y , the probability Prh1,h2[M(y, z) 6= f̂d(x + yh + z(h1 + yh2))] is at most

2δ (by Lemma 66). Also, for all y,z ∈ F , the probability that f̂d(x+yh+z(h1+yh2))

does not equal P
f ,d
x+yh,h1+yh2

(z) is at most 8δ/ε+8/|F| (by Corollary 72). Thus we have

shown

Pr
h1,h2

[
M(y,z) 6= r (M,d)y (z)

]
≤ 8δ/ε+ 8/|F| + 2δ = δ1.

As in the proof of Lemma 71, we can now conclude that

Pr
h1,h2

[
Pr
y,z
[M(y, z) 6= r (M,d)y (z)] ≥ ε

]
≤ δ1

ε
+ 1

|F| . (29)

and Pr
h1,h2

[
Pr
y
[M(y,0) 6= r (M,d)y (0)] ≥ ε

]
≤ δ1

ε
+ 1

|F| . (30)

53

For the columns the conditions required are shown even more easily. We first observe

that the line lx+zh1,h+zh2 is a random line through Fm for any z 6= 0. Thus we can use

the definition of δ to claim that, for every y ∈ F ,

Pr
h1,h2

[
M(y,z) = f(x + zh1 +y(h+ zh2)) = P (f ,d)x+zh1,h+zh2

(y) = c(M,d)y (z)
]
= δ.

As in the proof of Lemma 71 we can argue that

Pr
h1,h2

[
Pr
y,z
[M(y, z) 6= c(M,d)z (y)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (31)

and Pr
h1,h2

[
Pr
z
[M(0, z) 6= c(M,d)z (0)] ≥ ε

]
≤ δ
ε
+ 1

|F| . (32)

Thus with probability at least 1 − 16(δ1/ε + δ/ε + 2/|F|), none of the events (29)-(32)

happen and we can apply Corollary 70.

To conclude we need to show that 1− 16(δ1/ε + δ/ε + 2/|F|) > 8δ/ε + 8/|F| and this

follows from the conditions given in the statement of the lemma.

Now we can prove the main theorem of this section.

Proof of Theorem 65: The choice ofα andδ0 are made as follows: Let ε = min{1/36, ε0},
where ε0 is as in Theorem 69. Now pick α to be max{c,600/ε}, where c is as given by

Theorem 69. Now let δ0 = ε2

624 . Notice that δ0 is positive, and α <∞.

Let f : Fm → F be a function over a field F of size at least αd3 such that δf ,d < δ0.

It can be verified that δ, ε and F satisfy the conditions required for the application of

Lemma 73. Thus we can conclude that f̂d satisfies

∀x,h f̂d(x) = P (f̂d,d)x,h .

Under the condition |F| > 2d+ 1, this condition is equivalent to saying f̂d is a degree

d polynomial (see [90]). (See also [49] for a tight analysis of the condition under which

this equivalence holds.) By Lemma 66 ∆(f , f̂d) ≤ 2δf ,d. Thus f is 2δf ,d-close to a

degree d polynomial.

54

