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Abstract: We derandomize results of Håstad (1999) and Feige and Kilian (1998) and show
that for allε > 0, approximating MAX CLIQUE and CHROMATIC NUMBER to within n1−ε

are NP-hard. We further derandomize results of Khot (FOCS ’01) and show that for some
γ > 0, no quasi-polynomial time algorithm approximates MAX CLIQUE or CHROMATIC

NUMBER to within n/2(logn)1−γ

, unless ÑP= P̃.
The key to these results is a new construction of dispersers, which are related to random-

ness extractors. A randomness extractor is an algorithm which extracts randomness from
a low-quality random source, using some additional truly random bits. We construct new
extractors which require only log2n+ O(1) additional random bits for sources with con-
stant entropy rate, and have constant error. Our dispersers use an arbitrarily small constant
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times logn additional random bits for sources with constant entropy rate. Our extractors
and dispersers output 1−α fraction of the randomness, for anyα > 0.

Our constructions rely on recent results in additive number theory and extractors by
Bourgain, Katz, and Tao (2004), Barak, Impagliazzo, and Wigderson (FOCS ’04), Barak
et al. (STOC ’05), and Raz (STOC ’05). We also simplify and slightly strengthen key
theorems in the second and third of these papers, and strengthen a related theorem by
Bourgain (2005).

1 Introduction

This work has two sources of motivation: inapproximability and randomness extractors. We begin with
inapproximability.

1.1 Inapproximability

MAX CLIQUE and CHROMATIC NUMBER are central optimization problems. Their decision versions
were in Karp’s original list of NP-complete problems [32]. The best approximation algorithms for
these problems give approximation ratios of the formn/polylog(n) [8, 24], which is not much better
than the trivial approximation ofn. Yet no strong inapproximability results were known until Feige et
al. [18] discovered a connection between probabilistically checkable proofs (PCPs) and MAX CLIQUE.
The celebrated PCP Theorem of Arora et al. [3] then implied that it is NP-hard to approximate MAX

CLIQUE to within nc for some constantc > 0. This ratio was improved in [7, 6] until Håstad, in a
breakthrough, showed a hardness ratio ofn1−ε , for anyε > 0 [25]. The catch is that H̊astad’s reduction
is randomized, so his theorem assumes that NP6= ZPP. Assuming only NP6= P, Håstad’s hardness ratio
becomesn1/2−ε . In this paper we derandomize Håstad’s randomized reduction:

Theorem 1.1. For all ε > 0, it is NP-hard to approximateMAX CLIQUE to within n1−ε .

The inapproximability of CHROMATIC NUMBER has historically been even harder to prove than
MAX CLIQUE, because advances have typically occurred through reductions from MAX CLIQUE. Lund
and Yannakakis were the first to show that it is NP-hard to approximate CHROMATIC NUMBER to within
nc for some constantc > 0 [37]. Other reductions ensued, culminating in Feige and Kilian’s proof of
a hardness ratio ofn1−ε [19]. This uses H̊astad’s result, so it assumes that NP6= ZPP. Assuming only
NP 6= P, the best previous hardness ratio explicitly stated appears to ben1/7−ε [6]. Previous work likely
implied something better, though certainly no better thann1/2−ε . In this paper we derandomize Feige
and Kilian’s result:

Theorem 1.2. For all ε > 0, it is NP-hard to approximateCHROMATIC NUMBER to within n1−ε .

Engebretsen and Holmerin [16] improved the hardness ratios for both problems ton1−o(1) under the
stronger assumption that NP6⊆ ZPTIME(2polylog(n)). Khot [34] later improved thesen1−o(1) factors to
n/2(logn)1−γ

for some constantγ > 0, under the same assumption. We derandomize Khot’s results and
show ÑP-hardness with respect to quasi-polynomial time reductions. Because of the quasi-polynomial
time reductions, ÑP-hardness is weaker than NP-hardness; seeSubsection2.1for more details.
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Theorem 1.3. For someγ > 0, it is NP̃-hard to approximateMAX CLIQUE to within n/2(logn)1−γ

.

Theorem 1.4. For some γ > 0, it is NP̃-hard to approximateCHROMATIC NUMBER to within
n/2(logn)1−γ

.

The key to our inapproximability results is constructing an appropriate disperser, which is related
to a randomness extractor. Good dispersers were known to help derandomize inapproximability results
for MAX CLIQUE (e.g., [54, 48]), but it was not known for CHROMATIC NUMBER. Before discussing
dispersers, we discuss extractors.

1.2 Randomness extractors

Randomness extractors are motivated by the possibility of using defective sources of randomness. The
model for defective random source involves lower bounding the min-entropy:

Definition 1.5. Themin-entropyof a distributionX is H∞(X) = minx{− log2Pr[X = x]}. A k-sourceis a
distribution with min-entropy at leastk. Theentropy rateof ak-source on{0,1}n is k/n; we sometimes
call ak-source a rate-k/n-source.

A randomness extractor is a function which extracts randomness from ak-source using a few addi-
tional uniformly random bits.

Definition 1.6 ([42]). Let U` denote the uniform distribution oǹ bits. A function Ext :{0,1}n×
{0,1}d → {0,1}m is a (k,ε)-extractorif for every k-sourceX, the distribution Ext(X,Ud) is ε-close in
statistical (variation) distance toUm. We say Ext is astrong(k,ε)-extractor if the function Ext(x,y)◦ y
is a(k,ε)-extractor, where◦ denotes concatenation.

Besides their straightforward applications to simulating randomized algorithms using weak sources,
extractors have had applications to many areas in derandomization that are seemingly unrelated to weak
sources, including inapproximability [54, 51, 40]. Nisan and Ta-Shma [41] survey these applications.

Like many objects in the study of pseudorandomness, the existence of excellent extractors is rel-
atively easy to establish via the probabilistic method. However, the explicit construction of efficient
extractors has proved to be much more difficult.

We wish to construct extractors for any min-entropyk with d, the number of truly random bits, as
small as possible andm, the number of output bits, as large as possible. Different parameter settings
are needed for different applications. Constructing good extractors is highly non-trivial, because such
constructions beat the “eigenvalue bound” [53]. Starting with the first extractor of Nisan and Zucker-
man [42], a lot of effort has been expended constructing good extractors. See Shaltiel’s survey [46] for
more details.

In many applications, extractors are viewed as highly unbalanced strong expanders. In this view an
extractor is a bipartite graphG = (V,W,E) with V = {0,1}n, W = {0,1}m, and(x,z) is an edge iff there
is somey ∈ {0,1}d such that Ext(x,y) = z. Thus, the degree of each vertex ofV is D = 2d, and the
extractor hashes the inputx∈V to a random neighbor among itsD neighbors inW.

Often this degreeD is of more interest thand = logD. For example, in the samplers of [55] the
degree is the number of samples; in the extractor codes of [48] D is the length of the code; in the
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simulation of BPP using weak sources [54] the degree is the number of calls to the BPP algorithm. Most
relevant for us, in the inapproximability of MAX CLIQUE [54] the size of the graph is closely related
to D.

Before the work of Ta-Shma et al. [49], all explicit extractors had degreeD at least some unspecified
polynomial in n = log|V|. In contrast, a non-explicit construction achievesD = O(n) = O(log|V|),
which matches the lower bound. Ta-Shma et al. were able to achieve degreeD = O(nlog∗n) for k≥√

nlog2n, but could only output aboutk/
√

n bits. In the case wherek = Ω(n), they could outputm=
Ω(k) bits, but then they achieved degreeD = n·polylog(n). Our new construction achieves linear degree
and linear output length for constant-rate sources.

Theorem 1.7. For all constantα,δ ,ε > 0 there is an efficient family of strong(k = δn,ε)-extractors
Ext : {0,1}n×{0,1}d →{0,1}m with m≥ (1−α)δn and D= 2d = O(n).

We now define the related notion of a disperser. While dispersers are usually defined with respect to
an error parameterε, here it is more convenient to use the parameters= 1− ε.

Definition 1.8. We may view a function DIS :[N]× [D]→ [M] as a bipartite graph([N], [M],E) where
(x,z) ∈ E iff DIS(x,y) = z for somey∈ [D]. For a setX ⊆ [N], let Γ(X) = {DIS(x,y) | x∈ X,y∈ [D]} be
the set of neighbors ofX. We say DIS is a(K,s)-disperserif, for anyX⊆ [N] with |X| ≥K, |Γ(X)| ≥ sM.
We say DIS is astrong(K,s)-disperser if the function DIS(x,y)◦y is a(K,s)-disperser, where◦ denotes
concatenation.

When s is very small (so the error is close to 1), the probabilistic method can be used to show
that there exists dispersers with degree even smaller thann, namelyO(n/ logs−1). In this paper, we
succeed in matching this degree explicitly for constant-rate sources. These dispersers are the key for our
inapproximability results.

Theorem 1.9. For all constantα,δ > 0 and s= s(n) > 0, there is an efficient family of strong(K =
Nδ ,s)-dispersersDIS : [N = 2n]× [D]→ [M = 2m] such that D= O(n/ logs−1) and m≥ (1−α)δn. For
subconstantδ = δ (n), the dependence is D= (1/δ )O(1)n/ logs−1 and m= δ O(1)n.

1.3 Techniques

Our techniques are based on a combination of random walks on expanders and additive number theory.
Random walks on expanders have been used to amplify the success probability of RP and BPP algo-
rithms without using many additional random bits [1, 29, 13]. This yields a disperser for sources with en-
tropy rate greater than 1/2 [13]. By using Chernoff bounds for random walks on expanders [21, 31, 52],
we can construct extractors in a similar way. However, random walks provably fail when the entropy
rate drops below 1/2, so they were not considered relevant for this case.

We handle entropy rates below 1/2 by first condensing the input until its entropy rate exceeds 1/2, and
then applying a random walk on an expander. Condensers have been used before to build extractors [44,
47]. We condense using techniques developed from additive number theory.

Our basic condenser requires only one additional random bit, and is very simple. Choose a primep
and form the line-point incidence graph overFq, whereq = 2p. This bipartite graph has as independent
sets the lines and points in the planeF2

q, with an edge between a point and a line if the point lies on
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the line. View the input distribution as a distribution over theq3 edges. On input an edge, use the one
random bit to output a random choice of its two endpoints. If the input distribution has min-entropy
rateδ , then roughly speaking one of the two outputs will have min-entropy rateδ ′ > δ . The proof of
correctness is simple, given the line-point incidence theorem from Bourgain-Katz-Tao [11].

This basic condenser improves that of Barak et al. [5], which requires two random bits. The im-
provement is not necessary for our results, as we apply the basic condenser iteratively to achieve entropy
rate.9. In fact, we use Raz’s condenser [43], which is strong in the sense that with high probability over
the constant-bit seed, the min-entropy rate will increase. We iteratively apply the Raz condenser in a
manner similar to [53], to improve the output length to 1−α fraction of the input min-entropy, for any
α > 0.

Although not needed for our other results, we further simplify and slightly strengthen other appli-
cations of additive number theory. These applications are based on the important theorem of Bourgain-
Katz-Tao [11] and extended by Bourgain-Glibichuk-Konyagin [10]: in a fieldFq whereq is either prime
or 2p for p prime, if |A| ≤ p.9, then max(|A+ A|, |A ·A|) ≥ |A|1+α for a global constantα > 0. (See
Section2.8 for more details, including the recent extension to non-prime fields.) Barak-Impagliazzo-
Wigderson [4] used these ideas to show that forδ ≤ .9, if A, B, andC are independent rate-δ -sources
taking values inFq, thenAB+C is close to a rate-(1+α ′)δ -source. We show thatA andC do not have to
be independent. Instead, the lemma follows if(A,C) is independent fromB. Our overall proof is simpler
than that in [4]. We further strengthen a theorem of Bourgain [9] and show that the functionA(A+B)
also gives a rate improvement.

This paper is organized as follows. After some preliminaries inSection2, we give our basic dis-
perser and extractor constructions in Sections3 and4, respectively. We next show how to improve the
output length of both constructions inSection5. We then give the inapproximability of Max Clique and
Chromatic Number in Sections6 and7, respectively. Finally, we improve the additive number theory
applications inSection8.

2 Preliminaries

Some common notation we use is◦ for concatenation and[n] for the set{1,2, . . . ,n}. All logarithms are
to the base 2.

When letters denote integers we often use a capital letter to denote 2 to the corresponding small letter,
e.g.,K = 2k. When letters denote random variables we often use capital letters for random variables and
corresponding small letters for their instantiations.

For readability, we often assume various quantities are integers when they are not necessarily. It is
not hard to see that this does not affect our analysis.

We often use the term efficient to denote polynomial-time computable.

2.1 Reductions and quasi-NP-hardness

Our NP-hardness results are with respect to polynomial-time, many-one reductions.
Quasi-polynomial inn means 2polylog(n). NP̃ andP̃ are the quasi-polynomial analogues of NP and P,

respectively. As usual with inapproximability results, we analyze the appropriate gap problem.
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Note that no language is ÑP-complete with respect to polynomial-time reductions. For if there were
such a language, it would be in TIME(2(logn)c

) for somec; but then ÑP⊆TIME(2(logn)c+1
), contradicting

the time hierarchy theorem.
Therefore, we consider ÑP-hardness with respect to quasi-polynomial-time, many-one reductions.

Then any NP-hard language is also NP̃-hard. Moreover, if an ÑP-hard language is iñP, then ÑP= P̃.
Of course, ÑP= P̃ ⇐⇒ NP⊆ P̃.

2.2 Distance between distributions

For a probability distributionX, X(s) denotes Pr[X = s]. For a setS, X(S) denotes Pr[X ∈ S].

Definition 2.1. Let X1 andX2 be two distributions on the same spaceΩ. The statistical, or variation,
distance between them is

‖X1−X2‖= max
S⊆Ω

|X1(S)−X2(S)|= 1
2 ∑

s∈Ω
|X1(s)−X2(s)| .

We sayX1 andX2 areε-close if‖X1−X2‖ ≤ ε, and areε-far otherwise. We say a distribution on
{0,1}n is ε-uniform if it is ε-close toUn, the uniform distribution onn bits.

A useful method of computing the distance to the closestk-source is the following.

Lemma 2.2. The distance of X to the closest`-source is∑smax(X(s)−2−`,0).

Of course, only thoses with X(s) > 2−` contribute to the above sum.

2.3 Flat sources

Definition 2.3. A source is a probability distribution. A flat source is a source which is uniform on its
support. The support of a distributionX is denoted supp(X).

The following lemma shows that it suffices to consider flatk-sources.

Lemma 2.4 ([12]). Any k-source is a convex combination of flat k-sources.

2.4 Dispersers

Dispersers were defined inDefinition 1.8. There are two possible notions of efficiency: one relative to
the input size logN + logD and the other relative to the graph sizeN + M. For the inapproximability
results, we only need the second, weaker, notion.

Definition 2.5. We say DIS :[N]× [D] → [M] is efficientif it runs in polynomial time in its input size
logN + logD. We say DIS ispolynomial-time constructibleif the disperser graph is constructible in
polynomial time in the number of verticesN+M.

Of course, efficient implies polynomial-time constructible.
The following simple lemma is useful whenD = O(1).
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Lemma 2.6. A (K,s)-disperser is also a strong(K,s/D)-disperser.

We also use the following simple lemma.

Lemma 2.7. Given an efficient(K,s′)-disperserDIS1 : [N]× [D1]→ [N′] and an efficient(K′ = s′N′,s)-
disperserDIS2 : [N′]× [D2]→ [M], we can build an efficient(K,s)-disperserDIS : [N]× [D1D2]→ [M].
If moreoverDIS2 is a strong(K′,s)-disperser, thenDIS is a strong(K,s/D1)-disperser.

Proof. Take DIS(x,y1 ◦ y2) = DIS2(DIS1(x,y1),y2). It is straightforward to verify that DIS is a(K,s)-
disperser. To see the final statement of the lemma, suppose DIS2 is strong. Then DIS(x,y1◦y2)◦y2 is a
(K,s)-disperser, so DIS(x,y1◦y2)◦y1◦y2 is a(K,s/D1)-disperser.

While we need the notion of strong disperser for the inapproximability of Chromatic Number, the
notion that suffices for this is captured in the following simple lemma.

Lemma 2.8. Let DIS : [N]× [D] → [M] be a strong(K,s)-disperser. For a set X⊆ [N], let Γy(X) =
{DIS(x,y) | x∈ X}. ThenDIS has the property that for any X⊆ [N] with |X| ≥ K, there is a y such that
|Γy(X)| ≥ sM.

2.5 Expander graphs

Expander graphs are related to dispersers, and we use random walks on expanders to build our dispersers.
We define expansion via eigenvalues. LetG be a connected regular undirected graph, and letA be the
transition matrix of a random walk onG. (If M is the adjacency matrix andd the degree, thenA= M/d.)
We callG a λ -expander if all eigenvalues ofA other than 1 are at mostλ in absolute value. Smallerλ
mean better expansion. We will need 2c-regular 2−γc-expanders on 2m nodes, for a constantγ > 0.

Extending earlier constructions which required large primes [36, 38], Morgenstern [39] gave ex-
plicit constructions which achieve this withγ approaching 1/2. However, because the number of ver-
tices is not 2m and there are restrictions on the degree, it is easier to use expanders by Gabber and
Galil [20]. They gave an explicit construction of 8-regularλ -expanders on 2m nodes, for evenm, where
λ = 5

√
2/8 < 1. (See the survey [28] for the statement in this form, and for many other aspects about

expanders.) The neighbors of a vertex may be computed with a constant number of arithmetic opera-
tions. By taking the(c/3)th power of the graph, we get a 2c-regularλ c/3-expander, as we need (though
this requires that 3|c).

2.6 Somewhere-random sources

The concept of somewhere-random sources will be useful in constructing dispersers.

Definition 2.9. An elementary somewhere-k-sourceis a vector of sources(X1, . . . ,X`), such that some
Xi is ak-source. Asomewhere-k-sourceis a convex combination of elementary somewhere-k-sources.

Note that there may be arbitrary dependencies among theXi . Further note that in a somewhere-k-
source which is not elementary, allXi may have low min-entropy.
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2.7 Condensers

Condensers and somewhere condensers will be essential in our extractor and disperser constructions,
respectively.

Definition 2.10. A function C : {0,1}n×{0,1}d → {0,1}m is a (k → `,ε)-condenserif for every k-
sourceX, C(X,Ud) is ε-close to somè-source. When convenient, we callC a rate-(k/n→ `/m,ε)-
condenser. The condenser is strong if the average overy∈ {0,1}d of the minimum distance ofC(X,y)
to somè -source is at mostε.

Definition 2.11. A functionC : {0,1}n×{0,1}d →{0,1}m is a(k→ `,ε)-somewhere-condenserif for
everyk-sourceX, the vector〈C(X,y)〉y∈{0,1}d is ε-close to a somewherè-source. When convenient, we
call C a rate-(k/n→ `/m,ε)-somewhere-condenser.

Note that a(k→ `,ε)-strong-condenser is a(k→ `,ε)-somewhere-condenser. We will also need the
following.

Lemma 2.12. If C : {0,1}n× {0,1}d → {0,1}m is a (k → `,ε)-somewhere-condenser, then it is a
(2k,(1− ε)2`−m)-disperser.

Proof. This follows because a distribution which isε-close to aǹ -source must have a support of size at
least(1− ε)2`.

When composing condensers, we will need the following type of lemma.

Lemma 2.13. Suppose Z1 is ε1-close to aǹ 1-source, and for all z1 ∈ supp(Z1), the distribution(Z2 |
Z1 = z1) is ε2-close to aǹ 2-source. Then Z1◦Z2 is ε1 + ε2-close to aǹ 1 + `2-source.

Proof. Let W1 be an arbitrarỳ 1-source which isε1-close toZ1. For w1 ∈ supp(Z1)∩supp(W1), define
the distribution of(W2 | W1 = w1) to be an arbitrarỳ 2-source which isε2-close to(Z2 | Z1 = w1).
For w1 ∈ supp(W1)\supp(Z1), define the distribution of(W2 |W1 = w1) to be the uniform distribution.
ThenW1◦W2 is an`1 + `2-source, which isε1 + ε2-close toZ1◦Z2,

We build extractors by first condensing and then applying a weaker extractor. The idea of condensing
before extracting was used in [44, 47], and a simple lemma from [47] shows that this works.

Lemma 2.14 ([47]). Suppose that C: {0,1}n×{0,1}d1 → {0,1}n′ is an efficient (strong)(k→ `,ε1)-
condenser, andExt : {0,1}n′×{0,1}d2 →{0,1}m is an efficient (strong)(`,ε2)-extractor. Then

Ext′(x,y1◦y2) = Ext(C(x,y1),y2)

is an efficient (strong)(k,ε1 + ε2)-extractor.
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2.8 Sum-product theorem

The following sum-product theorem underlies our condensers.

Theorem 2.15 ([11, 10]). There is a constantα > 0 such that for any field F= Fq where q is either
prime or2p for p prime, the following holds. For any non-empty A⊂ F, |A|< q.9,

max(|A+A|, |A·A|) = Ω(|A|1+α) .

Here the.9 can be increased to any constant less than 1, but the constantα will likely decrease.
Note that forq = 2p, whenA = {0,1} thenA+A = A ·A = A; however, theΩ handles this problematic
case. We use results based on earlier versions of this theorem, when the full bounds were not known to
hold for fields of size 2p. Although the result quoted above isn’t apparent for such fields in the credited
papers, it follows from Corollary 2.56 of [50], which credits those papers. For the best constantα as of
this writing see [33]. For a self-contained exposition of the prime case, see [23].

3 Disperser construction

We first use random walks on expanders to construct low-degree dispersers for high min-entropy. This
construction could work for any min-entropy rate bigger than 1/2, but to output almost all the random-
ness we need rate close to 1.

Proposition 3.1. For anyα > 0, there is aβ ,c0 > 0 such that for any c= c(n)≥ c0, there is an efficient
family of strong(K = N1−β ,2−c)-dispersersDIS : [N = 2n]× [D]→ [M = 2m] such that D≤ αn/c and
m≥ (1−α)n. (Letγ > 0 be the constant fromSection2.5. We can take c0 = 2/γ andβ = αγ/5.)

Proof. We use the disperser of [1]. Sets= 2−c, andm= (1−α)n. Let G be a 2c-regular 2−γc-expander
on [2m] (seeSection2.5). To find the neighbors of a vertexu∈ [2n], use then bits definingu to choose
a random vertexv0 ∈ [2m] and then take a random walkv1, . . . ,vD on G. Connectu to v1, . . . ,vD. We
ignorev0 so that we cleanly getn = m+Dc, andD = (n−m)/c = αn/c.

First consider when the bits describing the random walk are uniformly random. In this case we can
use the tight analysis given by Kahale [30]. For S⊆ [2m] ands= |S|/2m, Kahale showed that

Pr[(∀i)vi ∈ S]≤ s(s+(1−s)λ )D−1 < (s+λ )D .

Sinces= 2−c < 2−γc, this probability is less than 2(1−γc)D ≤ 2−(γ/2)cD ≤ 2−(γ/2)αn.
When the bits describing the random walk are chosen from a source with min-entropy(1− β )n,

each string which before had probability 2−n now has probability at most 2βn ·2−n. Therefore, the error
probability grows by at most 2βn, and hence is at most 2(β−γα/2)n. Therefore, this is a(K = N1−β ,s)-
disperser for anyβ < γα/2.

We still need to show that this disperser is strong. To do this, we must consider the situation where
instead of oneS we now haveD suchSi , |Si | = si2m, where the average of thesi is at mosts. By the
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result of Kahale given as Theorem A.5 in [22], for a uniformly random walk

Pr[(∀i)vi ∈ Si ]≤
√

s1sD

D

∏
i=2

√
si +(1−si)λ 2 ≤

√
D

∏
i=1

(λ 2 +(1−λ 2)si)

≤

(
1
D

D

∑
i=1

(λ 2 +(1−λ
2)si)

)D/2

≤ (λ 2 +s)D/2 .

The third inequality follows from the arithmetic-geometric mean. This bound(s+λ 2)D/2 is at most the
square root of Kahale’s earlier bound, so it’s at most 2−(γα/4)n. By choosingβ < γα/4 the proposition
follows.

To give a construction for all positive entropy rates, we use the following theorem, which follows
from the condenser in [5] or [43]. While [5] only gives an ordinary disperser, byLemma2.6 it is also a
strong disperser for essentially the same parameters, since D is constant.

Theorem 3.2 ([5, 43]). For anyβ ,δ > 0, there is an efficient family of rate-(δ → 1−β ,ε = 2−Ω(n))-
somewhere-condensers C: [N = 2n]× [D]→ [M = 2m] where D= O(1) and m= Ω(n). For subconstant
δ = δ (n) the dependence is D= (1/δ )O(1) and m= δ O(1)n.

Remark 3.3. In the original paper, the construction for subconstantδ required a large prime. How-
ever, there is no longer a need for this, given the new sum-product theorem for fields of size 2p (see
Subsection2.8).

Applying Lemmas2.12and2.6, we deduce

Corollary 3.4. For anyβ ,δ > 0, there is an efficient family of strong(K = Nδ ,M−β )-dispersersDIS :
[N = 2n]× [D]→ [M = 2m] where D= O(1) and m= Ω(n).

We can now give our disperser construction, although for now we obtain output length a small
constant fraction ofδn, rather than almost all of it.

Theorem 3.5. For any δ > 0 and s= s(n) > 0, there is an efficient family of strong(K = Nδ ,s)-
dispersersDIS : [N = 2n]× [D]→ [M = 2m] such that D= O(n/ logs−1) and m= Ω(n). For subconstant
δ = δ (n) the dependence is D= (1/δ )O(1)n/ logs−1 and m= δ O(1)n.

Proof. Let DIS1 : [N = 2n]× [D1 = O(1)]→ [N′ = 2n′ ] be an efficient strong(K = Nδ ,(N′)−.1)-disperser
from Corollary 3.4, with n′ = Ω(n). Let DIS2 : [N′]× [D2 ≤ n′/ lgs−1] → [M = 2m], be an efficient
strong(K′ = (N′).9,s)-disperser given byProposition3.1, with m= n′/2. Applying Lemma2.7 yields
the desired disperser.

To improve the output length to(1−α)δn, we need to use better condensers, and we defer the proof
to the next section.
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4 Extractor construction

Readers interested solely in the inapproximability results can skip directly toSection6, as the current
dispersers suffice to prove those results.

Our extractor construction is essentially the same as our disperser construction. We first show how
to extract when the entropy rate is close to 1, by using random walks on expanders. Then we use Raz’s
recent condenser [43] to reduce to the high-entropy case.

Proposition 4.1. For all α,ε > 0, there existsβ > 0 such that there is an efficient family of(k =
(1−β )n,ε)-extractorsExt : {0,1}n×{0,1}d →{0,1}m with m≥ (1−α)n and D= 2d ≤ αn.

Proof. Setm= (1−α)n andc = 3 (say). LetG be a 2c-regularλ -expander on[2m] with λ bounded
away from 1 (seeSection2.5). To find the neighbors of a vertexu ∈ [2n], use then bits definingu to
choose a random vertexv0 ∈ [2m] and then take a random walkv1, . . . ,vD onG. Connectu to v1, . . . ,vD.
As before,n = m+Dc, andD = (n−m)/c = αn/c.

Let S⊆ [2m] have densityµ = |S|/2m. First consider when the bits describing the random walk are
chosen uniformly, and let the random variableµ̂ denote the fraction ofvi which are inS. Gillman [21]
(see also Kahale [31]) proved a Chernoff bound for random walks on expanders. We use the improved
constants obtained by Healy [27]:

Pr[|µ̂ −µ| ≥ ε]≤ 2exp(−(1−λ )ε2D/4) .

(Dinwoodie [14] essentially improved the constant 4 above to 2, but only states it from a worst-case
vertex so there is another term.)

For large enoughn (to get rid of the multiplicative 2), this error is at most 2−an for a = (1−
λ )ε2α/(4c). When the bits describing the random walk are chosen from a source with min-entropy
(1− β )n, the error probability grows by at most 2βn. Thus this is a(k = (1− β )n,ε)-extractor for
β < a.

We can make these extractors strong by using a better Chernoff bound.

Proposition 4.2. For all α,ε > 0, there existsβ > 0 such that there is an efficient family of strong-
(k = (1−β )n,ε)-extractorsExt : {0,1}n×{0,1}d →{0,1}m with m≥ (1−α)n and D= 2d ≤ αn.

Proof. We use the same construction. For the proof, we must now show near uniformity over[D]× [2m].
We therefore considerS⊆ [D]× [2m], soS= ∪i{i}×Si . Again consider when the bits describing the
random walk are chosen uniformly, and now let the random variableµ̂ denote the fraction ofvi which
are inSi . Wigderson and Xiao [52] improved Gillman’s theorem above for this case. We again use
Healy’s improved constants [27]):

Pr[|µ̂ −µ| ≥ ε]≤ 2exp(−(1−λ )ε2D/4) .

We can then conclude with the same argument as above.

For dispersers, we combined the high-entropy construction with somewhere-condensers fromThe-
orem3.2. For extractors, we need to use the improved strong condenser due to Raz [43].
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Theorem 4.3 ([43]). For any constantsβ ,δ ,ε > 0, there is a constant d such that there is an efficient
rate-(δ → (1−β ),ε)-strong condenser C: {0,1}n×{0,1}d →{0,1}m such that m= Ω(n).

Applying Lemma2.14to Raz’s condenser and the extractor above, we obtain the desired theorem,
except that the output length is linear instead of the(1−α)-fraction we claimed.

Theorem 4.4.For all δ ,ε > 0 there is an efficient family of strong-(k = δn,ε)-extractorsExt :{0,1}n×
{0,1}d →{0,1}m with m= Ω(n) and D= 2d = O(n).

5 Improving the output length

The results in this section were obtained jointly with Avi Wigderson.
We now would like to obtain output length(1−α)k, for an arbitraryα > 0, while maintaining the

linear degree. The initial idea is to do a construction similar to that by Wigderson and the author [53]: if
the output length is significantly less thank, use an independent seed to extract more bits from the same
input. We can’t do this directly, because even two runs of the extractor gives degreeΘ(n2), which is too
expensive. Yet we can achieve this with the condenser, which uses only a constant number of random
bits. Thus, our intermediate goal, which is interesting in its own right, is:

Theorem 5.1. For any constantsα,β ,δ ,ε > 0, there is a constant d such that there is an efficient
rate-(δ → (1−β ),ε)-strong condenser C: {0,1}n×{0,1}d →{0,1}m such that m≥ (1−α)δn.

Yet this theorem cannot be achieved by applying the above idea toTheorem4.3. The reason is that
the error cannot be controlled. If the output length isγn, we would like to iterate about 1/γ times, but
we cannot do this if the initial error is bigger thanγ. In Theorem4.3, as well asTheorem3.2, the output
length may depend on the error. Hence we construct an improved condenser, which follows from the
improved merger of Dvir and Raz [15]. In this merger, the output length doesn’t depend on the error.

Lemma 5.2. For anyδ > 0, there existsγ > 0, such that for anyε > 0, there is a constant d such that
there is an efficient rate-(δ → (1− δ ),ε)-strong condenser C: {0,1}n×{0,1}d → {0,1}m such that
m≥ γn.

Proof. Fix δ > 0. By Theorem3.2, there is an efficient rate-(δ → 1− δ/2,ε1 = 2−Ω(n)) somewhere-
condenserC1 : {0,1}n×{0,1}d1 → {0,1}m1, whered1 = O(1) andm1 = Ω(n). By the main theorem
of [15], there is a “strong merger”M : ({0,1}m1)2d1 ×{0,1}d → {0,1}m with d = f (d1) = O(1) and
m= Ω(m1) such that whenever the inputX1 on ({0,1}m1)2d1 is a somewhere rate(1−δ/2)-source, then
the average overy∈ {0,1}d of the distance ofM(X1,y) to the closest rate(1−δ )-source is at mostε/2.
The lengthm may be chosen independently ofε, althoughd depends onε. Hence the required strong
condenser isC(x,y) = M(〈C1(x,y1〉y1∈{0,1}d1 ,y).

The following lemma is the condenser analogue to the corresponding extractor lemma in [53].

Lemma 5.3. Suppose that C1 : {0,1}n×{0,1}d1 → {0,1}m1 is a strong(k → `1,ε1)-condenser and
C2 : {0,1}n × {0,1}d2 → {0,1}m2 is a strong(k−m1 − s→ `2,ε2)-condenser. Then C: {0,1}n ×
{0,1}d1+d2 →{0,1}m1+m2, given by

C(x,y1◦y2) = C1(x,y1)◦C2(x,y2) ,
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is a strong(k→ `1 + `2,ε1 + ε2 +2−s)-condenser.

Proof. Let X be ak-source. Fory ∈ {0,1}di , let ε
y
i denote the minimum distance ofCi(X,y) to some

`i-source. Fixy1 ∈ {0,1}d1. Let Sdenote the set of low-probability elements in the output:

S= {z | Pr
X

[C1(X,y1) = z]≤ 2−(m1+s)} .

Then Pr[C1(X,y1) ∈ S]≤ |S|2−(m1+s) ≤ 2−s. Forz 6∈ S, X conditioned onC1(X,y1) = z is a(k−m1−s)-
source. Hence, under such conditioning, for eachy2∈{0,1}d2,C2(X,y2) is within ε

y2
2 of somè 2-source.

Putting this together as inLemma2.13, C(X,y1 ◦ y2) is within ε
y1
1 + 2−s+ ε

y2
2 of some`1 + `2-source.

Since the average ofε
yi
i is at mostεi , this completes the proof of the lemma.

Applying this lemma inductively, we can show:

Lemma 5.4. Suppose C: {0,1}n×{0,1}d → {0,1}m is an efficient strong(k→ `,ε)-condenser. Then
for any positive integers s, t, we can construct C′ : {0,1}n×{0,1}td → {0,1}tm, an efficient strong
(k+(t−1)m+s→ t`, tε +(t−1)2−s)-condenser.

Proof. We prove this by induction ont. For the base caset = 1 we can takeC′ = C. Now assume the
lemma for a givent. SetC1 to be the condenser given by the lemma fort, and setC2 = C. Applying
Lemma5.3gives the condenser fort +1.

We can now proveTheorem5.1. We would like to condense additional entropy, as long as there
is αδn entropy left in the source. We also want the output entropy rate to be 1− β , and if in each
iteration we have this entropy rate, then overall we do as well. These two goals mean we should use a
condenser converting rateαδ to rate 1−β . This condenser has some output lengthγn, so we need to
iterate 1/γ times. This determines the error we need, which is why it is crucial we can pick the error
after knowingγ.

Proof ofTheorem5.1. Let α,β ,δ ,ε > 0 be given. ByLemma5.2, for someγ > 0 there is an efficient
strong rate-(αδ → (1−β ),ε ′)-condenserC : {0,1}n×{0,1}d →{0,1}m, whereε ′ will be chosen later
andm≥ γn. Sett = (1−α)δ/γ and applyLemma5.4with ans to be chosen later. This gives an efficient
strong(δn− γn+ s→ (1− β )(tm), iε ′ + 2−s)-condenserC′ : {0,1}n×{0,1}id → {0,1}tm. Choosing
s= γn andε ′ small enough sotε ′+2−s≤ ε gives the theorem.

Combining our condenser fromTheorem 5.1 with our extractor fromProposition 4.1 via
Lemma2.14, we obtain our main extractor construction:

Theorem 1.7. For all constantα,δ ,ε > 0 there is an efficient family of strong(k = δn,ε)-extractors
Ext : {0,1}n×{0,1}d →{0,1}m with m≥ (1−α)δn andD = 2d = O(n).

By combining the same condenser with the earlier disperser ofProposition3.1, we obtain our main
disperser construction:

Theorem 1.9. For all constantα,δ > 0 ands= s(n) > 0, there is an efficient family of strong(K =
Nδ ,s)-dispersers DIS :[N = 2n]× [D]→ [M = 2m] such thatD = O(n/ logs−1) andm≥ (1−α)δn. For
subconstantδ = δ (n), the dependence isD = (1/δ )O(1)n/ logs−1 andm= δ O(1)n.
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6 Max Clique

In this section, we show how our dispersers yield inapproximability results for MAX CLIQUE. We
assume some familiarity with PCPs. Since the inapproximability of MAX CLIQUE follows from the
proof of the inapproximability of CHROMATIC NUMBER, readers not familiar with PCPs may prefer to
read the next section, which doesn’t use them.

Historically, Feige et al. [18] were the first to show how to obtain inapproximability results for MAX

CLIQUE using PCPs. Bellare, Goldreich, and Sudan [6] showed that free bit complexity is the parameter
of a PCP which gives the best inapproximability results.

Definition 6.1. FPCPs(r, f ) is the class of promise problems recognized by PCP verifiers usingr random
bits andf free bits, achieving perfect completeness and soundnesss.

Theorem 6.2 ([6, 18]). If NP⊆ FPCPs(r, f ), then it is NP-hard to distinguish whether a graph on2r+ f

vertices has clique number at least2r or at most s2r .

Håstad [25] showed how to reduce the soundness by paying only a tiny amount in the free bit
complexity. Specifically, he showed:

Theorem 6.3 ([25]). For any f̄ > 0, there is aǹ such thatNP⊆ FPCP2−`(O(logn), f̄ `).

The quantity f̄ is called theamortized free bit complexity, and can be less than 1 (Håstad’s result
shows it can be any positive constant).

The following follows fromTheorem6.2and the amplification of a PCP via a good disperser, as first
suggested in [54].

Lemma 6.4. SupposeNP⊆ FPCPs(r, f ) and there is a polynomial-time constructible(K,s)-disperser
DIS : [2R]× [D]→ [2r ]. ThenNP⊆ FPCPK/2R(R,D f ), and hence it isNP-hard to distinguish whether a
graph on2R+D f vertices has clique number at least2R or clique number at most K.

This suffices to prove our theorem.

Theorem1.1. It is NP-hard to approximate MAX CLIQUE to within n1−ε for anyε > 0.

Proof. Equivalently, we will show a factor ofn1−2ε . Fix ε > 0. Theorem1.9 says that for anys =
s(n) there is an efficient family of(K = Nε ,s)-dispersers of degreeD ≤ c(logN)/ logs−1, for some
c = c(ε). Let f̄ ≤ ε/c, and applyTheorem6.3 to get an` and r = r(n) = O(logn) such that NP⊆
FPCP2−`(r, f̄ `). Now let s= 2−`, so there is an efficient(K = (2R)ε ,2−`)-disperser DIS :[2R]× [D] →
[2r ]. Apply Lemma6.4with this disperser, and note thatD f ≤ (cR/`) · (` f̄ ) = f̄ ·cR≤ εR. Hence it is
NP-hard to distinguish clique number at least 2R from clique number at most 2εR in graphs on 2(1+ε)R

vertices. Moreover, since the output length is linear in the input length,R= O(logn), so the reduction
is polynomial time.

To obtain inapproximability up to ann1−o(1) factor, we can use the following theorem by Håstad and
Khot [26], which is basically the same as that obtained by Samorodnitsky and Trevisan [45] but gives
perfect completeness.
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Theorem 6.5 ([26]). For any` = `(n) which is one less than a perfect square,

NP⊆ FPCP2−`(O(` logn),2
√

`+1) .

We can now prove:

Theorem1.3. For someγ > 0, it is NP̃-hard to approximate MAX CLIQUE to within n/2(logn)1−γ

.

Proof. Set ε = ε(n) = 1/ logn. By Theorem3.5 (or the strongerTheorem1.9), there is ac such
that for anys = s(n) there is a polynomial-time constructible family of(K = Nε ,s)-dispersers of de-
gree D ≤ (logn)c(logN)/ logs−1. Let ` = 9(logn)2(c+1) and s = 2−`. Apply Theorem6.5 to get
r = r(n) = polylog(n) such that NP⊆ FPCPs(r,3

√
`). We’ll use the polynomial-time constructible

(K = (2R)ε ,2−`)-disperser DIS :[2R]× [D]→ [2r ]. Apply Lemma6.4with disperser DIS, and note that
D f ≤ (R(logn)c/`) · (3

√
`) = R/ logn = εR. Hence it is NP-hard to distinguishing clique number at

least 2R from clique number at most 2R/ logn in graphs on 2(1+1/ logn)R vertices. SinceR= polylog(n),
the theorem follows.

7 Chromatic Number

Now we show how our dispersers imply the NP-hardness of approximating CHROMATIC NUMBER to
within n1−ε for anyε > 0. We derandomize Feige’s and Kilian’s proof [19] of the same inapproxima-
bility ratio but under the stronger assumption that NP is not in ZPP. As in their proof, we work with
the fractional chromatic numberχ f , which up to logarithmic factors is the same as the chromatic num-
ber χ [35]. They also make use of the independence numberα. Just asα(G)χ(G) ≥ |V(G)|, so too is
α(G)χ f (G)≥ |V(G)| (hereV(G) denotes the vertices ofG).

Feige and Kilian start with a graphG (from a family of graphs) which has a constant hardness ratio:
eitherG has chromatic number at leastc or at mostc′ < c. They actually needc′ = cγ , whereγ > 0 is
arbitrary, as well as a corresponding bound on the independence numberα.

Theorem 7.1 ([19]). For all γ > 0, there is an s> 0, such that there is a polynomial-time reduction
from an NP-complete language L to chromatic number with the following properties. On input x, the
algorithm outputs a graph G= (V,E) such that

1. If x ∈ L thenχ f (G)≤ s−γ ;

2. If x 6∈ L thenα(G) < s|V|, and henceχ f (G) > 1/s.

(The parameters is not exactly the soundness of the PCP; rather, it is the soundness times 2− f , where
f is the free bit complexity. Also, Feige and Kilian don’t state this as a theorem, but it can be deduced
from their Lemma 2 and the parameters achieved in their Section 5.6. They state their parameters as:
for any γ, ` > 0, they can sets= O(2−`) and if x ∈ L thenχ f (G) ≤ 23γ`+1. This is equivalent to our
statement above, for a slightly different choice ofγ.)

Feige and Kilian next amplify the hardness ratio using randomized graph products. That is, they
take a suitably-sized random subgraphG′ of the product graphGD which has hardness ratio|V(G′)|1−ε .
GD is defined with respect to the following “OR” graph product.
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Definition 7.2. For graphsG = (V,E) andH = (W,F), define the graphG×H as having vertex set
V×W, and edges{(v,w),(v′,w′)} where{v,v′} ∈ E or {w,w′} ∈ F .

Note that(v1, . . . ,vD) is adjacent to(w1, . . . ,wD) in GD if any (vi ,wi) is an edge inG. It is straight-
forward to show thatα(G×H) = α(G) ·α(H). Using the definition ofχ f as a linear program and linear
programming duality, Feige showed thatχ f (G×H) = χ f (G) ·χ f (H) [17].

We derandomize the randomized graph powering. This was done earlier in the clique setting [2], but
the results there are not tight enough. On the other hand, for cliques, two types of bounds are needed
– one if the clique number is large, and one if it’s small. For chromatic number, one of the two cases
becomes easy. Ifχ f (G) is small, it will suffice to use the trivial boundχ f (G′)≤ χ f (GD) = χ f (G)D.

We can define a derandomized graph powering ofG = (V,E) with respect to any disperser DIS :
X× [D]→V as follows. Define DIS(x) = (DIS(x,1),DIS(x,2), . . . ,DIS(x,D)) and DIS(X) = {DIS(x) |
x∈ X}. Now define the graph DIS(GD) to be the induced subgraph ofGD on vertex set DIS(X).

Lemma 7.3. Given a graph G= (V,E) and a disperserDIS with degree D, let G′ = (V ′,E′) = DIS(GD).
Then

1. χ f (G′)≤ (χ f (G))D.

2. If α(G) < s|V| andDIS is a strong(K,s)-disperser, thenα(G′) < K, and henceχ f (G′) > |V ′|/K.

Proof. The first part follows becauseχ f (G′) ≤ χ f (GD) = (χ f (G))D. For the second part, suppose
α(G′)≥ K, and letX be an independent set inG′ of sizeK. Note thatΓi(X), as defined inLemma2.8,
corresponds to the set ofith coordinates ofX. By the strong disperser property, for somei ∈ [D],
|Γi(X)| ≥ s|V|> α(G). HenceΓi(X) is not an independent set inG, so it contains an edge, say{vi ,wi}.
If vi is the ith coordinate ofv, andwi is the ith coordinate ofw, then because we are using the OR
graph product,{v,w} is an edge inG′. Sincev,w ∈ X, this contradicts our assumption thatX was an
independent set.

We are now ready to prove our theorem.

Theorem1.2. It is NP-hard to approximate CHROMATIC NUMBER to within n1−ε for anyε > 0.

Proof. Fix ε > 0. Theorem1.9says that for anys= s(n) there is an efficient family of strong(K = Nε ,s)-
dispersers of degreeD≤ cn/ logs−1, for somec= c(ε). Setγ = ε/c, and use the Feige-Kilian reduction,
which comes with ans = s(γ). Using thiss, applyLemma7.3 using an efficient strong(K = Nε ,s)-
disperser. In polynomial time we construct a graphG′ onN vertices such that ifx∈ L,

χ f (G′)≤ s−γD ≤ 2γcn = Nε .

If x 6∈ L, thenα(G′) ≤ Nε , soχ f (G′) ≥ N1−ε . Thus it is NP-hard to distinguish graphs with fractional
chromatic numberNε from graphs with fractional chromatic numberN1−ε . Converting to chromatic
number loses only a logarithmic factor, so the theorem follows.

To derandomize Khot’s results, we use his reduction in place ofTheorem7.1:
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Theorem 7.4 ([34]). For anyβ > 0, there is a quasi-polynomial-time reduction from an NP-complete
language L toCHROMATIC NUMBER with the following properties. On input x of size n, the algorithm
outputs a graph G= (V,E) such that

1. |V| ≤ 2(logn)1+3β

;

2. If x ∈ L thenχ f (G)≤ 2(logn)β

;

3. If x 6∈ L thenα(G) < 2−(logn)2β |V|.

We can now show:

Theorem 1.4. For someγ > 0, it is NP̃-hard to approximate CHROMATIC NUMBER to within
n/2(logn)1−γ

.

Proof. We use the polynomial-time constructible(Nδ ,s)-strong disperser fromTheorem1.9, with s=
2−(logn)2β

andδ to be chosen shortly. This has degreeD≤ (logN)/(δ c(logn)2β ). Setδ = (logn)−β/2c.
Applying Lemma7.3, it is NP̃-hard to distinguish between graphs onN vertices with chromatic number
Nδ from those with chromatic number 2(logn)β D ≤ N(logn)−β/2

.

8 Simplifying and strengthening additive number theory applications

We now give our simple one-bit condenser and improve other lemmas from [4, 5, 9]. We first define
incidences of lines and points.

Definition 8.1. For P a set of points andL a set of lines,I(P,L) denotes the number ofincidences, i.e.,
the number of ordered pairs(p, `) where the pointp lies on the linè .

We rely heavily on the following theorem on point-line incidences. Bourgain, Katz, and Tao [11]
showed how this theorem follows from the sum-product theorem (seeSection2.8). The constant 1.9
below can be increased to any constant less than 2, but the constantα will likely decrease.

Theorem 8.2 (Incidence Theorem [11, 10]). Let F = Fq, where q is either prime or2p for p prime. Let
P, L be sets of points and lines in F2 of cardinality at most M≤ p1.9. Then there exists anα > 0 such
that the number of incidences

I(P,L) = O(M3/2−α) .

8.1 Condensing with one random bit

Barak et al. [5] consider a condenser which uses two extra bits of randomness; here we show that one
bit of randomness suffices. Of course, one bit is necessary, so this is optimal. Our proof is also simpler,
proceeding directly from theIncidence Theorem8.2. There is nothing special about the constant .9
below; any constant less than 1 will do.

Our condenser is simple to describe. We work over a fieldF = Fq, whereq= 2p for p prime. Define
the point-line incidence graph as the bipartite graphG= (V,W,E) with verticesV = F2 the set of points,
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andW the set of lines overF , and(p, `) is an edge iffp and` are incident. Our condenser is based on
the functionh : E → V ×W which maps an edge to its two endpoints. An equivalent view ofh is the
map fromF3 to (F2)2 which maps(a,b,c) to ((b,ab+ c),(a,c)). This is because the point(b,ab+ c)
lies on the liney = ax+c.

Our condenserC : F3×{0,1}→ F2 is simplyC(e, i) = h(e)i . The two-bit condenser of Barak, et al.
is very similar: their correspondingh maps(a,b,c) to the length 4 vector(a,b,c,ab+c).

Theorem 8.3. Supposeδ ≤ .9 and qδ = ω(1). The function C above is a rate-(δ → (1+ α/2)δ ,ε)-
somewhere-condenser, whereε = q−αδ/20. Hereα is the constant from theIncidence Theorem8.2.

Before we proceed, it is convenient to introduce a modified notion of somewhere-random source,
which we call somewhere light.

Definition 8.4. A vector of sourcesX = (X1, . . . ,X`) is ε-close to somewhere-k-lightif the probability,
when(x1, . . . ,x`) is output according toX, that noxi are light is at mostε. We sayxi is light if Pr[Xi =
xi ]≤ 2−k.

The following lemma describes the relationship between this notion and that of somewhere-random.

Lemma 8.5. Assumè2−t < 1− ε. If X = (X1, . . . ,X`) is ε-close to somewhere-k-light, then X is((`−
1)2−t + ε)-close to a somewhere-(k− t)-source.

Proof. Partition the support ofX into `+1 bins so that bini contains vectors(x1, . . . ,x`) wherexi is light
(break ties arbitrarily), and bin 0 contains vectors with no light coordinates. The probability of a bin is
the sum of the probabilities of vectors in the bin. By assumption, bin 0 has probability at mostε. Let
bin(x) denote the bin ofx. Consider any bini 6= 0 with probability at least 2−t (since`2−t < 1− ε there
is at least one such bin). For any(x1, . . . ,x`) in bin i,

Pr[Xi = xi | bin(X) = i]≤ Pr[Xi = xi ]/Pr[bin(X) = i]≤ 2t ·2−k .

Hence, if we letYi denote the distribution ofX conditional on bin(X) = i, we get thatYi
i has min-entropy

at leastk− t, and henceYi is a somewhere(k− t)-source. For any bini with probability less than 2−t ,
and fori = 0, letYi be the uniform distribution. Define the distributionY = ∑i Pr[bin(X) = i]Yi . Then
Y is a somewhere(k− t)-source and the distance ofX to Y comes only from bin 0 and bins with low
probability, and is at mostε +(`−1)2−t .

We now work with the modified notion. The main idea is to convert the statistical problem to a
counting problem, which we do via the following lemma.

Lemma 8.6. If (X,Y) is notε-close to a somewhere-k-source, then there exists sets S⊆ supp(X),T ⊆
supp(Y), |S|, |T|< 2k+1/ε, such that

Pr[X ∈ S∧Y ∈ T] > ε/2.

Proof. Let r = k+ lg(2/ε). By Lemma8.5, (X,Y) is not ε/2-close to somewhere-r-light. Setting
S= {s | X(s) > 2−r} andT = {t |Y(t) > 2−r} yields the lemma.
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We can now prove the theorem.

Proof ofTheorem8.3. Instead ofC, we analyze the equivalent functionh. We may assume that the
input to h is uniform on a set of edges of sizeK = 2k = q3δ , and setk′ = (1+ α/2)(2k/3). Suppose
the output(X,Y) of h is notε-close to a somewhere-k′-source. LetP = SandL = T be the sets of size
less thanK0 = 2k′+1/ε given byLemma8.6. Assuming without loss of generality thatα ≤ .1, note that
K0 ≤ q2δ 1+α/2≤ q1.8·1.05 < q1.9.

We calculate the number of incidencesI(P,L) in two ways. On the one hand, since each edge is an
incident point-line pair, and at leastε/2 fraction of these pairs lie inP×L, the number of incidences
I(P,L)≥ εK/2. On the other hand, by theIncidence Theorem8.2,

I(P,L) = O(K3/2−α

0 ) = O(K(1+α/2)(3/2−α)2/3/ε
2) = O(K1−α/6/ε

2) .

Combining these, we get a contradiction forε = K−α/20, and the theorem is proved.

8.2 AB+C theorem from two sources

In this section and the next, we consider a scenario where we have several independent weak sources,
but no truly random seed. The sum-product theorem implies that ifA, B, andC are sets of the same
sizeK, then the setAB+C is noticably bigger thanK. Barak et al. [4] showed the significantly stronger
statistical statement: ifA, B, andC are independent distributions with min-entropyk each, then the
entropy rate ofAB+C is noticably larger thank.

Here we show how to improve the entropy rate with just two sources, by allowingA andC to be
correlated. Our proof is also simpler than that in [4]. Again, there is nothing special about the constant
.9 below; any constant less than 1 will do.

Theorem 8.7. Supposeδ ≤ .9 and qδ = ω(1). If (A,C) and B are output from independent rate-
δ -sources, where A,B,C are elements of a field F= Fq, where q is prime or2p where p is prime.
Then AB+C is q−αδ/2-close to a rate-(1+ α)δ -source, whereα is the constant from theIncidence
Theorem8.2.

We prove this using theIncidence Theorem8.2. The relevance of lines comes in viewing(a,c) as the
line y = ax+c. In order to get a suitable set of points, we use the following simple lemma. This lemma
is key in deducing a statistical theorem, which is about distributions, from theIncidence Theorem8.2,
which just bounds set sizes.

Lemma 8.8. Suppose X isε-far from a k-source. Then∃S⊆ supp(X), |S|< 2k, such thatPr[X ∈ S]≥ ε.

Proof. TakeS= {s | X(s) > 2−k}, so|S| < 2k. Lemma2.2 implies that the distance ofX to the closest
k-source is∑s∈S(X(s)−2−k)≤ Pr[X ∈ S].

We can now prove the theorem by taking the set of points to beB×S.

Proof ofTheorem8.7. Let (A,C) be output from a flat 2k-source, andB from an independent flatk-
source. SupposeAB+C is ε-far from ak′ source, wherek′ = (1+ α)k. Let S be the set of size less
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thanK′ = 2k′ given byLemma8.8. Define the set of linesL to be the support of(A,C), where(a,c) is
associated with the lineax+c. Let P be the set of points supp(B)×S.

We calculate the number of incidences in two different ways. On the one hand, note that when the
line (a,c) applied tob lands inS, it corresponds to an incidence. Since Pr[AB+C ∈ S] ≥ ε, and since
the distributions are flat,

I(P,L)≥ ε|L| · |supp(B)|= εK3 ,

whereK = 2k ≤ |F |.9. On the other hand, since|L|= K2 ≤ |F |1.8 and|P| ≤ K ·K′ = K2+α ≤ |F |1.9, by
theIncidence Theorem8.2

I(P,L) = O(K(2+α)(3/2−α)) = o(K3−α/2) .

Hence we may takeε = K−α/2 and the theorem follows.

8.3 Rate-improving function for two equal-length sources

Note that the previous theorem improves the rate from two independent sources, where one has twice
the length of the other. In this subsection, we do this from two sources of equal length, by giving
a statistical version of a theorem by Bourgain. Bourgain [9] showed that for a primeq, the function
g : Fq×Fq→ Fq given byg(x,y) = x(x+y) has the following “expanding” property. For|A| ≥ |B| ≥ qδ ,
δ < 1, g(A,B) ≥ qδ+β for someβ = β (δ ) > 0.1 With the new sum-product theorem holding also
for q = 2p, p prime, Bourgain’s theorem will also hold in this case.

We show the statistical analogue of this theorem. Equivalently, our theorem says that theAB+C
theorem holds whenC = A2, and furthermore the entropy rate is measured with respect to the length of
A, rather than(A,C).

Theorem 8.9. Supposeδ ≤ .9 and qδ = ω(1). If X,Y are output from independent rate-δ -sources on
F = Fq, then g(X,Y) is q−αδ/4-close to a rate-(1+ α/2)δ -source. Hereα is the constant from the
Incidence Theorem8.2.

Proof. We follow Bourgain’s proof, but some care is required to make it statistical. LetX andY be
independent random variables uniformly distributed over setsA andB of sizeqδ . Assume without loss
of generality that they don’t contain 0. Supposeg(X,Y) is notε-close to aδ +β -source, where we will
chooseβ andε later. Let

S= {z∈ F | Pr[g(X,Y) = z] > q−(δ+β )} ,

i. e.,S is the set of size less thanqδ+β guaranteed byLemma8.8, such that Pr[g(X,Y) ∈ S]≥ ε.
The difficulty in proving the theorem is that directly, this probability being at leastε does not give

many lines (iny), so we cannot apply theIncidence Theorem8.2. We follow Bourgain and find many
more lines by exploiting the linearity iny.

To this end, we begin with a collision probability lower bound. Let

T = {y | Pr[g(X,y) ∈ S]≥ ε/2} .

1Bourgain’s proof also uses theIncidence Theorem8.2, but it was done independently of our use of theIncidence Theo-
rem8.2 in Subsections8.1and8.2.
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Then|T| ≥ ε

2|B| ≥
ε

2qδ . Fix y′ ∈ T. Let Z be distributed asX, but independent ofX andY. Then

Pr
X,Y,Z

[g(X,Y) = g(Z,y′)] > Pr
Z
[g(Z,y′) ∈ S]q−(δ+β ) ≥ ε

2
q−(δ+β ) .

Let X1 also be distributed asX, but independent of all previously defined random variables. We now
show that a function in bothX, X1, andY, which is linear inY, still has significant probability of being
in S. This will give us many more lines.

Pr
X,X1,Z,Y

[X(X +
X1

Z
(X1 +Y)−Z) ∈ S] ≥ ∑

y′∈T

Pr[X(X +y′) ∈ S]Pr[
X1

Z
(X1 +Y)−Z = y′]

= ∑
y′∈T

Pr[X(X +y′) ∈ S]Pr[X1(X1 +Y) = Z(Z+y′)]

> |T|ε
2
· ε

2
q−(δ+β ) >

ε3

8
q−β .

Therefore, there is a fixedz such that

Pr
X,X1,Y

[X(X +
X1

z
(X1 +Y)−z) ∈ S] >

ε3

8
q−β . (8.1)

This says there are many lines (linear iny) which, when applied to many values ofy, land inS. This
will contradict theIncidence Theorem8.2. In particular, let̀ x,x1(y) denote the line

xx1

z
y+
(
x2 +

xx2
1

z
−zx

)
,

and letL denote the set of all such lines asx,x1 range overA.
Of course,|L| ≤ |A|2 = q2δ . We also show|L| ≥ q2δ /3 by observing that, for fixedz,w, there are at

most 3 nonzero solutions inx,x1 to

z =
xx1

z

w = x2 +
xx2

1

z
−zx.

We define the pointsP = B×S, so|P|< q2δ+β . By Equation (8.1) and the fact that the pairs(x,x1)
overcount lines by at most a factor of 3, the number of incidences is at leastε3

24q3δ−β . By theIncidence
Theorem8.2, the number of incidences isO(q(2δ+β )(3/2−α)). Comparing these gives the theorem, with
β = αδ/2 andε = q−αδ/4.
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[1] * M. A JTAI, J. KOMLÓS, AND E. SZEMERÉDI: Deterministic simulation in LOGSPACE. InProc.
19th STOC, pp. 132–140, 1987. [STOC:28395.28410]. 1.3, 3

[2] * N. ALON, U. FEIGE, A. WIGDERSON, AND D. ZUCKERMAN: Derandomized graph products.
Computational Complexity, 5:60–75, 1995. [Springer:r591795p150lj86q]. 7

[3] * S. ARORA, C. LUND, R. MOTWANI , M. SUDAN , AND M. SZEGEDY: Proof verifica-
tion and the hardness of approximation problems.Journal of the ACM, 45:501–555, 1998.
[JACM:278298.278306]. 1.1

[4] * B. BARAK , R. IMPAGLIAZZO , AND A. W IGDERSON: Extracting randomness using few inde-
pendent sources. InProc. 45th FOCS, pp. 384–393, 2004. [FOCS:10.1109/FOCS.2004.29]. 1.3,
8, 8.2

[5] * B. BARAK , G. KINDLER, R. SHALTIEL , B. SUDAKOV, AND A. W IGDERSON: Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers, and extractors. In
Proc. 37th STOC, pp. 1–10, 2005. [STOC:1060590.1060592]. 1.3, 3, 3.2, 8, 8.1

[6] * M. BELLARE, O. GOLDREICH, AND M. SUDAN: Free bits, PCPs, and nonapprox-
imability — towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998.
[SICOMP:10.1137/S0097539796302531]. 1.1, 1.1, 6, 6.2

[7] * M. BELLARE AND M. SUDAN: Improved non-approximability results. InProc. 26th STOC, pp.
184–193, 1994. [STOC:195058.195129]. 1.1

[8] * R. BOPPANA AND M. HALLDORSSON: Approximating maximum independent sets by exclud-
ing subgraphs.Bit, 32:180–196, 1992.1.1

[9] * J. BOURGAIN: More on the sum-product phenomenon in prime fields and its applications.In-
ternational Journal of Number Theory, 1:1–32, 2005. [WorldSci:10.1142/S1793042105000108].
1.3, 8, 8.3

[10] * J. BOURGAIN, A. GLIBICHUK , AND S. KONYAGIN: Estimates for the number of sums and
products and for exponential sums in fields of prime order.Journal of the London Mathematical
Society, 73:380–398, 2006. [Cambridge:10.1112/S0024610706022721]. 1.3, 2.15, 8.2

[11] * J. BOURGAIN, N. KATZ , AND T. TAO: A sum-product estimate in finite fields, and applications.
Geometric and Functional Analysis, 14:27–57, 2004. [Springer:s00039-004-0451-1]. 1.3, 2.15,
8, 8.2

[12] * B. CHOR AND O. GOLDREICH: Unbiased bits from sources of weak randomness and
probabilistic communication complexity.SIAM Journal on Computing, 17(2):230–261, 1988.
[SICOMP:10.1137/0217015]. 2.4

THEORY OFCOMPUTING, Volume 3 (2007), pp. 103–128 124

http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#aks:space
http://portal.acm.org/citation.cfm?id=28395.28410
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#afwz
http://springerlink.metapress.com/link.asp?id=r591795p150lj86q
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#almss
http://portal.acm.org/citation.cfm?id=278298.278306
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#biw
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.29
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#bkssw
http://portal.acm.org/citation.cfm?id=1060590.1060592
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#bgs
http://dx.doi.org/10.1137/S0097539796302531
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#BelS
http://portal.acm.org/citation.cfm?id=195058.195129
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#BopH
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#Bou:more
http://dx.doi.org/10.1142/S1793042105000108
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#bgk
http://dx.doi.org/10.1112/S0024610706022721
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#bkt
http://springerlink.metapress.com/link.asp?id=s00039-004-0451-1
http://theoryofcomputing.org/articles/main/v003/a006/bibliography.html#cg:weak
http://dx.doi.org/10.1137/0217015
http://dx.doi.org/10.4086/toc


L INEAR DEGREEEXTRACTORS AND INAPPROXIMABILITY

[13] * A. COHEN AND A. W IGDERSON: Dispersers, deterministic amplification, and weak random
sources. InProc.30th FOCS, pp. 14–19, 1989.1.3

[14] * I.H. DINWOODIE: A probability inequality for the occupation measure of a reversible markov
chain.Annals of Applied Probability, 5:37–43, 1995.4

[15] * Z. DVIR AND R. RAZ: Analyzing linear mergers. Technical Report TR05-025, Electronic
Colloquium on Computational Complexity, 2005. [ECCC:TR05-025]. 5, 5

[16] * L. ENGEBRETSEN AND J. HOLMERIN: Towards optimal lower bounds for clique and chro-
matic number. Theoretical Computer Science, 299:537–584, 2003. [TCS:10.1016/S0304-
3975(02)00535-2]. 1.1

[17] * U. FEIGE: Randomized graph products, chromatic numbers, and the Lovaszθ function. Combi-
natorica, 17:79–90, 1997. [Springer:x785787h43724566]. 7

[18] * U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY: Interactive
proofs and the hardness of approximating cliques.Journal of the ACM, 43:268–292, 1996.
[JACM:226643.226652]. 1.1, 6, 6.2

[19] * U. FEIGE AND J. KILIAN : Zero knowledge and the chromatic number.Journal of Computer
and System Sciences, 57:187–199, 1998. [JCSS:10.1006/jcss.1998.1587]. 1.1, 7, 7.1

[20] * O. GABBER AND Z. GALIL : Explicit construction of linear sized superconcentrators.Journal of
Computer and System Sciences, 22:407–420, 1981. [JCSS:10.1016/0022-0000(81)90040-4]. 2.5

[21] * D. GILLMAN : A Chernoff bound for random walks on expander graphs.SIAM Journal on
Computing, 27:1203–1220, 1998. [SICOMP:10.1137/S0097539794268765]. 1.3, 4

[22] * O. GOLDREICH: A sample of samplers – a computational perspective on sampling (sur-
vey). Technical Report TR97-020, Electronic Colloquium on Computational Complexity, 1997.
[ECCC:TR97-020]. 3

[23] * B. GREEN: Sum-product estimates. Unpublished lecture notes. Available at author’s website,
2005. 2.8

[24] * M. HALLDORSSON: A still better performance guarantee for approximate graph coloring.In-
formation Processing Letters, 45:19–23, 1993. [IPL:10.1016/0020-0190(93)90246-6]. 1.1
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