
Interactive Proofs and
the Hardness of Approximating Cliques

Uriel Feige ∗ Shafi Goldwasser † Laszlo Lovasz ‡

Shmuel Safra § Mario Szegedy ¶

Abstract

The contribution of this paper is two-fold. First, a connection is shown be-
tween approximating the size of the largest clique in a graph and multi-prover
interactive proofs. Second, an efficient multi-prover interactive proof for NP
languages is constructed, where the verifier uses very few random bits and
communication bits. Last, the connection between cliques and efficient multi-
prover interactive proofs, is shown to yield hardness results on the complexity
of approximating the size of the largest clique in a graph.

Of independent interest is our proof of correctness for the multilinearity test
of functions.

1 Introduction

A clique in a graph is a subset of the vertices, any two of which are connected by
an edge. Computing the size of the largest clique in a graph G, denoted ω(G), is
one of the first problems shown NP-complete in Karp’s well known paper on NP-
completeness [26]. In this paper, we consider the problem of approximating ω(G)
within a given factor. We say that function f(x) approximates (from below) g(x)

within a factor h(x) iff 1 ≤ g(x)
f(x)

≤ h(x).

∗Department of Applied Math and Computer Science, the Weizmann Institute, Rehovot 76100,
Israel. Part of this work was done while the author was visiting Princeton University.

†Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139. Part
of this work was done while the author was visiting Princeton University.

‡Department of Computer Science, Yale University, New Haven, CT 06517. Part of this work
was done while the author was visiting Princeton University.

§Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. Part of this work was
done while the author was visiting Princeton University.

¶AT&T Bell Labs, Murray Hill, NJ 07974.

1

The best upper bound known, is that ω(G) can be approximated within a factor
of n

log2 n
[10] in polynomial time. It is natural to ask by how much this upper bound

can be improved, and whether there is some factor within which approximating ω(G)
is hard.

Proving that problem L is NP-complete is usually taken as evidence as to the
hardness of L. Since the best known decision procedure for NP runs in exponential
time, showing that if L ∈ P then NP ⊆ DTIME(T (n)) for some subexponential
function T , may also be regarded as evidence that L is hard. The smaller T is, the
stronger the evidence.

We prove two results of this type which in a sense trade the quality of approxi-
mation versus the complexity of T . First, if there exists a polynomial time algorithm
which approximates ω(G) within any constant factor, then NP ⊆ DTIME(nO(log log n)).

Secondly, if for some ε > 0 there exist a P̃ (quasi-polynomial time, = ∪k>0DTIME(nlogk n)
algorithm that approximates ω(G) within a factor 2log1−ε n, then NP ⊆ P̃. Note that
if NP ⊆ P̃ then NEXPTIME = EXPTIME.

The first result starts with a stronger assumption – the existence of a constant
factor approximation, and gets as close to P = NP as we were able to prove. The
second result gives evidence that even within a large factor no approximation proce-
dure for clique exists, discouraging attempts to extract even such little information
about ω(G) in reasonable time.

The most interesting part of our work are the techniques used. We present a
new connection between the complexity of approximation problems and probabilistic
proofs. In particular, we show a connection between the complexity of approximating
the size of the maximum clique in a graph and multi-prover interactive proofs.

An overview of our method is as follows. We show how to reduce an instance of a
multi-prover interactive protocol for language L on input x, into a graph Gx, whose
size is exponential in the number of random bits r used by the verifier in the multi-
prover interactive orotocol, and in the number of answer bits c the verifier received
from the prover. The size of the maximum clique in Gx corresponds exactly to the
maximum acceptance probability of the input x by the verifier. Suppose now that
one can construct a multi-prover interactive proof with a gap of factor g between the
acceptance probability of the input x in case x ∈ L and x /∈ L. It follows that if one
can approximate the size of maximum clique in graph Gx in time polynomial in size
of the graph, with factor better than g, then one can decide membership in language
L in time polynomial in size of the graph. Finally, on the assumption that deciding
membership in L is a hard problem, we may conclude that approximating the size of
maximum cliques within g is a hard problem.

This approach starts to yield interesting results when the size of the graph Gx is
quasi-polynomially related to the size of x. To this end, our first effort is to show
multi-prover interactive proofs for NP in which the verifier is efficient in his usage

2

of randomness and in the number of answer bits received. More generally, we show
given L ∈ NTIME(T (n)), a multi prover interactive proof for L which is efficient
(as related in T (n)) in randomness and answer bits. Let us elaborate.

1.1 Techniques from Interactive Proofs

We give a new characterization of NP in the domain of interactive proofs. We
show that any language L ∈ NP is accepted by a multi-prover protocol (using the
probabilistic oracle machine formulation of [19]) in which the number of random bits
used by the verifier and answer bits sent by the oracle is small — O(log n · log log n).

To do so, we consider the theorem of Babai, Fortnow and Lund ([5]), showing
that NEXPTIME has multi-prover interactive proofs (This theorem implies that ap-
proximating the acceptance probability of multi-prover interactive proof systems on
a given input is NEXPTIME-hard). First, we notice that this theorem can be scaled
down to any non-deterministic time class NTIME(T (n)) ⊆ NEXPTIME, yielding
a multi-prover protocol for any L ∈ NTIME(T (n)) with poly-logarithmic (in T (n))
number of random bits and communication bits. We then improve this bound by
giving a new protocol for L in which the number of answer bits and random bits is
O(log T (n) · log log T (n)), while the running time of the verifier is DTIME(T (n)O(1)).
(e.g. for L ∈ NP the number of answer bits and random bits is O(log n · log log n),
and the verifier runs in polynomial time.)

Remark: The result that NP is recognizable by a verifier who uses O((log n)c)
randomness and answer size (which is sufficient to obtain the result that ω(G) is hard
to approximate within a factor of 2log1−ε n for any ε > 0, unless NP ⊆ P̃), was obtained
[16] independently from [4] who also scaled down [5]’s protocol to the NP level. In
their work, they bound the total running time of the verifier by poly(logarithmic) time
rather than the particular parameters of randomness and answer size. To achieve
verifer running time which is sublinear they also need to assume that the input is
provided to the verifier in an error corrected form. Their motivation for scaling down
the [5] protocol is not related to issues of hardness of approximation, and they attempt
to optimize parameters that are different from the parameters that we optimize. The
result that NP is recognizable by a verifier who uses O(log n log log n) randomnesss
and answer size, was developed concurrently with the work of [4] . Indeed, some of
the techniques used in latter versions of both works are similar.

Our work shows an interesting relation between work on interactive proof systems
and long standing open problems in computational complexity theory. For earlier
examples, see [21], [11], [18], [14], [13].

3

1.2 The Multi Linearity Test

An important ingrediant in the [5] protocol is a multilinearity test, which is a proce-
dure of sampling a multivariate function on a small fraction of its domain, and using
this random sample in order to decide whether the function is linear in each of its
variables (over almost all of its domain). In [5]’s multilinearity test, the number of
points that are sampled is polynomial in the number of variables. In order to design
efficient multi-prover interactive proofs (leading to stronger hardness of approxima-
tion results for ω(G)), it is important to have multilinearity tests in which the number
of points sampled is as small as possible. We design a more efficient multilinearity
test that uses a sample that is only linear in the number of variables. The analysis
of our multilinearity test is simpler than the analysis presented in [5]. Moreover, our
analysis is tight (up to low order additive terms) in the special case that the mul-
tivariate function differs on at most half its points from a true multilinear function.
Obtaining a tight analysis for the case that the multivariate function differs from any
true multilinear function on more than half of its points remains a challenging open
question.

1.3 Previous Results on Approximation

The classification of computational problems as either tractable, i.e., in P, or in-
tractable, i.e., NP-hard, has been quite a successful enterprise for the last twenty
years. However, there was a distinct lack of techniques for classifying approximation
problems. For many NP-hard optimization problems, there was neither a good ap-
proximation algorithm known, nor was there any NP-hardness type of evidence that
the problem is hard to approximate. Approximating ω(G) is a prime example of this
situation. As a less extreme example, consider the chromatic number problem (com-
puting the minimum number of colors required to color the nodes of a graph so there
is no monochromatic edge). It was known that approximating the chromatic number

within an n(log log n)2

log3 n
factor is in polynomial time ([34], [8],[24]), while approximating

the chromatic number within any factor smaller than 2 is NP-hard [22]. Approxi-
mating the chromatic number within any factor between 2 and n

log3 n
was not known

to be in P or to be NP-complete. Another example is the vertex cover problem (the
minimum subset of vertices that contains at least one of any two adjacent vertices).
The minimum size vertex cover can be approximated within a factor of 2−Ω(log log n

log n
)

[6, 30] in polynomial time. No NP-hardness results was known for approximating
vertex cover.

Papadimitriou and Yannakakis [32] initiated a classification of NP optimization
problems based on their logical characterization. They define the class MAX NP, and
use its logical characterization to infer that all problems in this class can be approx-
imated. They define the class MAX SNP and show approximation problems which

4

are complete for this class under a reduction that preserves constant approximation.
Some examples of complete problems in this class are independent set in bounded
degree graphs and satisfying the maximum number of clauses in a Boolean(CNF)
formula. Panconesi and Ranjan [31] extend [32]’s approach and define the class MAX
Π1. The complete problems for MAX Π1 cannot be approximated unless P = NP.
Consequently, [31] define subclasses of MAX Π1 for which the approximability of the
complete problems was open. Approximating ω(G) (or MAX CLIQUE, in [31]’s ter-
minology) is in RMAX(2), which is the lowest class that [31] define. Our results imply
that if P̃ approximation algorithms exist for any of the approximation classes that
[31] define, or for any of the RMAX(2)-hard approximation problems, then NP ⊂ P̃.

Berman and Schnitger[9] show that approximating ω(G) within factor nε is hard
for MAX SNP under randomized reductions. Namely, if clique has nε approximation
for arbitrarily small ε, then all problems in this class have polynomial time constant
approximation schemes within factors arbitrarily close to 1. Alon and Boppana [1]
show that there is no polynomial time monotone circuit that approximates the size
of the maximum clique in an n-node graph up to a factor of n

logO(1) n
.

1.4 Subsequent Work on Approximation

When our work first appeared, we raised two major open problems [17].

1. Can the methods be extended to prove that if the clique function can be ap-
proximated to within factor f , then P = NP? Say, even for f = 2? Using
a similar proof outline to the one we use here to answer this question in the
affirmative, would entail showing an O(log n) bound on the number of coins
and answer bits that the verifier receives, whereas we show an O(log n log log n)
bound.

2. Our methods are well suited to attack the clique approximation problem. Can
similar methods be used to derive hardness results for approximating other
NP-hard functions?

The announcement of the results of this paper in [17], was followed by a sequence
of rapid and exciting developments in which tremendous progress was made regard-
ing the relation between interactive proofs (in their various forms) and hardness of
approximation problems.

Both of the open problems we posed received affirmative answers.

The first of these questions was solved by Arora and Safra [3]. To describe
their results we adopt their notation, which has become standard by now. Let
PCP (r(n), c(n)) denote the class of languages that have probabilistically checkable
proofs in which the verifier uses O(r(n)) random bits, receives O(c(n)) answer bits,

5

and the error (the probability of accepting a false “proof” of an incorrect state-
ment) is at most 1/2. Using this terminology, the results in the current paper show
that NP ⊂ PCP (log n log log n, log n log log n), and that if it is easy to approximate
ω(G) within some constant factor then PCP (r, a) ∈ DTIME(2r+a), and thus if
NP ⊂ PCP (log n, log n), then it is NP-hard to approximate ω(G) within any con-
stant factor. Arora and Safra have shown that in fact, NP ⊂ PCP (log n,

√
log n).

They concluded that ω(G) cannot be approximated within a factor of 2O(
√

log n), un-
less P = NP.

Arora, Lund, Motwani, Sudan, and Szegedy [2] improved upon the work of [3], and
showed that NP ⊂ PCP (log n, 1). This implied that it is NP-hard to approximate
ω(G) within a factor of nε, for some ε > 0. More importantly, the quantitative
improvement in the number of answer bits received by the verifier, led also to a
result that MAX-3SAT cannot be approximated within a factor of 1 + ε, for some
ε > 0. Since MAX-3SAT is in MAX-SNP, the theory of MAX-SNP completeness (as
developed in [32] and subsequent works) automatically resulted in similar hardness of
approximation results for a large number of other optimization problems. One such
optimization problem is that of vertex cover, mentioned in Section 1.3.

Both our reduction from PCP protocols to clique, and the [2] reduction to MAX-
3SAT, treat the PCP characterization of NP as a blackbox. Lund and Yannakakis[29]
looked more carefully at the structure of the protocols that give this characterization.
Using this structure, they derived sophisticated reductions that showed that it is
NP-hard to approximate the chromatic number within a factor of nε for some ε > 0
(compare with Section 1.3), and that set cover cannot be approximated within a
factor of (log n)/4 unless P̃ = NP̃. (Approximating set cover within a factor of ln n
is in P.)

For further references, see the survey paper of Johnson [25], and the bibliographical
list in [15].

1.5 Roadmap

The paper is organized as follows: In section 2 we introduce some notation and the
model of multi-prover interactive proofs. In section 3 we show the connection between
multi-prover proofs and approximating the clique problem. In section 4 we improve
the efficiency of [5]’s proof system and scale it down to complexity classes lower than
NEXPTIME.

2 Multi-Prover Protocols

The model of multi-prover interactive proofs was introduced by Ben-Or, Goldwasser,
Kilian, and Wigderson in [7]. It is defined as follows.

6

Let P1, P2 be infinitely powerful machines and V be a probabilistic polynomial-
time Turing machine, all of which share the same read-only input tape. The verifier
V shares communication tapes with each Pi, but provers P1 and P2 have no common
tapes except the input tape. (P1 does not see the conversation between V and P2,
and P2 does not see the conversation between V and P1).

Formally, each Pi is a function from the input and the conversation with the
verifier it has seen so far to a new message. Similarly, V is a function from the input,
a random string, and the conversation with both provers it has seen so far to a new
message. V is a polynomial time computable function.

At the end of the conversation, V outputs accept (or reject) based on the input
x, the random string r, and the entire conversation it has had with both provers. We
then say that multi-prover interactive proof (V, P1, P2)(x, r) accepts (or rejects).

Definition 1 A language L is accepted by a multi-prover interactive proof if:

1. (∀x ∈ L) (∃P1, P2) s.t.
Prr[(V, P1, P2)(x, r) accepts] = 1

2. (∀x 6∈ L) (∀P1, P2)
Prr[(V, P1, P2)(x, r) accepts] < 1

2
.

We let MIP denote the class of languages accepted by some multi-prover inter-
active proof.

A useful alternative formulation of MIP was suggested by Fortnow, Rompel and
Sipser ([19]) as follows.

Let M be a probabilistic polynomial time Turing machine with access to a memo-
ryless oracle O (O is a function from the query sent by M to an answer to M , i.e., O
gives the same answer on the same query, regardless of the history of communication
between M and O). M is a polynomial-time function from an input x, a random
string r, and the history of communication with oracle O, to M ’s next query to the
oracle. We denote by M(x, r, h) the query sent by M on input x, random string r and
communication history h with the oracle. We write that MO(x, r) accepts if machine
M communicating with oracle O on input x and random string r accepts x.

We define the class of languages that can be accepted by these machines as follows:

Definition 2 A language L is accepted by a probabilistic oracle-machine M iff

1. For every x ∈ L, there is an oracle O such that Prr[M
O(x, r) accepts] = 1.

2. For every x 6∈ L and for all oracles O, Prr[M
O(x, r) accepts] < 1

2
.

7

This differs from the standard interactive protocol model in that the oracle is
memoryless and thus might as well be fixed ahead of time, while in an interactive
proof the prover may let his future answers depend on previous questions.

Intuitively, one may think of this oracle as representing an exponential size bounded
proof that the input x is in the language L. The machine M has to verify with high
probability that the proof is correct, using only the capability of choosing randomly
a “small” set of places to look at in the proof.

Theorem 1 ([19]) L is accepted by a probabilistic oracle-machine iff L is accepted
by a multi-prover interactive protocol. 2

Important Note: From now on we will use the probabilistic oracle-machine formu-
lation of MIP in order to prove our results.

Theorem 2 ([5]) MIP= NEXPTIME.

This is a striking phenomenon; that for any language that has an exponentially long
proof of membership, there exists an alternative proof of membershoip that can be
verified with high probability by a random polynomial-time machine.

There are three complexity measures that we define for a probabilistic oracle-
machine M on input x, |x| = n: the number of random coins M tosses, the number
of bits sent by the oracle to M , and the running time of M on x.

Definition 3 Given a probabilistic oracle-machine M , let rM(n) be the maximum
(taken over all inputs x of length n and all oracles O) number of random bits M uses
on input x, and cM(n) be the maximum (taken over all inputs x of length n and all
oracles O) number of answer bits sent by the oracle to M . We will drop the subscript
M when it is obvious from the context.

Remark on notation : Arora and Safra [3] introduced the notation PCP (r(n), c(n))
for the set of languages L accepted by probabilistic oracle machine M with rM(n) ≤
O(r(n)) and cM(n) ≤ O(c(n)).

In the [5] protocol to recognize L ∈ NEXPTIME, the probabilistic oracle ma-
chine M that accepts L runs in polynomial time and uses a polynomial number of
random and communication bits with the appropriate oracle. Thus, M uses resources
that are poly-logarithmic in the running time of a non-deterministic Turing machine
that recognizes L.

In this paper we scale down and improve the efficiency of [5]’s protocol as follows:

8

Theorem 3 Any language L ∈ NP is accepted by a probabilistic oracle-machine M
such that rM(n)+cM(n) ≤ log(n)·log log(n), and M ’s running time is DTIME(nO(1)).
(i.e. NP ⊂ PCP (log n log log n, log n log log n)).

We prove this Theorem in Section 4.

Remarks:

1. For a given error probability, the bound one obtains on the answer bits plus
random bits used by the probabilistic oracle machine, is better than the bound
one would obtain on the answer bits plus random bits used by a verifier in the
corresponding multi-prover interactive proof.

2. Although we scale down the number of random bits and answer bits, we do
not scale down the running time of M , which remains polynomial. Indeed, a
significant scaling down of this measure is not possible, since M needs linear
time just to read the input string. Luckily, such further scaling is not necessary
for our purpose.

3. The following ”scaled up” version is an easy corollary of Theorem 3:

Any language L ∈ NTIME(T (n)) (for T (n) ≥ n) is accepted by a probabilistic
oracle-machine M such that rM(n)+cM(n) ≤ log(T (n)) · log log(T (n)), and M ’s
running time is DTIME(T (n)O(1)).

3 Multi-Prover Protocols and Approximating Clique

Theorem 4 1. If approximating ω(G) within any constant factor is in P then
NP ⊆ DTIME(nO(log log n)).

2. If, for some ε > 0, approximating ω(G) within a factor 2log1−ε n is in P̃, then
NP ⊆ DTIME(2(log n)k

).

Proof: We first show that if approximating ω(G) within a factor of 2 is in P then
NP ⊆ DTIME(nO(log log n)). We will then show how the approximation factor can
be amplified, yielding both parts of the theorem.

Let B be an algorithm which approximates ω(G) to within a factor of 2 and let
TB(|G|) be its running time. Let L be an NP language. Let M be a probabilistic
oracle machine which accepts L, r(n) = rM(n), c(n) = cM(n), and TM(n) be M ’s
running time on inputs x of length n. Using the machine M , we reduce the question
of membership of x in L to approximating ω(G) in a graph in the following two steps
procedure:

9

1. Construct a graph Gx, |Gx| ≤ 2r(n)+c(n) such that if x ∈ L, then ω(Gx) = 2r(n)

and if x /∈ L, then ω(Gx) < 2r(n)

2
.

2. Run the approximation procedure B on Gx. If the answer for the approximated
ω(Gx) is greater than 2r(n)

2
then accept x, else reject x.

We now show how to construct, given M and input x, a graph Gx that satisfies
condition 1 of the theorem.

We need to introduce the notion of accepting transcripts and consistent transcripts
for this purpose.

Informally, in the following definition we will let qi denote queries, ai denote oracle
answers, and a transcript to be a possible complete history of M ’s view.

Definition 4 A string t = 〈r, q1, a1, ..., ql, al〉 is a transcript of a probabilistic oracle-
machine M on input x, if |r| = r(n), (|a1| + ... + |al|) ≤ c(n) and for every i,
qi = M(x, r, 〈q1, a1, ..., qi−1, ai−1〉). A transcript is an accepting transcript, if M on
input x, random string r and history of communication 〈q1, a1, ..., ql, al〉 accepts x.

Definition 5 We say that two transcripts t = 〈r, q1, a1, ..., ql, al〉 and t̂ = 〈r̂, q̂1, â1, ..., q̂l̂, âl̂〉
are consistent if for every i, j, if qi = q̂j, then ai = âj.

We are now ready to define the graph Gx, whose maximum clique size reflects
membership of x in L.

Definition 6 Let M be a probabilistic oracle machine which accepts L. For an input
x, define the graph Gx as follows. The nodes of Gx are all accepting transcripts of M
on x. Two nodes in Gx are connected by an edge iff they are consistent.

Our notation of a transcript contains redundant information, since M ’s queries can
be computed efficiently from the input x, its random bits, and the oracle’s answers.
We can compress a transcript by discarding M ’s queries, or expand a compressed
transcript by running M ’s algorithm. In order to construct the set of nodes of Gx we
enumerate all the compressed transcripts (this takes time 2r(n)+c(n)), and then run M
on each transcript to expand it and check that it is accepting. Observe that 2r(n)+c(n)

is an upper bound on the number of nodes of Gx.

Lemma 5 maxO Prr[M
O(x, r) accepts] · 2r(n) = ω(Gx)

10

Proof: We first show that maxO Prr[M
O(x, r) accepts] · 2r(n) ≤ ω(Gx). Let O be an

oracle for which Prr[M
O(x, r) accepts] is maximal, and denote this last probability

by p. Consider the p · 2r(n) transcripts for which MO(x, r) accepts. Since these
transcripts all correspond to the same oracle O, they are pairwise consistent. Hence
they constitute a clique of size p · 2r(n) in Gx.

We now show that maxO Prr[M
O(x, r) accepts] · 2r(n) ≥ ω(Gx). Consider a clique

of maximum size in Gx, and let k denote its size. The transcripts corresponding to
any two nodes in the clique are consistent. Hence, for any query of M that appears
in a transcript representing a node in the clique, the same response appears in all
transcripts of the clique that contain the query. Thus we can define a partial function,
O′, from M ’s queries that occur in the clique to the oracle’s responses. We extent this
partial function to an oracle O, by assigning arbitrary responses to queries that do
not appear in transcripts that correspond to nodes of the clique. Each of the k nodes
of the clique is consistent with O. A clique in Gx cannot contain two transcripts with
the same random string, since this would force the transcripts to be inconsistent.
Finally, each of the transcripts in the graph, and hence in the clique, is accepting.
Hence MO accepts for at least k random strings. 2

Clearly, if x ∈ L then ω(Gx) = 2r(n) and if x /∈ L then ω(Gx) < 2r(n)

2
, and thus

the condition in item 1 of the theorem holds.

The entire two-step procedure runs in time TB(2r(n)+c(n))+2O(r(n)+c(n))TM(n). By
Theorem 3, our statement regarding the hardness of approximating ω(G) within a
factor of 2 is proved, since the running time of the two step procedure is bounded by
nO(log log n). Note that since the running time is dominated by 2O(r(n)+c(n)) the result
will hold even if we allow TM to be bounded by 2O(r(n)+c(n)).

In order to amplify the factor of approximation, we construct the graph G′
x that

corresponds to the protocol M ′. M ′ simply runs ` iterations of M on input x,
and accepts x if M accepts x on all ` iterations. The ratio between the value of
maxO Prr[M

′O(x, r)] when x ∈ L and when x 6∈ L is a factor of 2`. To prove the
first part of the theorem, let ` be an arbitrary constant, and observe that c(n) and
r(n) increase only by a factor of `. To prove the second part of the theorem, let

` = (r(n) + c(n))
1−ε

ε . Note that by this choice of `, the number of random and an-
swer bits used by M ′ is still poly-logarithmic in n. The ratio between the size of the
maximum clique in G′

x when x ∈ L and when x 6∈ L is a factor of 2log1−ε |G′x|, where
|G′

x| is the size of G′
x. 2

As an immediate corollary we get:

Corollary 6 If, for some ε > 0, approximating ω(G) within a factor 2log1−ε n is in P̃,
then:

1. NP ⊆ NP̃ = P̃

2. NEXPTIME = EXPTIME

11

3.1 Graph Products and Probabilistic Oracle Machines

An alternative proof of the second part of Theorem 4 is to take the graph Gx = 〈V,E〉
which corresponds to running the protocol once and define the following graph product
(see [23]): G2

x = 〈V ′, E ′〉 where V ′ = V×V and (〈v1, v2〉 , 〈v′1, v′2〉) ∈ E ′ iff {(v1, v
′
1) ∈ E

or v1 = v′1} and {(v2, v
′
2) ∈ E or v2 = v′2}. It is easy to see that ω(G2

x) = ω(Gx)
2,

and part 2 of the theorem follows naturally from part 1. It is interesting to note that
Gi

x is exactly the graph G′
x resulting from repeating M ’s protocol i times. As taking

graph products is a well known technique for amplifying graph properties (such as
clique or chromatic number), the analogy with amplifying the probability of success
of a protocol may be of further value.

3.2 A Comparison Between Graphs and Oracles

We represented possible executions of probabilistic oracle machines as graphs, where
oracle like behavior translates into rules of how to place edges in the graph. The
rule we used was that two nodes are connected if identical questions have identical
answers. However, more generally, we would like two nodes to be connected by an
edge if and only if the joint answers represented by these nodes are consistent with
the assumption that the input x should be accepted. This more general rule may
reduce the size of the maximum clique in the case that x 6∈ L to a value smaller than
the one implied by the error probability of the corresponding proof system. It would
be interesting to see if this observation can be used to obtain better bounds on clique
approximation, or in other future work.

4 Efficient Multi-Prover Protocols for NP

In this section we consider a scaled down analogue of the theorem of Babai, Fortnow
and Lund [5] showing that NEXPTIME = MIP. For any NP language L, we
construct a probabilistic oracle machine M which accepts L. Our protocol has the
same general structure as that of [5] but some features are modified so as to improve
its efficiency. These include the use of arithmetic over finite fields instead of over
the integers, 1 the use of pseudo-random sampling, and a tighter analysis of the
multilinearity test.

We now proceed to describe the ingredients of our protocol.

4.1 Arithmetization

We follow ideas developed in [28], [33], [5].

1A similar change is also suggested in [5] and [4].

12

If suffices to show a procedure for deciding the NP-complete language 3-SAT. Let
f be a given 3CNF formula of length n. Let m be the smallest integer satisfying
2m ≥ n. Let c denote a clause number and ~v denote a variable name. (To prepare
for the later multilinear representation we represent the variable names as strings in
{0, 1}m).

For (j = 1, 2, 3) and for clause c, let χj,c: {0, 1}m → {0, 1} be an indicator function
satisfying:

χj,c(~v) =

{
1 if ~v is the jth variable of c
0 otherwise

As an example, assume that m = 3, and that the first variable of the fourth clause
is x5 (represented in binary as 101). Then χ1,4(~v) is the function v1(1− v2)v3, which
evaluates to 1 if v1 = 1, v2 = 0, v3 = 1, and evaluates to 0 otherwise. Note that χ1,4

is linear in each of its variables, and this is the general rule for each of the χj,c.

For j and c as before, let sj,c be a shorthand notation satisfying:

sj,c =

{
1 if the jth variable of c is positive
0 if complemented

A truth assignment A is a function from variable names to Boolean values

A: {0, 1}m → {0, 1} .

The following expression over any field F (CC standing for clause check)

CC(A, c) =
∑

~v1,~v2,~v3∈{0,1}m

3∏

j=1

χj,c(~vj) · (sj,c − A(~vj))

evaluates to 0 iff A satisfies clause c of f .

In order to verify that A is a satisfying assignment, one needs to check that for
all c, CC(A, c) = 0. An oracle machine can do this by requesting the complete
description of A from the oracle. However, this uses a polynomial number of answer
bits. We develop a different procedure which requires only O(log n log log n) answer
bits.

Let ~v = v1, .., vm. We extend the arithmetization in such a way that vi will take
arbitrary values from F . This requires to extend the domain of the functions A and
χj,c from {0, 1}m to Fm.

Definition 7 Let F be any field. Given a function f : {0, 1}m → F , the multilinear
extension of f over F , denoted f̂ :Fm → F , is such that:

13

1. ∀~y = y1, ..., ym, where yi ∈ {0, 1}: f̂(~y) = f(~y)

2. f̂ can be expressed as a multinomial of degree 1 in all variables y1, ..., ym.

The procedure of constructing the multilinear extension of a multi-variate Boolean
function f is well known, and we present it for completeness. Represent f in Dis-
junctive Normal Form. Arithmetize by replacing any or by addition, replacing any
and by multiplication, and replacing any occurance of a negated variable yi by the
expression (1− yi). To obtain f̂ , simply let all variables range over F .

M can easily compute multilinear arithmetic expressions for each χj,c, and can
easily determine each sj,c. The oracle can hold the multilinear representation of A.
Each CC(A, c) is a multinomial of degree 6 in each of the variables vi. Since M does
not know the value of A on each ~v ∈ {0, 1}m, M cannot check that the value of each
CC(A, c) is 0. However, we can use [5]’s procedure for this purpose. It has two major
components:

1. M verifies that the extended A that the oracle holds is (almost) multilinear,
and thus the extended CC is a multinomial of constant degree.

2. Assuming that CC is a multinomial of constant degree, M can now use an [28]
type protocol to verify, with high probability, that for all c,, CC(A, c) = 0. In
this part, the oracle provides M with the value of the multilinear extension of
A on a small number of arguments which M chooses.

We show how to do part 1 in subsection 4.3, and part 2 in subsection 4.2

4.2 Verifying Simultaneously that All Clauses Evaluate to
Zero

We now show how to verify with high probability that for all c, CC(A, c) = 0. Clearly,
this would imply that A satisfies f . All arithmetic in this and the next section is
done over the finite field F , where F is some ”large enough” finite field (|F| > 100m
suffices).

We first show how to verify that the arithmetic expression of a single clause
evaluates to 0. We then show how all clauses can be tested simultaneously.

4.2.1 The Sum-Check Protocol

Given a multinomial ϕ of constant degree d (in each of its variables) and a constant
c, we want to check that

∑

~y∈{0,1}m

ϕ(~y) = c (∗)

14

This can be done inefficiently by evaluating ϕ on the 2m different points ~y ∈
{0, 1}m. However, [28] developed a procedure for checking (∗) which requires the
evaluation of ϕ only on a single random point ~y which belongs to the extended field
Fm. [28] (and [33]) used this protocol because the number of terms in the summation
was too large for the performing a direct computation. In contrast, we use the protocol
because M does not have an explicit expression for ϕ (M does not know A), and the
amount of communication required to obtain such an expression is prohibitingly large.
In [5], this protocol was used for both the above reasons.

We describe an adaptation of the [28] protocol to our purpose. Since ϕ is a
multinomial of degree d, the function

g(y1) =
∑

y2,...,ym∈{0,1}
ϕ(~y)

is a polynomial of degree d.

To prove (∗), the oracle sends M a polynomial g′ of degree d, and claims that
g′ = g. If (∗) is false, then there are two possibilities:

1. g′(0) + g′(1) 6= c (which M can determine easily),

2. g′ 6= g, and since both g and g′ are polynomials of degree d, they agree on
at most d values. To check this condition, M picks at random a k ∈ F
and checks whether g′(k) =

∑
y2,...,ym∈{0,1},y1=k ϕ(~y). Note, that if g′ 6= g then

with probability at least 1 − d
|F | (taken over the choices of k), g′(k) 6= g(k) =∑

y2,...,ym∈{0,1},y1=k ϕ(~y). Note also, that this condition is of the same form as
(*), except for only m− 1 variables and will be checked recursively.

M continues this procedure for m−1 more rounds. In round i, M picks a random
value for yi−1, sends to the oracle the values of all variables instantiated so far (which
are y1 ... yi−1), and requests a d degree polynomial in the variable yi to test the
polynomial that results from the previous instantiations. When all variables are
finally instantiated, M checks that for ~y that was formed, φ(~y) indeed achieves the
value claimed. For |F | > md

ε
, the probability of falsely accepting is bounded by the –

the sum over m rounds of possible error probability d/|F | in every round, which is at
most ε. Note that, the number of random bits used by M and answer bits received
by M is O(m log |F|) = O(m log m) for constant d and ε. An important observation
is that the test requires that M checks the value of ϕ only at one single point when
~y is fully instantiated.

The above protocol can be used then to check that a single clause CC(A, c) = 0
(i.e.,

∑
~y∈{0,1}m ϕ(~y) = CC(A, c) =

∑
~v1,~v2,~v3∈{0,1}3m

∏3
j=1 χj,c(~vj) · (sj,c − A(~vj)) where

~y = ~v1 ~v2 ~v3). Observe that the last step of the sum-check protocol requires M to
compute

∏3
j=1 χj,c(~vj) · (sj,c − A(~vj)), where ~v1, ~v2, and ~v3 have been are instantiated,

15

but M cannot compute this on its own as M does not have a description of the
function A. Instead, M requests the values of A(~v1), A(~v2) and A(~v3) from the oracle
and uses values received for the computation of

∏3
j=1 χj,c(~vj) · (sj,c − A(~vj)). We

remark that the reliability of the sum-check test does not change too much even if a
small constant fraction of the values of A is incorrect.

4.2.2 Constructing a Single Expression From Many Clauses

The sum-check protocol can be used to test the value of a single expression. How-
ever, in our case, M wants to test the value of a polynomial number of expressions.
Checking each one of them separately requires too much communication. Thus we
describe a way of checking them simultaneously. This is done by constructing one
single expression E(A) whose value simultaneously reflects the values of all the 2m

expressions CC(A, c). This single expression is still of degree 6 in each of its variables
and so the sum-check protocol can be used to check its value. (i.e,

∑
~y∈{0,1}m = E(A)).

A naive attempt is to construct E(A) as
∑

c CC(A, c). If for each clause c,
CC(A, c) evaluates to 0, we know that also E(A) would evaluate to 0. Unfortu-
nately, if there exists some c such that CC(A, c) 6= 0 over F , it still may be true that
E(A) = 0 over F .

In a more sophisticated approach M chooses independently and uniformly weights
wc ∈ F for each clause c, sends all wc values to the oracle, and requests the oracle
to convince it that E(A) =

∑
c CC(A, c) · wc = 0 over F . If ∀c, CC(A, c) = 0, then

also E(A) = 0. If ∃c such that CC(A,C) 6= 0, then probwc
(E(A) = 0) = 1/|F|. This

randomized reduction would be good enough for our purpose, if not for one problem:
M uses polynomially many random bits in generating the independent wc, defeating
our attempt to keep their number small (O(log n log log n)).

We now describe a solution that assigns the weights pseudo-randomly, and uses
only m log |F| truly random bits.

Lemma 7 For 0 ≤ i ≤ m − 1, let ci denote the ith bit of the binary representation
of c, where c is the index of a clause. Let R = (r0, r1, ..., rm−1), where each ri is an
element chosen independently at random from F . Consider the family of expressions:

ER(A) =
∑

c∈{0,1}m

CC(A, c) · ∏

{i|ci=1}
ri

over all possible choices of R.

1. If ∀c:CC(A, c) = 0, then ∀R : ER(A) = 0.

2. If ∃c:CC(A, c) 6= 0, then with probability at least 1 −m/|F| (over the choices
of R): ER(A) 6= 0.

16

Proof: View the 2m expressions CC(A, c), c ∈ {0, 1}m as the coefficients of an
m-variable multilinear function over F where the variables are r0, ..., rm−1. Then,
the expression ER(A) corresponds to evaluating this multilinear function on a point
R ∈ Fm. It is well known that unless all coefficients are 0, a multilinear function is
nonzero on at least a (1− 1/|F|)m-fraction of its points (easy proof by induction on
m). The proof of the lemma follows.

2

Remark: Alternative constructions are described in a former conference pro-
ceeding version of our paper, as well as in [5] and [4]. The construction above can
be modified so that it uses only O(m) random bits, by choosing k = Θ(log m), and
viewing the 2m expressions CC(A, c) as the coefficients of an m/k-variable function
of degree 2k over F . Observe that in effect we use a linear error detecting code of
large Hamming distance over the alphabet F . The message (sequence of values of the
individual expressions) of length 2m is encoded by a code word of length 2|R|, and the
verifier checks whether a random character from this code word is zero. Other codes
can be used instead of our construction.

Let us summarize the procedure for verifying simultaneously that for all clauses
c, CC(A, c) = 0. Machine M chooses at random R ∈ Fm, and applies the check-sum
procedure to expression ER(A). The check-sum procedure can be applied as expres-
sion ER(A) (for fixed R and summing over c) is a multinomial of degree 6 in each
variable with 3m variables ~v1 ~v2 ~v3 in F , and at the final stage of the checksum proce-
dure applied to ER(A), machine M queries the oracle for the value of the extended A
at the three independently distributed locations chosen during the checksum protocol.

4.3 The Multilinearity Test

As part of the proof system for NEXPTIME, [5] propose a procedure for testing
that a function is multilinear. For a function f :Fm → F this test succeeds always
when f is multilinear and fails with high probability if f is not close to a multilinear
function (as defined below). Unfortunately, the test of [5] is not efficient enough for
our purpose.

In order to prove Theorem 3 we devise a new multi-linearity test which requires
only O(m log |F|) random and answer bits. We do this by first simplifying the analysis
of the test in [5] and obtaining tighter bounds, and second using pseudo-random
(rather than random) sampling for choosing the points of f to be queried in the test.
The structure of the resulting test is quite similar to the multi-linearity test of [5].

Remark: The test presented below is similar to the test that appeared in a
preliminary version of this paper [17], but the analysis of this test is improved. In
another (unpublished) version of this paper, we proposed a test with a somewhat
different structure, with the same complexity O(m log |F|). Generalizations of this
other test and simplification of its analysis are presented in [20].

17

4.3.1 Developing The Mathematical Background

First we introduce some notation; the distance between two functions f1, f2 : Fm →
F ,

∆(f1, f2) =
|{~y|f1(~y) 6= f2(~y)}|

|{all ~y}|
i.e., the fraction of Fm on which f1 and f2 disagree. Let ML be the set of multilinear
functions defined on Fm. We define the minimal distance between a function f :
Fm → F and a multilinear function

∆ML(f) = min
f ′∈ML

∆(f, f ′).

We call a set of |F| points
{
y1, . . . , y|F|

}
⊆ Fm an aligned line in direction i if

they differ only in the ith coordinate. A set of three distinct points a, b and c of an
aligned line is called a triple in direction i.

It is easy to see that a function is multilinear if and only if it is linear over all
possible triples.

Definition 8 Let f : Fm → F be an arbitrary function. We say that a triple {a, b, c}
(in direction i) is f -linear iff there exists a function g which is linear in the ith variable
and which satisfies g(a) = f(a), g(b) = f(b) and g(c) = f(c).

Let T = m

(
|F|
3

)
|F|m−1 denote the number of all triples. For f : Fm → F

define

τ(f) =
| {non f -linear triples} |

T
.

Our test checks random triples for f -linearity. The following theorem establishes
the necessary connection between f -linearity of triples and multilinearity of f . It
shows that if a function f is “far enough” from multilinear (that is, any multilinear
function disagrees with f on a constant fraction of the points in Fm), then a sub-
stantial fraction (Ω(1/m)) of the triples are not f -linear. We remark that there is
interplay between various constants (specifying |F|, ∆ML(f), and τ(f)) in the state-
ment of the theorem and in its proof, and our choice of particular values is somewhat
arbitrary.

Theorem 8 Let |F| ≥ 20m, and let f : Fm → F be an arbitrary function, such that
∆ML(f) ≥ 1

10
. Then τ(f) > 1

10m
.

18

Proof: We first give a high level overview of our proof. It is composed of two main
parts.

The first part (Lemma 9 and Corollary 10 deals with the case that there exists
a multilinear function L such that ∆ML ≤ 9

10
, or actually more generally an L that

agrees with f on a constant fraction of Fm. For this case we show that Ω(1/m) of
the triples are such that: at least one of their points falls in the region where L and
f agree, and at least one of their points falls in the region where L and f disagree
(so called two colored points). We then show that the vast majority of two colored
triples are not f -linear. We remark that for the special case that ∆ML(f) ≤ 1/2, the
bounds that we obtain are best possible (upto low order terms).

The second part of the proof (Lemma 11). deals with the case that ∆ML(f) >
9/10. We need to show that Ω(1/m) of the triples are not f -linear, a simple thing to
show if f were random. But can it be the case that f is composed of many segments
of different multilinear functions, none of which covers a constant fraction of f , such
that most aligned lines agree with at least one of these multilinear functions? Lemma
12 shows that this is not possible. This is shown by induction on the dimension
as follows. Let’s look at direction x1. If most aligned lines in the x1 direction are
(approximately) f -linear, and most hyperplanes perpendicular to the x1 direction are
(approximately) f -multilinear, then we can find a single multilinear function that
agrees with f on a constant fraction of Fm. Hence if f is “far” from multilinear,
then either many aligned lines in direction x1 are “far” from linear, in which case a
random triple in direction x1 would not be linear, or many hyperplanes perpendicular
to direction x1 are “far” from multilinear, in which case we can proceed by induction
on these hyperplanes (having only m− 1 dimensions).

The rest of this subsection is devoted to a a detailed proof of Theorem 8. (Read-
ers that are satisfied with the high level overview of the proof may go directly to
Section 4.3.2.)

Lemma 9 Let f : Fm → F be an arbitrary function. Then

τ(f) ≥ 3(1−∆ML(f))∆ML(f)

m
− 3

|F|
.

Proof: Let L be a multilinear function such that ∆(f, L) = ∆ML(f). Let G be the
indicator function of f−L (i.e. G is 0 where f agrees with L and 1 otherwise). We say
that a triple {a, b, c} is one colored if G(a) = G(b) = G(c) and two colored otherwise.
In order to prove Lemma 9, we show that the number of two colored triples is ”large”
(at least a fraction of 3(1−∆ML(f))∆ML(f)/m of all triples), whereas only a ”small”
number of two colored triples are f -linear (at most a fraction of 3/|F | of all triples).

Lower bounding the number of two colored triples:

19

The event E that a triple is two colored is the disjoint union of the following three
mutually exclusive events: E1: G(a) = 0 and G(b) = 1; E2: G(b) = 0 and G(c) = 1;
E3: G(c) = 0 and G(a) = 1. By symmetry, Prob(E) = 3Prob(E1). Thus, it suffices to
bound the value of Prob(E1).

The points a and b are each chosen at random with uniform probability from the
set Fm. Had they been chosen independently, then Prob(E1) would have been exactly
(1−∆ML(f))∆ML(f). However, a and b are not independent, as they are chosen to
agree on all their coordinates but one. To quantify the effect of this dependency, we
present a two-stage processes for choosing a and b, which is equivalent to the actual
process used.

1. Select two points p, q independently at random from Fm.

2. Select an index j at random, between 1 and m. Let a and b both agree with p
on their first j−1 coordinates, both agree with q on their last m−j coordinates,
and for the jth coordinate, point a agrees with p, whereas point b agrees with q.

Clearly, if G(p) = 0 and G(q) = 1, then there exists a choice of j such that E1

holds. It follows that prob(E1) ≥ (1−∆ML(f))∆ML(f)
m

.

Upper bounding the number of f -linear two colored triples:

Two colored triples can be of two types: (1) exactly one of the points in the triple
is colored 1 ; (2) exactly one of the points in the triple is colored 0.

Type (1) means that on two points of the triple, f and L agree, and on one point
they disagree. As L is a multilinear function and thus in particular linear in the ith
direction, and two different linear functions agree on at most one point of a triple
(otherwise they will be the same function), it follows that type (1) triple cannot be
f -linear.

Thus, it suffices to upper bound the number of f -linear type (2) triples. In order
to do this, we again use the fact than any two different linear functions agree on at
most one point. Consider an arbitrary triple {a, b, c} that is two colored and f -linear.
W.l.o.g., assume that G(a) = G(b) = 1 and G(c) = 0, and that g is the unique linear
function in the ith direction such that f(a) = g(a) and f(b) = g(b) (and f(c) = g(c),
by our assumption that {a, b, c} is f -linear). Then, for any c′ 6= c which satisfies
G(c′) = 0, the triple {a, b, c′} cannot be f -linear. This is argued as follows: suppose
to the contrary that the triple {a, b, c′} was f -linear. Then f(c′) = g(c′). It follows
that g agrees with L on two points (c and c′), and hence must agree everywhere,
contradicting the assumption that G(a) = 1. By how much have we restricted the

number of f -linear triples? There are only

(
|F| − 1

2

)
possible choices of a and b

with G(a) = G(b) = 1 along any aligned line which contains a point c satisfying

20

G(c) = 0, whereas there are

(
|F|
3

)
triples along any aligned line. It follows that of

all the triples, only a fraction of at most 3/|F | can be two colored and f -linear.

Combining the lower bound and the upper bound, the proof of Lemma 9 follows.
2

By substituting the appropriate values in Lemma 9 we get the following corollary.

Corollary 10 Let |F| ≥ 20m, and let f : Fm → F be an arbitrary function, 1
10
≤

∆ML(f) ≤ 9
10

. Then τ(f) > 1
9m

.

We are now ready to address the case that ∆ML(f) is large (i.e in particular,
larger than 9

10
).

Lemma 11 Let |F | ≥ 20m and let f : Fm → F be an arbitrary function satisfying
∆ML(f) > 9/10. Then τ(f) > (1− 1/|F|)(m−1) 1

9m
.

Proof: The proof is by induction on m. For the base case of the induction (m = 1),
we need to prove that ∆ML(f) > 9/10 implies that τ(f) > 1/9. Assume to the
contrary that τ(f) ≤ 1

9
. Hence the probability that a random triple is f -linear is at

least 8/9. An averaging argument shows that there exist a pair of points a, b ∈ F ,
such that at least 8/9 of the remaining points are co-linear with a and b. Thus
∆ML(f) < 1/9, contradicting the assumption that ∆ML(f) > 9/10.

For the induction step, we prove the statement for m by fixing the first coordinate,
and using the induction hypothesis on the other m − 1 coordinates. Actually, since
the statement of Lemma 11 does not make a strong enough induction hypothesis, we
will also rely on Corollary 10 to make the induction step go through.

When fixing the value of the first coordinate x1 to a ∈ F we get a subspace Fm
x1=a.

Let us denote by fa the restriction of f to Fm
x1=a.

Let Ta be the set of all triples along the x1 coordinate for which one point is in
Fm

x1=a (hence the other two points are not in Fm
x1=a), and let T ′

a ⊆ Ta be the set of
those, that are not f -linear. Let τa = |T ′

a|/|Ta|.
We proceed to (1) show that for at most one value of a both2 δML(fa) < 1

10
and

τa < 1
3
; and (2) for all other values b of x1, bound from below the number of triples

that are not f -linear. We use these facts to show that the induction step goes through.

Lemma 12 If along the first coordinate there are two distinct values a, b ∈ F that
satisfy

2i.e only with low probability, most aligned lines in direction x1 are (approximately) f -multilinear,
and most hyperplanes perpendicular to x1 are (approximately) f -multilinear

21

1. ∆ML(fa) < 1/10

2. ∆ML(fb) < 1/10

3. τa < 1/3

4. τb < 1/3

then ∆ML(f) < 9/10.

Proof: Let La, Lb be multilinear functions on Fx1=a and Fx1=b respectively such that
∆(fa, La) < 1/10, ∆(fb, Lb) < 1/10. Let

L(x1, . . . , xm) = La(x2, . . . , xm) +
x1 − a

b− a
(Lb(x2, . . . , xm)− La(x2, . . . , xm))

be the unique multilinear extention of La and Lb on Fm. We prove that ∆(f, L) <
9/10.

Consider two random points r = (r1, r2, . . . , rm) and r′ = (r′1, r2, . . . , rm) in Fm,
such that both r and r′ lie along the same aligned line in the direction of x1. We will
show that Pr[f(r) = L(r)] > 1/10. Note that if r ∈ Fx1=a∪Fx1=b, then by conditions
(1) and (2) above, r agrees with L with probability at least 9/10. Hence it remains
to consider the case that r1 6∈ {a, b}.

Let ra = (a, r2, . . . , rm) and rb = (b, r2, . . . , rm) denote the points (on the line
joining r and r′) which belong to Fx1=a and Fx1=b respectively. For simplicity, we
assume that r′1 6∈ {a, b}, without significantly affecting our analysis. By condition
(3) above, the probability that the triple {ra, r, r′} is f -linear is at least 2/3. By
condition (4) above, the probability that the triple {rb, r, r′} is f -linear is at least
2/3. When both the above triples are f -linear, and when the events fa(r

a) = La(r
a)

and fb(r
b) = Lb(r

b) also hold (each occurring with probability at least 9/10), then
f(r) = L(r). Hence Pr[f(r) = L(r)] ≥ 1− 1/3− 1/3− 1/10− 1/10 > 1/10. 2

We are now ready to obtain a count of the number of triples that are not f -linear.
Since Lemma 11 assumes that ∆ML(f) > 9/10, it follows from Lemma 12 that for at
most one point a ∈ F , both ∆ML(fa) < 1/10 and τa < 1/3 hold. For any other b ∈ F ,
we distinguish between three possibilities (in what follows, recall that T specifies the

number of all triples, and observe that (m−1)T
m|F| is the number of triples that have a

particular fixed value b along their first coordinate):

Case 1: 1/10 ≤ ∆ML(fb) ≤ 9/10. There are at least (m−1)T
m|F|

1
9(m−1)

non-f -linear
triples in fb by Corollary 10.

22

Case 2: ∆ML(fb) > 9/10. There are at least (m−1)T
m|F| (1 − 1

F)m−2 1
9(m−1)

non-f -linear
triples in fb by the induction hypothesis.

Case 3: τb ≥ 1/3. There are at least τbTb ≥ 1
3

T
m

3
|F| triples that pass through Fx1=b in

direction x1 and are not f -linear. Amortizing over all possible choices of b with
τb ≥ 1/3, we may lose an additional factor of 3 because a triple might count
in three different T ′

bs. Hence the amortized contribution of b to the number of
non-f -linear triples is T/3m|F|.

Dividing the bounds in each of the above three possibilities by T , and summing
over the |F| − 1 possible values of b, we obtain:

τ(f) ≥ (|F| − 1) min[
(m− 1)

m|F|
1

9(m− 1)
;

(m− 1)

m|F| (1− 1

F)m−2 1

9(m− 1)
;

1

3m|F|]

≥ (1− 1/|F|)(m−1) 1

9m
2

In order to complete the proof of Theorem 8 we simplify the bound obtained in
Lemma 11, using the assumption that |F| ≥ 20m.

τ(f) > (1− 1/|F|)(m−1) 1

9m
>

1

10m

2

An interesting open question arises from our analysis of the multilinearity test: We
show (lemma 9) that if a function is relatively close to multilinear (∆ML(f) = 1/2),
then a fair fraction of the triples (about 3/4m) are not f -linear. However, for functions
that are further from multilinear (∆ML(f) > 9/10), we could show only a smaller
fraction of the triples (around 1/9m) that are not f -linear (Lemma 11). Can our
analysis be significantly improved in the latter case, or does this degradation reflect
a true property of multivariate functions? (A more careful choice of the parameters
in our analysis somewhat improves the bound on τ(f) for the case ∆ML(f) > 9/10.
However, this improvement is insignificant with respect to the goals of this paper,
and with respect to the open question stated above.)

4.3.2 The Test Itself

We devise a multilinearity test with the following properties:

1. If f is multilinear, the test always accepts.

23

2. If ∆ML(f) ≥ 0.1, the test rejects with probability at least 1/2.

Since we may assume that |F | ≥ 20m, Theorem 8 naturally suggests the following
test:

MULTILINEARITY TEST (random sampling version)

1. Randomly choose 10m triples. Ask the oracle for the value of f on
each point of every triple.

2. Accept iff all triples are f -linear.

The above test is wasteful in the number of random bits that the verifier uses.
Generating each of the O(m) test triples requires O(m log |F |) random bits, whereas
each of the O(m) replies of the oracle requires only log |F| bits. Thus instead of
generating each of the sample triples independently, we want an easy to compute
sampling procedure which uses only O(m log |F |) random bits, generates O(m) sample
triples, and ”hits” a non-f -linear triple with probability at least 1/2.

Problems of this type can be handled by the method of two-point sampling [12].
The basic idea behind two point sampling techniques is that pairwise independent
sample points (or sample triples, in our case) share many of the properties of mutually
independent sample points especially with respect to hitting sets of small density with
constant probability, but require much less random bits to generate. One possible
implementation is as follows.

Identify the set of sample points (all triples) T with a field K. Consider the family

HASH = {ga,b|a, b ∈ K} ,

where ga,b is defined as the function ax + b computed over the field K.

Pick any set K ⊆ K such that |K| = 20m. The set system {Ka,b | a, b ∈ K} is
defined by Ka,b =

⋃
x∈K ga,b(x) for a, b ∈ K. The desired properties of this system

follow from the following properties of the hash functions:

1. (Uniformity) For any pair x, y ∈ K the probability for a randomly chosen hash
function ga,b that ga,b(x) = y is exactly 1/|K|.

2. (Pairwise Independence) For any x1 6= x2 ∈ K and for any y1, y2 ∈ K the prob-
ability that for a randomly chosen hash function ga,b the equations ga,b(x1) = y1

and ga,b(x2) = y2 hold is 1/|K|2.

Consider a subset H ⊆ K, and denote |H|/|K| by p. (In our case, H corresponds
to the set of triples that are not f -linear, and p ≥ 1/10m, by Theorem 8.) For

24

x ∈ K let Vx be the indicator function of the event that a random ga,b maps x into
H. E(Vx) = p, because of the uniformity property. Consider

V =
∑

x∈K

Vx.

The probability that a random Ka,b intersects with H is exactly Prob(V > 0). We
have E(V) = 20pm and σ2(V) = 20p(1− p)m (because of the pairwise independence
of the variables Vx). From the Chebyshev inequality:

Prob(V ≤ 0) ≤ σ2(V)

(E(V))2
=

1− p

20pm
<

1

2
.

For other suggested implementations of two-point sampling, the reader is referred
to [12].

We are now ready to present our efficient multilinearity test.

PAIR-WISE INDEPENDENT MULTILINEARITY TEST
(pair-wise independent sampling version)

1. Randomly choose two initialization points for the two point sam-
pling procedure. Deterministically generate 20m pairwise indepen-
dent sample triples. Ask the oracle for the value of f on each point
of every sample triple.

2. Accept iff all of the sample triples are f -linear.

Lemma 13 Let |F | ≥ 20m and let f : Fm → F be an arbitrary function.

1. If f is multilinear, the pair-wise independent multilinearity test always accepts.

2. If ∆ML(f) ≥ 0.1, the pair-wise independent multi-linearity test rejects with
probability at least 1/2.

The proof follows from theorem 8, and properties of pair-wise independent sampling
as discussed above.

4.4 Putting the Pieces Together

We are now ready to prove Theorem 3.

Proof: Let f be a 3CNF formula of length n. Set m as the smallest integer satisfying
2m ≥ n. Let F be the smallest finite field of order |F| > 100m. (We remark that
since |F| is relatively small - O(log n), it can be found in deterministic polynomial
time.) All computations in the following protocol are made over F .

25

1. Arithmetize f and obtain multilinear representations as described in Subsection
4.1. In particular, let the (truthful) oracle hold the multilinear representation
of a satisfying assignment A.

2. Perform on A the multilinearity test (pair-wise independent sampling version) as
described in Subsection 4.3.2. I.e query the oracle for the value of the extended
A on points in the triples secelcted by the multilinearity test. If all tested triples
are f -linear, continue. Else, reject.

3. Select a random R and construct the expression ER(A), as described in Sub-
section 4.2.2. Prefix this R to any message sent in Step 4 of the protocol. (In
Step 4 the oracle has to know which expression M has in mind.)

4. Perform the sum-check protocol (as described in Subsection 4.2.1) on the ex-
pression ER(A). Reject if at any stage the oracle’s replies violate the consistency
check described as possibility 1 in Subsection 4.2.1. As decribed in the sum-
check protocol, this step entails querys to the oracle for degree-6 polynomials
corrsponding to various expressions.

5. When Step 4 ends, M is left with three random arguments for the multilinear
extension of A. One by one, request the values of A on these arguments from the
oracle. Plug these values in their respective locations in the instantiated ER(A),
and compute its value. Accept iff this value agrees with the value computed
from the last polynomial sent by the oracle.

It is easy to see that if f is satisfiable, then M accepts the proof of the truthful
oracle. If f is not satisfiable, then for any oracle, we distinguish between two cases.
Denote by g the function obtained by enumerating all the oracle’s answers when M
requests values of the multilinear extention of A (these questions correspond to Steps
2 and 5 in the protocol).

1. ∆ML(g) ≥ 1/10. In this case, by lemma 13, Step 2 rejects with probability at
least 1/2 (by Theorem 8, and the discussion in Subsection 4.3.2).

2. ∆ML(g) < 1/10. We show that Steps 3-5 reject with probability at least 1/2.

Assume, to the contrary, that oracle O is using function g, and the probability
that MO accepts Steps 3-5 above is at least 1/2. Let h be the multilinear
function that satisfies ∆(g, h) < 1/10. We construct a new oracle O′ that uses
function h, in its responses in steps 2 and 5, and otherwise in step 4 answers
in a manner identical to O. Namely, on any query of M that does not request
explicitly the value of the multilinear extention of A at a point, the answer of
O′ is identical to the answer of O, but in order to answer queries on the value
of the multilinear extension of A at a point, O′ use the multilinear function h,
rather than the function g that O uses.

26

The oracle is queried on exactly three point of the multilinear extention of
A at step 5, and each of these points is chosen uniformly at random. Since
∆(g, h) < 1/10, the probability that O′ is asked for the value of a point on
which g and h disagree is at most 3/10. Hence the probability that MO′ accepts
Steps 3-5 is at least 1/2− 3/10 = 2/10.

Now we compute an upper bound on the probability that MO′ accepts Steps 3-
5. We first condition over the random choice of R. For f that is not satisfiable,
the probability that ER(h) is identically 0 is at most m/|F| < 1/100 (by lemma
7). In this case we may assume that MO′ accepts. For the case that ER(h) is
not identically 0, we use the fact that h is multilinear, implying that ER(g) is of
degree 6. By the analysis of the sum-check protocol, the probability that MO′

accepts Steps 4 and 5 is at most 6·3m
|F| < 18/100. Hence the probability that MO′

accepts Steps 3-5 is at most 1/100 + 18/100 < 2/10 which is in contradiction
to the hypothesis that MO accepts with probability at least 1/2.

The total number of random bits that the verifier uses is (ignoring low order
terms): 6m log |F| for Step 2, m log |F| for Step 3, and 3m log |F| for Step 4, totaling
10m log m+o(m log m). The total number of bits that the oracle sends is: 60m log |F|
in Step 2, 7m log |F| in Step 4, and 3|F| in Step 5, totaling 67m log m + o(m log m).
As m ≤ log n + 1, this completes our proof of Theorem 3.

2

Acknowledgment

We thank László Babai, Avrim Blum, Oded Goldreich, Mike Sipser, and Avi Wigder-
son for many discussions on this work and its presentation. We thank Sasha Shen for
clarifying observations on multilinearity tests.

References

[1] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions.
In Combinatorica 7, pages 1–22, 1987.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
hardness of approximation problems. In Proc. 33rd IEEE Symp. on Foundations
of Computer Science, pages 14–23, 1992.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization
of NP. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, pages
2–13, 1992.

27

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-
logarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing, 21–31,
1991.

[5] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[6] R. Bar-Yehuda and S. Even. A 2 − log log n
2 log n

performance ratio for the weighted
vertex cover problem. Technical Report 260, Technion, Haifa, Jan 1983.

[7] M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover interactive
proofs: How to remove intractability. In Proc. 20th ACM Symp. on Theory of
Computing, pages 113–131, 1988.

[8] B. Berger and J. Rompel. A better performance guarantee for approximate graph
coloring. Algorithmica, 5(4):459–466, 1990.

[9] P. Berman and G. Schnitger. On the complexity of approximating the indepen-
dent set problem. In Information and Computation 96 (1992), 77–94.

[10] R. B. Boppana and M. M. Halldórsson. Approximating maximum independent
sets by excluding subgraphs. In Proc. of 2nd Scand. Workshop on Algorithm
Theory, Springer-Verlag Lecture Notes in Computer Science 447, pages 13–25,
July 1990.

[11] R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive
proofs. In Inform. Process. Lett., 25, pages 127–132, 1987.

[12] B. Chor and O. Goldreich. On the power of two-point based sampling. Journal
of Complexity, 5:96–106, 1989.

[13] A. Condon. The complexity of the max word problem. In Proc. of 8th STACS,
1991, 456–465.

[14] A. Condon and R. Lipton. On the complexity of space bounded interactive
proofs. In Proc. 30th IEEE Symp. on Foundations of Computer Science, pages
462–467, 1989.

[15] U. Feige and S. Goldwasser (editors). The Weizmann Workshop on Probabilistic
Proof Systems. Technical report CS94-17, Weizmann Institute, 1994.

[16] U. Feige, S. Goldwasser, L. Lovasz, and S. Safra , On the Complexity of Ap-
proximating the Maximum Size of a Clique. Unpublished preliminary report,
circulated and dated Nov. 30, 1990.

[17] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedi. Approximating
clique is almost NP-complete. In Proc. 32nd IEEE Symp. on Foundations of
Computer Science, pages 2–12, 1991.

28

[18] U. Feige and A. Shamir. Multi-oracle interactive protocols with space bounded
verifiers. JCSS, 44:259–271, 1992.

[19] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. In Proc. 3rd STRUCTURES, pages 156–161, 1988.

[20] K. Friedl, Z. Hatsagi, A. Shen. Low degree tests. In Proc. 5th ACM-SIAM Symp.
on Discrete Algorithms, 57–64, 1994.

[21] Goldreich, O., S. Micali, and A. Wigderson, “Proofs that Yield Nothing but
their Validity and a Methodology for Cryptographic Protocol Design”, JACM,
Vol. 38, July 1991, pp. 691–729.

[22] M. Garey and D. Johnson. The complexity of near optimal graph coloring.
JACM, 23:43–49, 1976.

[23] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[24] M. M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Technical Report 90-44, Department of Computer Science, Rutgers
University, NJ, 1990.

[25] D. Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms
13 (1992), 502–524.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

[27] N. Linial and U. Vazirani. Graph products and chromatic numbers. In Proc.
30th IEEE Symp. on Foundations of Computer Science, 124–128, 1989.

[28] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. JACM, 39 (1992), 859–868.

[29] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. JACM, 41(5):960–981, 1994.

[30] B. Monien and E. Speckenmeyer. ”Ramsey numbers and an approximation al-
gorithm for the vertex cover problem”. Acta Informatica, 22:115-123, 1985.

[31] A. Panconesi and D. Ranjan. Quantifiers and approximation. In Proc. 22nd
ACM Symp. on Theory of Computing, pages 446–456, 1990.

[32] C. Papadimitriou and M Yannakakis. Optimization, approximation and com-
plexity classes. J. Computer and System Sci. 43 (1991), 425–440. 1988.

29

[33] A. Shamir. IP=PSPACE. JACM, 39 (1992), 869–877.

[34] A. Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM, 30(4):729–735, 1983.

30

