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Abstract. We give a number of improved inapproximability results,
including the best up to date explicit approximation thresholds for bo-
unded occurence satisfiability problems like MAX-2SAT and E2-LIN-2,
and the bounded degree graph problems, like MIS, Node Cover, and
MAX CUT. We prove also for the first time inapproximability of the
problem of Sorting by Reversals and display an explicit approximation
threshold.
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1 Introduction

The paper studies explicit approximation thresholds for bounded dependency,
and bounded degree optimization problems. There was a dramatic progress re-
cently in proving tight inapproximability results for a number of NP-hard op-
timization problems (cf. [H96], [H97], [TSSW96]). In this paper we address bo-
unded instances of the classic NP-hard optimization problems and some related
problems. The method uses randomized reductions and applies to a number of
problems including Maximum Independent Set in graphs of degree d (d-MIS), bo-
unded degree Minimum Node Cover (d-Node Cover), bounded degree MAX CUT
(d-MAX CUT) and bounded occurrence MAX-2SAT (d-OCC-MAX-2SAT), (cf.
[PY91], [A94], [BS92], [BF94], [BF95], [AFWZ95]). This yields also the first ex-
plicit approximation lower bounds for the small degree graph problems, and the
small dependency satisfiability. We apply also this method to prove approxi-
mation hardness of the problem of sorting by reversals, MIN-SBR, the problem
motivated by molecular biology [HP95] (and with a long history of related re-
search, cf., e.g., [GP79], [CB95]), only recently proven to be NP-hard [C97].
Interestingly, its signed version can be computed in polynomial time [HP95],
[BH96], [KST97].

The core of the new method is the use of restricted versions of the E2-LIN-2
and E3-LIN-2 problems studied in [H97]. We denote by E2-LIN-2 the problem
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of maximizing the number of satisfied equations from a given set of linear equa-
tions mod 2 with 2 variables per equation. E3-LIN-2 is a similar problem with
three variables per equation. E2-LIN-2 can be viewed as a graph problem in the
following way: each variable is a node, and an equation x ⊕ y = b is an edge
{x, y} with label b. The special case when all edges have label 1 constitutes MAX
CUT problem.

We denote by d-OCC-E2-LIN-2 and d-OCC-E3-LIN-2 the versions of these
problems where the number of occurrences of each variable is bounded by d (note
that in d-OCC-2-LIN-2 can be also viewed as restricted to graphs of degree d).

The paper proves the following main theorem:

Theorem 1. For every ε > 0, it is NP-hard to approximate

(1) 3-OCC-E2-LIN-2 and 3-MAX CUT within factor 332/331 − ε;
(2) 6-OCC-MAX 2SAT within factor 668/667 − ε;
(3) 3-OCC-MAX 2SAT within factor 2012/2011 − ε;
(4) 3-OCC-E3-LIN-2 within factor 62/61 − ε;
(5) 4-MIS within factor 74/73 − ε and 4-Node Cover within 79/78 − ε;
(6) 5-MIS within factor 68/67 − ε and 5-Node Cover within 74/73 − ε;
(7) 3-MIS within factor 140/139 − ε and 3-Node Cover within 145/144 − ε;
(8) MIN-SBR within factor 1237/1236 − ε.

All these results rely on the reduction to show (1), which forms structures
that can be translated into many graph problems with very small and natural
gadgets. The complete proofs are to be found in [BK99].

The gaps between the upper and lower approximation bounds are summari-
zed in Table 1. The upper bounds are from [GW94], [BF95], [C98], and [FG95].

2 Sequence of Reductions

We start from E2-LIN-2 problem that was most completely analyzed by H̊astad
[H97] who proved that it is NP-hard to approximate it within a factor 12/11− ε.
In this paper, we prefer to interpret it as the following graph problem. Given
an undirected graph G = 〈V, E, l〉 where l is a 0/1 edge labeling function. For
S ⊂ V , let χS be the characteristic function of S. We define Score(S, {u, v}) =
χS(u) ⊕ χS(v) ⊕ l({u, v}). In turn, Score(S) =

∑
e∈E Score(S, e). The objective

of E2-LIN-2 is to maximize Score(S).
Our first reduction will have instance transformation τ1, and will map an

instance G of E2-LIN-2 into another instance G′ of the same problem that has
three properties: G′ is a graph of degree 3, its girth (the length of a shortest cycle)
is Ω(log n), and its set of nodes can be covered with cycles in which all edges
are labeled 0. We will use τ1(E2-LIN-2) to denote this restricted version of E2-
LIN-2. The last two properties of τ1(E2-LIN-2) are important in the subsequent
reductions that lead to MIN SBR problem.

To obtain other inapproximability results, we alter the reduction τ1 in two
ways. The first modification results in graphs that have all edges labeled with
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Table 1. Gaps between known approximation bounds.

Problem Approx. Upper Approx. Lower

3-OCC-E2-LIN-2 1.1383 1.0030

3-OCC-E3-LIN-2 2 1.0163

3-MAX CUT 1.1383 1.0030

3-OCC-MAX 2SAT 1.0741 1.0005

6-OCC-MAX-2SAT 1.0741 1.0014

3-MIS 1.2 1.0071

4-MIS 1.4 1.0136

5-MIS 1.6 1.0149

3-Node Cover 1.1666 1.0069

4-Node Cover 1.2857 1.0128

5-Node Cover 1.625 1.0138

MIN-SBR 1.5 1.0008

1, i.e. it reduces E2-LIN-2 to 3-MAX CUT and allows to complete the proof
of (1). The second modification reduces E3-LIN-2 to a very special version of
3-OCC-E3-LIN-2, which we call HYBRID, because a large majority of equations
have only two variables. This reduction instantaneously leads to (4).

To show (2), we use an obvious reduction from τ1(E2-LIN-2): an instance of
E2-LIN-2 can be viewed as a set of equivalence statements, and we can replace
each equivalence with a pair of implications. On the other hand, we obtain (7)
and (5) using reductions from HYBRID.

Although HYBRID problem appears to be very “efficient”, we cannot use it
in the chain that leads to MIN-SBR. Instead, we use another reduction, with
instance translation τ2, that leads from τ1(E2-LIN-2) to 4-MIS. This transla-
tion replaces each node/variable with a small gadget. The resulting instances
of 4-MIS can be transformed into the next problem that we consider, which we
call breakpoint graph decomposition, BGD. This problem is related to maximum
alternating cycle decomposition, (e.g. see Caprara, [C97]) but has a different ob-
jective function (as with another pair of related problems, Node Cover and MIS,
the choice of the objective function affects approximability). An instance of BGD
is a so-called breakpoint graph, i.e. an undirected graph G = 〈V, E, l〉 where l is
a 0/1 edge labeling function, which satisfies the following two properties:

(1) for b ∈ {0, 1}, each connected component of
〈
V, l−1(b)

〉
is a simple path;

(2) for each v ∈ V , the degrees of v in
〈
V, l−1(0)

〉
and in

〈
V, l−1(1)

〉
are the

same.
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An alternating cycle C is a subset of E such that 〈V, C, l|C〉 has the property
(ii). A decomposition of G is a partition C of E into alternating cycles. The
objective of BGD is to minimize cost(C) = 1

2 |E| − |C|.
By changing the node-replacing gadget of τ2 and enforcing property (i) by

“brute force”, we obtain reduction τ3 that maps τ1(E2-LIN-2) into BGD. The
last reduction, π, converts a breakpoint graph G into a permutation π(G), an
instance of sorting by reversals, MIN-SBR. We use a standard reduction, i.e. the
correspondence between permutations and breakpoints graphs used in the appro-
ximation algorithms for MIN-SBR (as done by Bafna and Pevzner, [BP96]). In
general, this correspondence is not approximation preserving because of so-called
hurdles (see [BP96,HP95]). However, the permutations in π(τ3(τ1(E2-LIN-2)))
do not have hurdles, and consequently for these restricted version of BGD, π is
an approximation preserving reducibility with ratio 1.

3 First Reduction

To simplify the first reduction, we will describe how to compute the instance
translation using a randomized poly-time algorithm. In this reduction, every
node (variable) is replaced with a wheel, a random graph that is defined below.
The parameter κ used here equals 6.

Definition 1. An r-wheel is a graph with 2(κ + 1)r nodes W = Contacts ∪
Checkers, that contains 2r contacts and 2κr checkers, and two sets of edges,
C and M . C is a Hamiltonian cycle in which with consecutive contacts are
separated by chains of κ checkers, while M is a random perfect matching for the
set of checkers (see Fig. 1 for an example).

Consider an instance G of E2-LIN-2 with n nodes (variables) and m edges
(equations). We will transform G into τ1(G), an instance of 3-OCC-E2-LIN-2.
Let k = dn/2e. A node v of degree d will be replaced with a kd-wheel Wv. All
wheel edges are labeled 0 to indicate our preference for such a solution S that
either Wv ⊂ S or Wv ∩ S = ∅. An edge {v, u} with label l is replaced with 2k
edges, each of them has label l and joins a contact of Wv with a contact of Wu. In
the entire construction each contact is used exactly once, so the resulting graph
is 3-regular.

4-wheel

checker node
contact node

Fig. 1. A very small example of a gadget used by τ1.



204 P. Berman and M. Karpinski

We need to elaborate this construction a bit to assure that τ1(G) has a large
girth. First, we will assure that no short cycle is contained inside a wheel. We can
use these properties of an r-wheel W : each cycle different of length lower than 2κr
must contain at least one edge of the matching M and the expected number of
nodes contained in cycles of length 0.2 log2(κr) or less is below (κr)−0.8 fraction).
Thus we can destroy cycles of length below 0.2 log2 n by deleting matching edges
incident to every node on such a cycle and neglect the resulting changes in Score.

Later, we must prevent creation of short cycles that include edges between
the wheels; this can be done using a construction of Bollobás [B78].

The solution translation is simple. Suppose that we have a solution S for a
translated instance. First we normalize S as follows: if the majority of contacts
in a wheel W belong to S, we change S into S ∪ W , otherwise we change S into
S − W . We convert a normalized solution S into a solution S′ of the original
problem in an obvious manner: a node belongs to S′ iff its wheel is contained
in S. We can show that the probability that the normalization decreases the
score is very low. Assuming that G has m edges/equations, we have Score(S) =
2k((3κ+2)m+Score(S′)). H̊astad [H97] proved that for E2-LIN-2 instances with
16n equations it is NP-hard to distinguish those that have Score above (12− ε)n
and those that have Score below (11 + ε)n, where the positive constant ε can be
arbitrarily small. By showing that our reduction is correct for κ = 6 we prove

Theorem 2. For any ε ∈ (0, 1/2), it is NP-hard to decide whether an instance
of τ1(E2-LIN-2) ∈ 3-OCC-E2-LIN-2 with 336n edges (equations) has Score above
(332 − ε)n or below (331 + ε)n.

4 From HYBRID to k-MIS

We can modify τ1 to transform E3-LIN-2 rather than E2-LIN-2. Variables
(nodes) are still replaced with kd-wheels, and an equation x ⊕ y ⊕ z is repla-
ced with 2k equations, each involving one contact from each of the respective
consistency wheels. HYBRID is the resulting set of instances of E3-LIN-2. By
analizing this reduction, we can show (4). Furthermore, we can efficiently reduce
HYBRID to k-MIS for k = 3, 4, 5.

Given an instance S of HYBRID, we will form graph G of degree 4, an
instance of 4-MIS. Each variable/node x of S will be replace with a gadget Ax

which is an induced subgraph of G. Every gadget contains a hexagon, i.e. a cycle
of length 6 in which nodes with labels 0 and 1 alternate. Hexagons will have two
types: a-hexagons, with 2 chords, and b-hexagons, with 1 chord.

If x and y are connected by an edge (equation with two variables), the hexa-
gons of Ax and Ay will share a pair of adjacent edges; this edge of G corresponds
to the equation/edge x = y. A checker gadget is simply a hexagon: 3 edges edges
of equations connected by three other edges, and one or two diagonals. A contact
gadget consists of a hexagon fused with a square; 3 such gadgets are connected
by an equation gadget that contains 4 nodes that do not belong to gadgets of
nodes/variables. Our best reduction to 5-MIS differs only ib the shape of the
contact gadget. Fig. 2 and 3 show these gadgets in detail.



On Some Tighter Inapproximability Results 205

Solution translation is relatively simple. First we show that we can modify
each solution S so that each checker and each contact gadget is pure, i.e. it
contains only one kind of nodes from S (0-nodes or 1-nodes) and then we perform
appropriate accounting. Note that if all gadgets are pure, than the solution
translation is obvious: if it contains 0-nodes from S, the respective Boolean
variable receives value 0, and similarly for 1.

1-node

0-node

  checker

Fig. 2. Consistency wheel for 4-MIS and 5-MIS. The gadget used by 4-MIS to replace
a contact node is shown in the upper right corner. The lower right corner is a gadget
replacing a contact node in a reduction to 5-MIS.

x z

y

x ⊕ y ⊕ z = 0

011 101

110 000

x z

y

x ⊕ y ⊕ z = 1

010 001

111 100
x

y

z

110

011 101

000
x ⊕ y ⊕ z = 0

x

y

z

111

010 001

100
x ⊕ y ⊕ z = 1

Fig. 3. Equation gadgets for 4-MIS and 5-MIS (left) and the gadgets for 3-MIS (right).

We can describe a similar reduction from HYBRID to 3-MIS. Given a HY-
BRID system of equations S, we form a graph G of degree 3. Again, each variable
x of HYBRID is replaced with a gadget Ax; the gadget of a checker variable is
a hexagon, and a gadget of a contact variable is a hexagon augmented with a
trapezoid, a cycle of 6 nodes that shares one edge with the hexagon. The hexa-
gons used here have no chords. If two variables/nodes x, y are connected by an
equation/edge, x = y, we connect their hexagons with a pair of edges to form
a rectangle in which the edges of the hexagons and the new edges alternate.
The rectangle thus formed is a gadget of this equation. If three variables are
connected by an equation/hyperedge, say, x ⊕ y ⊕ z = 0, the trapezoids of Ax,
Ay and Az are connected to four special nodes of the gadget of this equation. As
a result, the gadget of this equation consists of 3 trapezoid and 4 special nodes,
for the total of 22 nodes. The details are shown in Fig 4 and Fig. 3.
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Fig. 4. Consistency wheel for 3-MIS.

The analysis of this reduction (and the two preeceding ones) allows us to
prove the following theorem:

Theorem 3. For any ε ∈ (0, 1/2), it is NP-hard to decide whether an instance
of 4-MIS with 152n nodes has the maximum size of an independent set above
(74 − ε)n or below (73 + ε)n.
Further, it is NP-hard to decide if an instance of 4-MIS with 152n nodes has the
maximum size of an independent set above (74 − ε)n or below (73 + ε)n.
Moreover, it is NP-hard to decide if an instance of 3-MIS with 284n nodes has
the maximum size of an independent set above (140 − ε)n or below (139 + ε)n.

5 From E2-LIN-2 to 4-MIS, BGD and MIN-SBR

An instance of 4-MIS can be modified to became an instance of BGD in a simple
manner: each node can be replace with an alternating cycle of length 4; adjacent
nodes will be replaced with a pair such cycles that have an edge (or two) in
common. If we are “lucky”, after the replacement we indeed obtain a breakpoint
graph. Unfortunately, it is not possible to apply such transformation consistently
to a graph from Fig. 3. We did not find other gadgets that can replace an equation
with three variables and can later be replaced with a fragment of a breakpoint
graph. Therefore we will be using a translation from τ1(E2-LIN-2), shown in
Fig 5.

0-node 1-node

Fig. 5. A part of 4-MIS instance obtained from τ1(E2-LIN-2) (left) and its translation
within BGD instance (right).

It is easy to see that the size of the resulting 4-MIS graph is 9n, and that
the correspondence between the size of the pure solution and the score in the
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original τ1(E2-LIN-2) instance is i = 3n + s. The “purifying” normalization
proceeds differently than before, for details we refer to [BK99].

The idea of reducing MIS problem to BGD is very simple and natural. Ob-
serve that the set E of all edges forms an alternating cycle (AC for short), a
disjoint union of ACs is an AC, and a difference of two ACs, one contained in
another is also an AC. Thus any disjoint collection of ACs can be extended to
a decomposition of AC. Consequently, the goal of BGD is to find a collection of
disjoint ACs as close in size to the maximum as possible.

Second observation is that the consequences of not finding an AC diminish
with the size of AC. Suppose that the input has n breakpoints (edges of one
color), and that we neglect to find any AC’s with more than k breakpoints. The
increase in the cost of the solution is smaller than n/k, while the cost is at least
n/2. Thus if k = Ω(log n), such oversight does not affect the approximation
ratio.

The strategy suggested by these observation is to create instances of BGD
in which alternating cycles that either have 2 breakpoints, or Ω(log n). Then
the task of approximating is equivalent to the one of maximizing the size of
independent set in the graph G of all ACs of length 4; we draw an edge between
two ACs if they share an edge.

More to the point, we need to find a difficult family of graphs of degree
4 which can be converted into breakpoint graphs by replacing each node with
an alternating cycle of size 4. To this end, we can use τ2(τ1(E2-LIN-2)). Fig. 5
shows how this replacement is applied to a cycle of gadget forming a consistency
wheel. One of the gadget is shown shaded, and dark gray indicates overlaps with
other gadgets; the overlap with a gadget from another wheel consists of two
disconnected pieces (note that it exists if this gadget replaces a contact node).
The union of ACs used in the replacements is also a disjoint union of 5 ACs (in
Fig. 5 these ACs are horizontal zigzags). To apply the reasoning of the previous
sections, we need to establish that no cycles of length larger than 4 have to be
considered. Here, we omit this reasoning.

At this point the translation is still not correct, as the resulting graphs MUST
violated property (i) of BGD: edges of one kind form a collection of cycles: in
Fig. 5 such edges form diagonal lines consisting of 5 edges each; such a line
crosses to another strip of gadgets and then proceeds without end. However,
these cycles induce cycles of gadgets, hence have length Ω(log n), moreover, they
are disjoint. Therefore we can remove all these cycles by breaking O(n/log n)
contacts between the strips.

Given and instance G of τ1(E2-LIN-2) with 2n nodes and 3n edges, this
construction creates BGD instance G′ with 20n breakpoints (edges of one color),
and the correspondence between the cost c of a cycle decomposition in G′ and
s, Score of the corresponding solution of G is c = 20n − 3n − s. Together with
Theorem 2 this implies

Theorem 4. For any ε ∈ (0, 1/2), it is NP-hard to decide whether an instance
of BGD with 2240n breakpoints has the minimum cost of an alternating cycle
decomposition below (1236 + ε)n or above (1237 − ε)n.
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Our reduction from BGD to MIN-SBR is straightforward, in particular we
can use the procedure GET-PERMUTATION of Caprara [C97, p.77] to obtain
permutation π(G) from a given breakpoint graph G. The number of reversals
needed to sort the resulting permutation is equal to the number of black edges in
G, minus the number of cycles in in the optimum cycle cover, plus the number of
hurdles, plus 1 if there is a fortress. Therefore the difference between the cost of
solution for G differs from that for π(G) by the number of hurdles (possibly, plus
1). Now recall that we started from an instance of E2-LIN-2 problem with some
n variables and m equations, n < m. Our instance of BGD has Θ(mn) nodes
and edges. We can show that the number of hurdles is not larger n, than the
number of consistency wheels. In a nutshell, a hurdle is a connected components
of the breakpoints in so-called interleaving graph that satisfies certain conditions.
We can show that breakpoints from each consistency wheel belong to a single
connected component. Because n is much smaller than the solution size, we can
conclude that Theorem 4 applies also to MIN-SBR.

6 Further Research and Open Problems

It would very interesting to improve still huge gaps between approximation up-
per and lower bounds for bounded approximation problems of Table 1. The lower
bound of 1.0008 for MIN-SBR is the first inapproximability result for this pro-
blem. The especially huge gap between 1.5 and 1.0008 for the MIN-SBR problem
reflects a great challenge for future improvements.
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