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Now by Theorem 1 we see that m = 1. Hence o(R — 0, ) = p implies that
(R —0,-) is cyclic and thus a commutative group. _

Finally we need to show that the right distributive law holds in R. But this follows
easily from the fact that (R, -) is commutative. Hence R is a field.
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ON THE EXISTENCE OF ABSOLUTE PRIMES
T. N. BHARGAVA and P. H. DOYLE, Kent State University

An absolute prime base ten is a prime number such that every permutation of
its digitsis also prime. Our method of establishing the existence of nontrivial examples
consists of utilizing a computer program search among the first million positive
integers. We present a list of those found in this range. We believe that the list may
not be exhaustive even for primes that involve only two distinct digits in their pre-
sentation. Indeed the problem of existence of absolute primes that employ just two
distinct digits could be, to the best of our knowledge, as difficult as the enumeration
of the Mersenne primes.

An absolute prime with more than one digit can employ only 1,3,7, or 9 as
digits. We exhibit the list of absolute primes we found, and we prove that no absolute
prime may utilize all four of the numbers 1,3,7,9 as digits. We wish to thank the
referee for a thorough study of our first draft.

We found the following absolute primes. They are: 2,3,5,7,11,13,17,31, 37,
71,73,79,97,113,131,199, 311,337, 373, 733, 919,991. Note that twelve on this list
have no repeated digits.

THEOREM. There exists no absolute prime utilizing all four digits 1,3,7, and 9.

Proof. Upon division by 7 the .numbers 1379, 1793, 3719, 7913, 7193, 3197, and
7139 have remainders 0, 1,2, 3,4, 5, and 6, respectively. Hence, an integer N having
all these digits in it may be permuted into N; = K + 1379. If one divides K by 7,
let K=7q+r (0=r<7). Then 1379 may be permuted so that its remainder is
7 — r upon division by 7 and so N may be permuted to the form

Ny,=Tq+r+7r+(T—-71)

and so 7 divides N,.
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