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Abstract

Two Prover Protocols – Low

Known algebraic methods for reducing the error in

two-prover one-round proof systems prove unsatisfac-

tory for many applications, as they have a large over-

head in communication and in computation, and they

do not preserve zero knowledge.

We show that for a general class of proof systems,

confuse or compare proof systems, parallel repetition

reduces the error at a polynomial rate. Using this re-

sult we show that NP has two-prover one-round proof

systems with logarithmic communication and arbitrar-

ily small error (bounded away from O). The same result

holds for zero knowledge proof systems for NP. Using

these results we obtain improved NP-hardness results

for a wide variety of approximation problems.

We also show how the known algebraic error reduc-

tion techniques can be modified so as not to disrupt

the zero knowledge property. In fact, they can be made

to enhance zero knowledge, transforming any protocol

which is zero knowledge with respect to honest veri-

fiers, to a protocol which is zero knowledge with respect

to cheating verifiers as well. This implies that NEXP-

TIME has two-prover one-round perfect zero knowledge

proof systems with exponentially small error, and that

NP has such proof systems with polylogarithmic com-

munication, and superpolynomially small error.
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1 Introduction

We consider single-round two prover proof systems,

as introduced by Ben-Or et ai. [9]. In these proof sys-

tems, V generates a pair of questions (ql, qz) based on

the input z and his random coin tosses R, and sends qi

to Pi, who makes a response ai. V accepts or rejects

based on x, ql, q2, al, a2 and R. More formally, we de-

fine IM1P(2, 1) and rnip(2, 1) (“small J141P(2, l)”) as

follows.

Definition 1 [V, PI, P2] is an A41P(2, 1) pr-ooj system

with error c for language L Zf the following two condi-

tions hold:

● Completeness: If z G L, V(z, PI, 5) accepts

● Soundness: -If x @ L, then for all ~1, ~2,

Pr[V(z, Fl, Pz) accepts] < c, where the probabil-

ity is taken over the random coin tosses of V.

[V, PI, P2] is an mip(2, 1) proof system zf in addition

V‘s questions and random coins are of size O(log Izl),

and the length of the provers’ replies is a constant, inde-

pendent of 1x1, We say that L G MlP(2, 1) {mip(2, 1)}

if it has an MIP(2, 1) {mip(2, 1)} proof system with

error 1/3.

An important property possessed by some two prover

proof systems is of zero knowledge. This property was

first introduced by Goldwasser et al. [23] in the con-

text of single prover protocols, and later adapted to the

multiple-prover scenario [9].

Definition 2 An J’vIIF’(2, 1) proof system is zero

knowledge if there exists a random polynomial time

simulator M, such th~t for any input x G L, and for

any poss~bly cheating V, the probability dwtributions in-

duced by the protocols [~, PI, P2](z) and [~, M](z) are

identical. The probabilities are taken over the random

coin tosses of ~, PI, P2, and M.

It follows from [4, 28, 19] that L11P(2, 1) =

NEXPTIME. Lapidot and Shamir [27] showed that

any language L in NP has a zero knowledge A41P(2, 1)

proof system with exponentially small error. Arora

et a/. [2] showed that any NP language has an
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mip(2, 1) proof system with a constant error c < 1.

Dwork et ai. [16] constructs zero-knowledge MIP(2, 1)

proof systems for NEXPTIME and zero knowledge

rnip(2, 1) proof systems for JVF’, with some constant

error c < 1. However, it was previously open whether

NP E nlip(2,1) or whether NEXPTIA4E had zero-

knowleclge A41P(2, 1) proofs with exponentially small

error.

As well as their cryptographic applications (See

[9, 10, 27, 16] for a discussion of these issues), two-

prover one-round proof systems have been used as a

starting point to prove that certain optimization prob-

lems are hard to approximate. This was demonstrated

in [5, 7, 19], and in a more spectacular way, by Lund

and Yannakakis [30] who showed that S ETCOVER is

hard to approximate within a ratio of (l(log n). Also,

the protocols in [2, 6] use constructions of two prover

one round proof systems as building blocks. [Jsing the

machinery that has been developed, our results imply

a number of improved hardness results,

1.1 Error reduction

A major problem in the study of two-prover one-

round proof systems is how to reduce the probability

that V accepts when x @ L. Given an MIP(2, 1) proof

system with error c, how do we decrease the error to

6 < ~’? Sequential repetition can decrease the error

exponentially, but requires multiple rounds. Parallel

repetition preserves the number of rounds, but its effi-

cacy at error reduction is an outstanding open problem.

If the original error probability is less than 1, Verbit-

sky has recently shown that it can be made arbitrar-

ily small by sufficiently many parallel repetitions [34].

The number of repetitions required in Verbitsky ’s proof

(for achieving a desired error probability) is expressed

as a Ramsey-Theory type function of the number of

random bits used by the verifier, and no constructive

bound is known for this function. Very weak conver-

gence bounds have been obtained for the case where

the questions to the two provers are chosen indepen-

dently at random [13], and have been used in the con-

text of zero knowledge proof systems for NP [27] (see

also [1, 17, 31] for improved bounds.). However, due

to the weakness of these bounds, the communication

and computational efficiency one obtains are compa-

rable to having the provers enumerate and send their

entire strategy.

Techniques somewhat similar to parallel repetition

can more efficiently achieve error close to 1/2 [17, 24].

Like parallel repetition, these methods leave. intact

thr set of questions the provem arc required to an-

swer. However, they require that the provers behave

deterministically, and are thus inapplicable to zero-

knowledge proof systems.

More recently, algebraic techniques have been devel-

oped that transform the original protocol in a nontrivial

manner. These techniques can make the error expo-

nentially small [28, 19], but have a number of draw-

backs. The bit-complexity of the question size, an-

swer size and randomness used by the verifier are in-

creased by a superconstant factor in order to achieve

even a modest error reduction. For this reason, these

techniques cannot be used to reduce error within the

class rnip(2, 1). Sophisticated recursive constructions

improve the bit complexity of algebraic error reduction

techniques, but increase the number of provers to 4 [6]1.

Furthermore, these techniques require the provers to

perform complicated computations, such as computing

multilineal extensions, which may be much more diffi-

cult than those required of the original provers. Finally,

zero-knowledge is not maintained by the algebraic tech-

niques, due to the additional information revealed by

the provers.

1.2 Our results

1.2.1 A new error reduction technique

Our first result is an error reduction technique based on

parallel repetition. We analyze parallel repetition on a

special class of proof systems, which we call confuse or-

compare proof systems. All two prover proof systems

may be converted into a proof system from this class.

We show that parallel repetition reduces the error at a

polynomial rate.

Many known Af1P(2, 1) proof systems are of the fol-

lowing form, which arises when one simulates an ‘<oracle

proof system” by a two-prover proof system (see e.g.,

~21, 16]). The verifier picks a set of questions ql, . . . . q,,

chooses r~{l, ..., k} at random and sends (ql, . . . . q~)

to PI and q, to P2. The verifier checks th~at PI’s replies,

al, ..., ak satisfy some predicate (depending on the ac-

tual proof system), and that P2’s is equal to a,. We

call this a compare round, since all V does with P2’s re-

ply is to compare it for exact equality with one of P1’s

replies. We will also be interested in a related protocol

in which instead of sending q, to P2, V randomly picks

an additional set of question q;, . . . . q;, and sends q: in-

stead. In this case, V ignores P1 and P2’s answers, and

accepts. We call this a confuse round. A proof system

is in confuse or compare (C ) form, if with probabil-

ity 1/2 the verifier executes a confuse round, and with

probability 1/2 the verifier executes a compare round.

Proposition 1 Any MIP(2, 1) proof system with c

communication bits, r random bits, and error e, can be

transformed into C form, with 2C communication bits,

2r + 2 random bits, and error at most (3+ c)/4.

1See a recent improvement in [33]
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Theorem 2 Let G be an MIP(2, 1) proof system in

C form with error p. Then parallel repetition reduces

the error of G at a poiynomtal rate. That as, to ob-

tain errorti, it sufices to repeat theprotocol inparalle[

O(poly(l/(l –p), l/6)) times.

Note that the above bound is independent of the size

of the questions. It follows that the class of languages

having rnip(2, 1) proof systems is insensitive to the error

probability c (for constant e bounded away from O and

1). Thus, using [2, ’21, 16] we obtain:

Corollary 3 NP ~ mip(2, 1). Furthermore, any lan-

guage in NP has an n~ip(2, 1) zero knowledge proof sys-

tem with arbitrarily small constant error.

1.2.2 Applications to NP-hardness results

The results stated above have corollaries that relate

to approximation of optimization problems. A direct

corollary (using the reductions described in [7, 19]) is

the following:

Corollary 4 It M NP hard to approxnnate quadratic

programming within any constant factor.

Applying these results to the general framework of

[6], we obtain more efficient probabilistically checkable

proofs (PCP’S). Let PCP’(f, t) denote the class of lan-

guages with PCP proofs that achieve error ~ using

O(?(l~l)) randomness and expected t queries by the

verifier. We obtain the following improved bound for t:

Corollary 5 NP E PCP’(lg, 24).

Most recent results in this area ultimately depend

on reductions to probabilistically checkable proofs or

t we-prover proof systems for NP, and the strength of

these results depends on the efficiency of these proof

systems. Hence, our results give improved bounds for

most of these theorems. For example, we have the

following hardness result for the approximatability of

MAX 3SAT.

Corollary 6 Assuming P # NP, there zs no

polynomial-time algorithm for satisfying 93/94 of the

clauses tn a 3SAT expression (i. e., approximating MAX

3,5AT to within 93/94).

Remark: The technique in [6] implies the above

bound, under the somewhat stronger assumption that

NEXPTIME # EXPTIME. We can alternatively

view our results as weakening the assumptions required

by these approximation results rather than improving

the bounds.

As well as the automatic improvements we obtain

from our results, we obtain additional improvements on

the hardness of finding cliques and coloring. These re-

sults are obtained by the following four-step procedure:

reduce PCP’ to clique as in [18]; shrink the size of the

resulting graph by deleting vertices that do not corre-

spond to accepting computations; amplify the approx-

imation gap by taking @(log n) products of the graph

with itselfi reduce the size of the resulting graph by

random sampling (as in [1 l]).

Theorem 7 Assuming that co – RP # NP, there IS

no probabilistic polynomial tame algorithn~s for

● approximating the maximum sized clique in a graph

10 within n1i15, or

● approximating the chromatic number of a graph to

wathm nlj71.

Under the co – RP # NP assumption, it was previ-

ously known to be hard to approximate the maximum

sized clique of a graph to within nl/29 or to approxi-

mate the chromatic number of a graph to within nl 1146

[6].

The above theorem can be further improved, by op-

timizing the parameters of the PCP’ proof system of

Corollary 5 with this specific objective in mind, rather

than the objective of minimizing the number of bits

read from the proof2.

1.2.3 Zero-knowledge proofs with low error

We modify the [19] construction so that it does not dis-

rupt zero knowledge properties, obtaining the following

theorem.

Theorem 8 NEXPTIME has MIP(2, 1) zero knowl-

edge proof systems with ezponentzaliy small error prob-

abzlaty. NP has MIP(2, 1) zero knowiedge proof sys-

tems wtth superpolynomially small error probability,

and polylogarithmic communzcatton.

We note that our results on MIP(2, 1) zero knowl-

edge proof systems can be used to show the hardness of

generating probability spaces that approximately sat-

isfy given pairwise statistics [25].

1.2.4 Questions that remain open

The rate at which parallel repetition decreases the er-

ror of arbitrary iM1P(2, 1) proof systems is still poorly

understood. Any new result on this question would be

interesting.

2Indeed, Belfare and Sudan [8] have sfcillfulfy doue such an

optimization of parameters, and report impressive improvements

to Theorem I’.
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Saving random bits: for applications relating

M 1P(2, 1) proof systems to the hardness of approxima-

tion, it is desirable to reduce the error by a polynomial

factor, while increasing the length of the provers’ replies

by a logarithmic factor, and the number of random bits

used by the verifier only by a constant factor. Can this

be clone? A somewhat complementary question arises

in the context of zero knowledge protocols, where it is

desirable to minimize the number of random bits shared

by the provers (see remark, end of Section 3).

2 “Confuse or Compare” protocols

Consider an arbitrary A41P(2, 1) proof system. For

error reduction purposes, we are interested only in the

case that z @ L. Fix an arbitrary x @ L, and let

~; denote the protocol that results. u(G) denotes the

success probability of the optimal strategy for the two

provers in protocol G. In our case, w(G) = p < 1.

Given a desired error probability 6 < p, we transform

G into a new protocol @ with w(~) ~ 6.

If G is not in C form, then the following procedure is

used to transform G into Gc of this form. For protocol

G, let Q be the set of possible question pairs, and let

m be the probability distribution with which V selects

questions from Q. For Gc , the verifiers picks at ran-

dom (91, qz) ST Q, and sends it to PI. V also picks

another pair (9;, q;) em Q. All together, V picked four

random questions. V sends one of the four (chosen uni-

formly at random) to Pz.

In order to accept, V checks that the replies of PI

satisfy G. Moreover, if the single question sent to P2

happens to be identical to one of the two questions

sent to PI (observe that this happens with probability

greater than 1/2), than V checks that the correspond-

ing replies are also identical.

Note that W(GC ) < ~, and that the overhead of

this transformation in terms of computational resources

and bit complexity is only a constant multiplicative fac-

tor.

To obtain G, the verifier repeats Gc 3nl =

poly(l/(1 –p), 1/6) times in parallel, selecting his ques-

tions in each round independently of his choices of other

rounds. Likewise, the verifier checks each round inde-

pendently, not making any cross checks between dif-

ferent rounds. (Without this last condition, parallel

repetition is not applicable to zero knowledge proof sys-

tems.)

We distinguish between two types of rounds. Recall

that the question sent to P2 is chosen from one of four

possible questions (not necessarily all distinct ). If V

chose to send one of the first two questions (those sent

to PI), then the round is called a compare round. If V

chose to send one of the last two questions (those not

sent to P1, though they might get sent to PI by chance,

if they are identical to one of the first two questions),

then the round is called a confuse round.

For protocol G, let Gk denote its k-fc,ld parallel rep-

etition.

Proposition 9 Let G be an MIP(2, 1) protocol in

Cform, wtth w(G) <1. Then

● LJ(G3)< w(G).

e There exists some constant qG that depends on G,

qG <1, such thUt u(~;k) < (qG)k.

Proofi The first part of the proposition is a direct

consequence of [20], where it is shown that for any pro-

tocol with full support, U(G3) < u((;). (.;onfuse and

compare protocols have full support.

The second part of the proposition follows from the

effectiveness of parallel repetition if the cluestions to the

two provers are not correlated [1, 13, 17]. This situation

holds for confuse rounds. Thus the second part of the

proposition holds even if V supplies the provers with

extra information, pointing out the compare rounds.

❑

Despite the exponential reduction in error, Proposi-

tion 9 is not strong enough for decreasing the error of

~~P(2, 1) proof systems. The value of lqG in our proof

turns out to be too close to 1. In orcler to decrease

the error below 1/2, the required number of repetitions

becomes exponential in the length of the questions.

2.1 Proof of Theorem 2

The protocol G has 3m rounds, about half of which

are compare rounds, and the other confuse rounds. To

simplify the presentation of the proof, we supply the

provers with information. In some rounds, we reveal to

each prover the question that each other received. We

leave m random rounds untouched, 71 of which are com-

pare rounds, and M = m – n confuse rounds. Hence

it suffices to analyze a protocol which has M confuse

rounds and n compare rounds, in random order (un-

known to the provers). We require that n << M.

Fix the strategies of PI and P2 to ones that are both

optimal and deterministic (such strategies always ex-

ist). We start by first analyzing the possible behaviors

of P2, completely ignoring PI, and the fact that the

strategies of PI and P2 need to be coordinated. qz de-

notes the question that P2 receives in round i, and a~

denotes the answer of P2 in round j. Pz is a collection

of m functions, where ~i is a function from rmtuples

(the m questions that P2 receives) to the answer ai.

Given an assignment to the m question, P2 replies with

an answer sequence. In our analysis, we shall consider

the sequence of answers of P2 on selected rounds, which
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we call an answer subsequence. We will also consider

answer subsequences when we have only partial infor-

mation about the m-tuple of questions (only some of

the rounds are revealed to us). This induces a proba-

bility distribution on the possible answer subsequences,

and we shall use the term PASS (probabdasiac answer

subsequence) to describe it.

Definition 3 Let 1 C {1, m} and J C I be index sets.

Gwen an assignment Q = ql, . . . . ql of questions to the

rounds specified by I, the probability of the sequence of

answers A = al, ..., (LJ to the rounds spectjled by J is

denoted by PASS[(J, A)[(l, Q)].

PASS[(J, A)l(l, Q)] =

Pr[a~’ = al, . . ..a~’ = a~ [qi’ = ql, ..,, q;r =q~]

where the probability is taken over the choace of ques-

tzons zn rounds {1, m} \ I.

Opening all rounds determines PASS’[(J, A)] com-

pletely (it becomes either O or 1). A central point in our

proof is the following lemma, which shows that open-

ing of just one randomly chosen round has only limited

influence on PASS. It is best understood as a lemma on

the influence of a single random variable on the value of

a multi-variate function. The variables of the function

are the rounds ~. The single variable is round i c ~,

which is chosen at random, and is given a random value

q. The function is the indicator function that is 1 if P2

replies to rounds J with answer set A, and O otherwise.

Lemma 10 Let ~ = {l, m} \ 1, and let M = [~1. Let

(1, Q)(i, q) denote the eztenszon of (lIQ) that results

from opening question q at round i 6 I. Then for any

PASS (l)Q, J, A),

Pqi,g)
[

PASS[(J, A)[(I, Q)(i, q)] > ~ < ~

-PASS[(J, A)I(I, Q)] 1
where ~ = max[-, (W)l/3].

Proof: pair (i, q) for which

[PASS[(J, A)I(I, $(i, q)] - PASS[(J, A)I(I, Q)] > e] is

called biased. Let P be the probability of choosing a bi-

ased pair. Assume that P > e, and derive a contradic-

tion. Let ~, be the random variable denoting the event

of choosing a biased pair, conditioned on round i being

chosen, and let pi = Pr[~;]. Then ~i~rpi = P . M.

Consider S = ~i~r z~. Its expectation is 13[S’1 = P cM.

The xi are independent, and we use the following Cher-

noff bound (see e.g., [29]):

Expressing @ = 1 + x, we can use:

1

1+X
—>l– Z+ Z2– X3 and

One obtains:

For E[S] >128 in M (corresponding to c > w),

and.= J~< 1/4) Weget

13[S] expresses the expectation of the number of bi-

ased questions over all question sequences that on coo-

rdinates I have question set Q, regardless of whether

the answer set A was given on coordinates J. we now

bound the expectation of S, conditioned on the fact

that answer set A was indeed given:

Hence, when an average biased pair (i, q) is picked:

PASS[(J, A)l(l, Q)(i,q)]S
PASS[(J, A)l(l, Q)] J!2[SI(J, A)]

E[5’1

r81n M
< PASS[(J, A)l(l, Q)](1+ ~)

T
81n M

< PASS[(J, A)I(I, Q)] + ~

Contradicting the choice of P > c > (Y)li3. ❑

Lemma 10 shows that knowing an additional ques-

tion (i, q) does not provide much help in predicting the

answer set A on a set of questions indexed by J. Nev-

ertheless, the next lemma shows a strong correlation

between the answers to the set of questions indexed by

J and the answer to the additional question q.

Definition 4 The

PA,9S (1, Q, J, A) is alive if PASS[(J, A)I(I, Q)] ~ c.

The challenge (1, Q, J) is alive If one of its PAS,9 is

alive. Otherwise, it is dead.
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Definition 5 The challenge (1, Q, J) and the question

(i, q) (i E j) are c-correlated tf for every tive PASS

(1, Q, J, A), there ezists an answer a such that:

PASS[(J, A)(i, (z)I(I, Q)(i, q)] ~

(1- c) PASS[(J, A)](I, Q)(i, q)]

That is, Zf answer sequence A is given, this practi-

cally forces a particular answer a to q.

Two different error parameters were introduced, c in

Lemma 10, and c in Definitions 5 and 4. We require

that ~ << s, or more specifically, 8C < &s. We also

require n > 4c–5.

Lennna 11 There exists a good j, 1 ~ j < 11/2, such

that one of the following two condtttons holds:

1. A fraction of (1–c) of the challenges (1, Q, 1), for

[1[ = j, are dead.

,2. A fraction of (1 –e) of the he challenges (1, Q, 1),

for Ill = j, are c-correlated wtth a (1 – c) fractton

of the respective (i, q), i c ~.

Proofi For each j, let Ej denote the following ex-

pectation:

Ej = E(I,~l ,Il=j)[~(PAS’S[(l, A)l(l, Q)])z]

A

For every j, O < El < 1. We will show that if there

is no good j then En~2 < 0, contradiction.

Assume that j is not good, and compute El – .Ej+l.

At least an c fraction of the challenges (1, Q, 1) are live.

At least an c fraction of the live challenges are not e-

correlated with at least an e fraction of their respective

(i, q). Then for live strategy A (having probability at

least .s), for any a:

PASS[(I, A)(i, a)l(l, Q)(i, q)]

< (1 - c) PA,9S[(I, A)[(l, Q)(i, q)]

This amounts to a loss of an c-fraction in

~a(PASS[(I, A)(i, a)l(I, Q)(i, q)])2 relative to

max[(PASS[(l, A)I(I, Q)(i, q)])2, (PASS[(l, A)l(l, Q)])z]

Altogether, there is an expected loss of at least Z5.

This is offset to some extent by some gain. The

extent of this gain is bounded by Lemma 10, Fix (1, Q).

Then:

Ej+l [(1, Q)]

= ~A,i,q,a~d(i q)l(~Ass[(~, A)(~,a)l(~, Q)(it q)])2
S ~A,i,q Pd(i q)l(~Ass[(~, A)l(~,Q)(i q)])2

extract

aw~all the cases that PASS[(I, A)!(I, Q)(i, q)] >
PASS[(I, A)l(l, Q)] + e. For these cases we assume the

worst, that PASS[(l, A)l(l, Q)(i, q)] = 1. By Lemma

10, the probability of these cases (over the choice of

(i, q)) is at most ~, and hence their contribution to

Ej+l [(1, Q)] is at most (. We evaluate the rest of the

sum, which we denote by 131-+1[(1, Q)], under the condi-

tion that for every (A, i, q) that participate in the sum,

PASS[(I,A )l(I,Q)(i, q)] ~ PASS[(l, A)[(I, Q)] + ~.

We obtain:

~lq A

notation AA,i,q

den~e PA~~[(I, A~~;, Q)(i, q)] – PASS[(I, A)I(I, Q~~

if this difference is between O and (, and AA,i, q = O

otherwise. By our condition that for every (A, i, q)

that participate in the sum, PASS[(l, A)II(Z, Q)(i, q)] ~

PASS[(I, A)l(l, Q)] + c. We obtain:

~A(pAss[(~, A)l(~,Q)(~,q)])2
< z,4(pAss[(~, A)l(~,Q)]+ AA,,,q)2

s ~~(PASS[(I, A)I(I, Q)])z + Z( + ~A Aj,j,q

Note that AA,i,q s c, and that for any (i, q),

~A A~,i,q <1 (this follows from definition of AA,,,q

and the fact that DA PASS[(l, A)l(l, Q)(i, q)] = 1).

Hence ~~ A~,i,q < c, and

~Jsing Ej+l [(~, Q)] s E~~+l [(1, Q)] + c, the proof for

8( < C5, and 4C-5 < n. ❑

Now we are ready to present the proof of our main

theorem. We select the questions to the provers in a

different (but equivalent) order. Let j < n/2 be a good

j, as guaranteed to exist by Lemma 11. We first se-

lect at random a set 1 of j compare rounds. For these

rounds we select at random a corresponding question

set Q to be received by P2. Now by the fact that j is

good, with probability 1 – c one of the following two

events hold:

1. The challenge (1, Q, 1) is dead.

2. The challenge (1, Q, 1) is c-correlate! with a (1 –e)

fraction of the respective (i, ~), i G 1.

We first address event (1) above. Cluster the answer

sets for (1, Q) in at most 2/s clusters, such that the sum

177



of probabilities of answer sets in each cluster is between

c/2 and s. We select n–j additional compare rounds at

random (N denotes the set of compare rounds) together

with their respective questions QN to Pz. By Lemma

10, with probability at least 1 – ‘2nc/e, for any cluster

d on 1, it holds that PASS[(l,A)I(N, QN)] < c + ?z6.

Now complete all the questions to PI. No matter what

PI’s answers are on Q, the probability (over the pos-

sible completions of questions to P2) that P2 answers

similarly is at most 2nc/s + ~ + IL( E c, assuming that
f << &2/n.

We now address event (2) above. There are at most

1/s live answer sets for (1, Q, 1). An argument simi-

lar to event (1) above shows that we can ignore answer

sets that are not live, paying at most ~ in the error

probability. For each live answer set A, and for each

(i, g), i c ~, call P2’s most likely answer a the majorzty

answer. Then for (1 – E) of the choices of (i, q), the

majority answer has probability at least (1 – c). Select

the remaining n – j corresponding compare rounds, to-

gether with their respective questions. By Markov’s

inequality, with probability at least 1 — 6, P2 answers a

fraction of at least 1 – 2e/6 of the questions according

to the majority strategy.

Now we turn to consider PI. We complete all the

questions for PI, and tell him for free which are the

first j compare rounds, and which questions P2 received

in these rounds. We may assume that PI’s answers on

these rounds correspond to a live answer set for P2. The

fact that there are 1/s such live answer sets does not sig-

nificantly influence our analysis. Now we tell P1 which

are the other n – j compare rounds, without showing

PI the questions that P2 was asked on these rounds.

Prover PI must answer a fraction of nearly 1 – 26/6 of

the questions according to the majority strategy. Oth-

erwise, there is overwhelming probability that PI’s an-

swers would somewhere contradict P2’s answers. But

with overwhelming probability, the majority strategy

fails on a fraction of at least ~ of the n – j rounds.

Hence PI cannot succeed if 1 – 2E/b > ~.

The parameters for the proof system:

n >> ##og6–1, so that any fixed set of strategies

will have probability at most 6 of succeeding on more

that ~ of the rounds.

c < 96, so that PI does not satisfy the n – j

remaining compare rounds.

~ << c2/n, since this is assumed in event (1) above.

n > 4e–5, by Lemma 11.

8c<E5, by Lemma 11.

~ = max[+, (%#)1’31, b Lemma10. ob-
serve that if n << m, then m/M = 1. ,

If we assume that p = 1/2, one would ideally hope

to obtain error probability 6 by O(log 6– ~) repetitions.

However, the proof for our construction may require

m > 6-21.

3 2-provers, l-round, O-knowledge.

We modify the error reduction method of ~28, 19]

so as to preserve zero knowledge. An interesting prop-

erty of the new transformation is that it only requires

the original proof system to be zero knowledge with re-

spect to an especially honest class of verifiers that we

denote as ver!frezers. This term is a play on the Israeli

slang term “freier, ” roughly meaning one who know-

ingly allows himself to be manipulated by others due to

his anachronistic ideals. For more details on the term

freier, see [32]. After our transformation, the resulting

interactive proof system is zero-knowledge against all

verifiers.

A verifreier is like an honest verifier, except that in-

stead of having a query operation it has query and read

operation. When a verifreier executes a query opera-

tion on a set of bits of the oracle proof, it conceptually

does not look at these bits and its view from this op-

eration is null. To obtain the value of a bit that has

been queried, it must explicitly execute a read opera-

tion on a that bit. While in a one-round proof system

the query is performed nonadaptively, the strategy for

executing the reads may be adaptive and designed to

limit the information obtained by the verifreier. In the

appendix, we give a simple interactive proof system for

3-SAT that is zero-knowledge against its verifreier.

3.1 Review of the Feige-Lovasz protocol.

We now review the Feige-Lovasz transformation from

multi-prover one-round proof systems, to two-prover

one-round proof systems. For simplicity of notation,

we describe the transformation in terms of oracle proto-

cols. We assume that the oracle proof is as follows. On

input z, V uses his random bits R to generate queries

91, . . . . qm, where Iq; l = 1, and sends them to the oracle

O, viewed as a function O : {O, 1}1 a {O, 1}. He then

receives the value of ai = O(qi ) for 1 < i s m, com-

putes accept(z, R, ql, . . . . g~, al, . . . . am) and accepts

or rejects accordingly. If z E L then (O, V) always ac-

cepts (perfect completeness) and if z @ L then for all

O, (O, V) accepts with probability at most p2. Note

that in the oracle model, it is straightforward to obtain

very low error probabilities.

The Feige-Lovasz transformation results in a proto-

col with perfect completeness and an error probabil-

ity of at most p. Let k = maz(l, – logp, log(4m)), let

IV > 29k be a prime, and let F = GF(N). Let OF

denote the unique multilineal extension of O onto Ft.

Given a point

a=(Cq, a2,. . .. CYi)E{o. 1}~
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and a set of slopes /3 = (,81, . . ,/3~), let

,C&,fl(t) = (aI +/~It, . . .,aP +,l~lt) and

~a,~(t) = o~(~m,p(t)).

T’~,fl is a polynomial of degree at most ?. The new

protocol (PI, Pz, V’) is as follows:

1.

2a.

2b.

3.

V’ simulates V, generating queries ql, ..., qm from

his random bits R. V’ then generates @i,j, t, ~R

Fforl~i~nlandl~j~!. V’sends R

(implicitly q~, . . . . qm) and /%,j to PI, for 1 S i < nl

and 1 < j“ < 1. Writing qi = (ql,l, . . . . 9i,f)j v’
sends Ti = ,Cq,,fl, (t~) to Pz, for 1 < i S m.

P1 sends ‘Pg,,8, to V’, for 1 < i s m, where [ji =

(/$,1, ~ , ~i,t). Note that Tq,,p, can be represented
compactly as / + 1 elements of F and that ai =

Pq,,$,(o).

For 1 ~ i ~ m, P2 sends ~i = OF(~i) to V’.

V’ accepts ifaccept(z,ll,ql, . . .,qm, al, . . ..am) is

true (V would have accepted), and z, = Tg,,p,(tz)

for 1 ~ i ~ rn. Otherwise, V’ rejects.

3.2 A zero-knowledge protocol

We achieve zero-knowledge by augmenting O and re-

stricting V“s questions. The modification to O will not

affect the original proof of soundness and the restric-

tion on V”s questions will affect the soundness in an

easily quantifiable manner. First, we assume that the

original protocol has perfect completeness and is zero-

knowledge: Given any set of random bits R, one can

simulate the values of ai = O(qi ) that V would have

read (e. g., as in [16]). For each i, 1 ~ i $ nl, the provers

randomly construct a new oracle 01’I : {O, 1}1+2 e

{O, 1} such that OIil(rOO) = O(z) and OIil(ZbIbZ) is

uniformly distributed over F for (bl, bz) # (O, O). We

define Og] as the unique multilineal extension of 01’I,

and we define

p[il (t) = Og(ctl +Plt, ...,
~,P

ffe+z + $E+2t).

V* converts a question qi into qiOO. P1 requires that

/3 ,..., ~t+2 are nonzero and P2 requires that no test

slopes be nonzero. If either prover sees a violation of

these conditions, they abort. For ease of analysis, we

assume that V* proceeds according to the Feige-Lovasz

protocol, and accepts if he happens to break the con-

straints on the slopes or the test points (this will happen

only with low probability if IF I is large). The resulting

protocol is given in Figure 1.

zero-knowledge(O, V*, z)

Our convention is that z ranges over

{1 ,..., rn} andj ranges over {l,.. ,1+2}
unless stated otherwise.

O. Using their shared randomness, PI and

PZ randomly generate 0[’] as described

above.

1. V* generates ,6, En F~f2, t, CR F

and queries q, as V would have on in-

put x, using random bits R. VVe write

~, =.& ,P, (t). If for any ~, some compo-

nent of y, or /3, is O, then V* halts and

accepts. Otherwise, V* sends R (and

hence gl, ..., q~) and ~t,j to PI, and

sends -y, to PZ.

2a. If for any i, some component of F, is

O, then PI aborts. Otherwise, P] com-

putes the set of z for which the verifreier

would have read a,, and sends ‘P~, ,p, to

V*. Note that Pq,,@, can be represented

compactly as 1 + 2 elements of F and

that a, = Pq,,6, (0). For those answers

which V would not have looked at, P1

sends a null message.

Zb. If for any t, some component of -y, is

O, then PZ aborts. Otherwise, F’z sends

zt =OF(7, ) to v*.

3. v* accepts

ifaccept(z, R,gl, . . ..q~. al ,.. .,a~)is

true (i.e., V would have accepted) and

for every z such that q, would halve been

read by V, Z, = ‘Pq,,~t (t,). Otherwise,

V* rejects.

Figure 1: A low-error one round zero-

knowledge proof system.

3.3 Analysis

The analysis of soundness and our completeness for

our protocol is straightforward given the analysis in [19]

(which in turn, is based on the analysis in [28]).

Theorem 12 If z ~ L, then (Pi, P:z, V*) gcc~pts

with probability 1. If x @ L then for any (Pl, Pz),

(V*, PI) P2) accepts with probabihty at most p +

21rn/lFl,

Proof The perfect completeness property inherits

straightforwardly from the original oracle-proof. Note

that if V* follows the protocol, he will never give PI or

P2 an input that would cause them to albort. Further-

more, the consistency checks made by V* on Pq, ,p, and
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Zi will always be met, by the properties of multilineal

functions.

To bound the probability of V* accepting % @’ L,

modify the protocol so that V* does not automatically

accept if a component of ~i or ~i is O. In this case, then

by the same analysis as was done by Feige-Lovasz, V-

will accept with probability at most p.3 By a simple

analysis each component of [)i or -yi is O with proba-

bility at most I/ IF’l. The probability of any of these

events occurring is thus bounded by 2Jrn/l Fl, and the

probability of V* accepting is thus bounded above by

p+ 2/rn/lF’l. ❑

Next, we show that the resulting protocol is zero-

knowledge if the original protocol is.

Theorem 13 Suppose that a probabilistic oracle proof

(O, V) is zero knowledge with respect to an honest

verifier. That is, there exists a simulator MO that

when given any R can perfectly simulate the values of

ai = O(q; ) that V wouid have read gzven R. Then there

exwts a simulator M that perfectly simulates the view

obtained by any verifier V from talking to PI and P2.

Proofi Before giving the simulator for our protocol,

we first prove a useful lemma concerning multilineal

extensions of random functions over F.

Lemma 14 Let Q be a random function from

{O, I}k -+ F, where IFI > k + 1 and lei Qr be the

mu!tilinear extensaon of Q. Let m = (al, . . .ct~) E Fk,

B = (PI,...,b~)E(0)k)k and7=(yl,..., y~)~Fk.

Let the parametric line La,@ be defined by

~a,j’(t)= (@I +iit,.. .,~k +ht)

for t E F and let the po!ynomtal Pa,O be defined by

Pa,p(t) = QF(&,p(f)). If y does not lie on La,p, then

the induced distribution on (Ta,p, QF(~)) is uniform

over all pairs (P, z), where P is a polynomial of degree

at most k over F and z E F.

Proof: Our proof is by induction on k. For k = 1,
the lemma is vacuous. For k = 2, we note that choos-

ing Q uniformly is equivalent to uniformly choosing

the multilineal polynomial computing QF. We write

QF(~, y) = a~y + ~Z + Cy + d, where a, b,c, d ~ F are

uniformly distributed. First, we consider the special

case where O, = d. Substituting z = /31tand y = f12t

we have

~~,~(t) = a~l,&t2 + (b~l + c/3z)t + d and

QF(Y1,YZ) = a~lyz + b-yl + c7Z + d

3The only deviation from the Feige-Lovasz protocol is that

parts of the oracle O is randomized for each query, and this has

no effect on the analysis.

Since a is uniformly distributed and [Zflt is nonzero, the

t2 term of Pa ~(t) is uniformly distributed. Fixing a,

the free term of Pa,p (t) is uniformly distributed since

d is. It remains to show that if we fix a and d, the

distribution on (b~l +c~2) and a-yly2 +b-yl +C72 +d will

be uniformly and independently distributed. It suffices

to show that (b,61 +c,Bz ) and (b-y] +c72 ) will be uniformly

distributed. Since a = (O, O) and (-yl, 72) is not on

~~,fi(t), (PI, 62) and (YI, 72) are linearly independent.

Therefore, for each distinct value of (b, c) c F x F,

(b/jl + Cflz, b-yl + r72) has a distinct value in F x F, and

thus is uniformly distributed since (b, c) is.

For a # ~ we note that rnultilinear functions are

closed under translations. That is, if Q~ (z, y) is multi-

lineal, then Q$(z, y) = QF(ZI +crl, x2+cY2) is multih-

ear, and there is a bijection between Q and Q’ defined

by Q’(z, y) = QF(z1 + CY1,X2+ a2) for zl, ~2 6 {0, 1}.

In particular, is Q is uniformly distributed, then so is

Q’. Defining P~,p(t) = Q~(L~,fl(t)) and -Y: = ~i – CU,

we have the identities

QF(Y1, Y2) = Qk(i, Y4)and

Ta)p(t) = Pj,p(t).

Note that (-y;, -yj) is on .C~ ~ iff (Y1, 72) is cm ~~,~.

Since Q$(y{, Yi) and p~,fl wih be uniformly distributed

by the previous argument, then so will QF(~l, 72) and

Po,p.

For k >2, we assume without loss of generality that

the projection of -y onto the first k – 1 dimensions is

not contained in the projection of Za,fl(t) onto the first

k – 1 dimensions. Otherwise, we can make the same

argument, just for a different dimension. Let ,C~\(t)

denote the projection of Za,d(t)onto the hyperp’lane

xk = b (i.e., what we obtain by setting ak = b and

~k = O). Similarly, we define

By the properties of multilineal functions, we have

QF’(71,..,7 k-l, ?’k) = 7kQF(7’1,... YkY1>1)l)

+ (1 –7k)QF(71, . . ..71] 0)>)> and

pa,~(t)= (C1’k+ /’%t)P:)(t) + (1– (~k+ ht))p$’j(t)

Also, for i E {O, 1} the extension QF restricted to the

hyperplane Zk = i is simply the multilineal extension

of Q restricted to the hyperplane Xk = i. Now the

values of Q on the hyperplane ~k = 1 are indepen-

dent of the values of Q restricted to the hyperplane

xk = O. By this and our inductive hypothesis, we have

QF(Y1,... ,W-1,0), QF(Y1, ..., ?’k-1, 1), %j(t) and

~~~(f) are distributed uniformly and independently.

Th& lemma follows. ❑

We now state our main lemma concerning the view

of a possibly malicious verifier V.
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Lemma 15 Let q = q’00, where q’ ~ {0, 1}1, let b, -y E

(F–0)~+2 and let O[il b? generated as an the above pro-

tocol. If for some t, -y = ~q,~(t), then
(
Tj?$ , 0$+7))

will be dutrvbuted unzformly over ail pazrs (7, z), whcrr

P M a polynomial over F[t] of degree at most 1+ 2 with

free term O(g’) and z = P(t). Ify 2s not on Lq,fl(t),

(
then p~~ti, O$](y)) wall be dtstrtbuted untformly over

all pairs (P, z), where P is as before and z c F.

Proofi Let q(b) denote q projected onto the hyper-

plane X~+Z = b and similarly for C~~, ~~~ and -&b).

Writing ,& = (@,,l, . . . . ,Oi,/+z) we have the Identity

Here we use multilinearity and the fact that the last two

components of q are O. Note that for b E {O, 1},T$b~

depends only on the values of 01’I on the hyperplane

XP+2 = b, and that the values of O[il on the hyper-

plane X1+2 = 1 are uniformly and independently dis-

tributed. Thus, by Lemma 14, p$~~ will be uniformly

distributed, independently of T’~~. Since ~i,t+z # O, it

follows that all but the free term of Pg,p will be uni-

formly distributed. The free term of P~,0 is equal to

O[il(q)) which is equal to O(q) since the last two com-

ponents of q are O.

If -y is equal to Lg,fl(t) for some t c F then O!](y) =

7Jq,B(t)by definition. If y is not on ,Cq,fl(t)then either

one can project them both on all but the last compo-

nent without a collision, or one can project them both

on all but the second to last component without a colli-

sion (this follows from the fact that ~1 # O). We assume

the former case without loss of generality; the proof for

the latter case is identical. Writing y = (-yl, . . . . 71+ Z),

we have

O[il(y) = 7e+20y(#)) – (71+2 – l)op(+’w.F

As in the analysis of Pg,@, the value of O~](ytll) will

be independent of 0~1 (y(o) ) and P~~. Furthermore, by

Lemma 14, 0$] (Y(l I ) will be uniformly distributed and

independent of ?~~ as well. Since 7L+2 # O, it follows

that 0$1 (y) is distributed uniformly and independently

of ?~)p. The lemma follows. ❑

The simulatability of our protocol follows immedi-

ately from Lemma 15 and the simulatability of the orig-

inal oracle proof. We include an explicit construction

of our simulator in Figure 2. ❑

Remark: In two-prover zero knowledge proof sys-

tems, it is often desirable to to have the provers share as

few random bits as possible, so as to limit the communic-

ation requirements between the two provers before the

zero-knowledge(Mo, V, x) /* simulator */

Simulation works even if cheating verifier

waits for the reply of one prover before de-

ciding on question to the other prover.

MO denotes the simulator for the original or-

acle proof.

A. On input R, M generates ql, . . . . q~

as truthful V would have (given R),

and invokes MO to generate simulated

replies a], . . . . an. Note that some of

these answers will be null (unread by

v).

B. On input ~,, M checks that all of the

components of ,8, are nonzero and sim-

ulates PI aborting the protocol if not.

Otherwise, if a, is not null, M gener-

ates a polynomial Pq, ,p, as follows: If y,

and z, have been determined and y, =

Lq,,@, (t, ) for some t,, then M generates

Pq, ,p, uniformly from all polynomials

over F of degree at most / + 2 such that

Pq,,p, (t, ) = z, and Pq,,p, (0) = at. Oth-

erwise, M generates P~, ,p, uniformly

from all polynomials over F of degree

at most 1 + 2 with Pq,, p,(0) = a,. M

sends Pq, ,., to V. If a, is null, then M

sends a null message to ~.

C. On input -y,, M checks that all of the

components of ~, are nonzero, and sim-

ulates Pz aborting the protocol if not.

Otherwise, M generates z, as follows: If

q,, A and Pq, ,e, have been determined

and ~; = Lqt,p, (t,) for some t,,then M

computes z, = Pq,,6, (t,).Otherwise, M

generates z, CR F.

Figure 2: Simulator for our zero-

knowledge proof system.

protocol begins. It follows from [26] that the expected

number of shared random bits used by the provers need

not exceed the sum of the number of random bits used

by the verifier and length of answers of the provers. In

our construction, the number of random bits shared by

the provers is much larger than necessary. We do not

know of a computationally efficient way of reducing the

number of shared random bits.
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Proving satisfiability to a verifreier

Consider a 3-CNF formula

4 = (~loWo, ~llul, h2W2), . ~., (tmovmo, tmlvml, tmzvmz)

where Wij c {1. .n} specifies the jth variable in the ith

clause for 1 < i < m and O < j < 2, and tij= 1when
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this variable should be negated and t,j = O otherwise.

Let al,..., an be a valid assignment to the variables

andletpl, ..., pm specify for each clause a literal that

is satisfied by the assignment. Thus, if p5 = 2, VS,2 = 7

and t5,2 = 1 specifies negation, then a7 = O.

The oracle decides on one random bit b and one ran-

dom trit s. The proof consists of (b,s) and bits

ZZJ = b & au.,,+, O tt,j+s

Y% = ai@b

z~ = p, + s

where l~i~nland O~j <2, andj+sandpi+s

are computed mod 3.

The verifreier V picks a random clause i CR { 1..rn}

and queries

bl$! (*io, ~~i2), (Yv,,o) , Yvt,2)l~%

With probability ~, he

(checks that clause was properly constructed)

. reads s,

● chooses j ER {O, . . . . ~},

● reads xij and yv,,, +$ , and

● accepts if and only lf xij = Yu,, j+, @ tt,j+s, where

j + s is computed mod 3.

With probability ~, he

(checks that clause was satisjied)

● reads b, .zi,

● reads Xz, , and

● accepts iff z,, @ b = 1.

It is not hard to see that if + is satisfiable, than V

accepts, and if at most m — ~rn clauses of 4 can be si-

multaneously satisfied, then V rejects with probability

at least cr/6. Using the MAX-SNP hardness of 3-SAT

and ~2], it follows that the error probability can be made

constant. V uses a logarithmic number of random bits,

and the sum of the lengths of the replies of the oracle

is constant. The oracle proof system is zero knowledge

with respect to the verifreier, though a cheating verifier

can obtain the value of a variable by reading just two

bits and an honest verifier would also obtain the value

of a variable if it read all of the bits that it queried.

The verifreier proof system for N P can be scaled up to

a proof system for NEXPTIM E with polynomial com-

munication.

Any oracle proof system with a verifreier can be con-

verted into a “traditional” oracle proof system [21] (the

verifier simply chooses not to base its actions on a bit

until it has been officially read), and thereafter to a

one round multiple-prover proof system (by asking each

question to a different, prover, adding one prover to

check for consistency with a random previous prover,

and repeating this construction many times with in-

dependent provers so as to reduce the error). This is

transformed into a two-prover proof system, using our

modification of [19]. If the original oracle proof system

is zero knowledge with respect to the verifreier, then

the resulting two-prover proof system is zero knowledge

with respect to all verifiers.
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