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 Prime numbers and their properties have fascinated both novice and professional mathemati-

 cians in every age. Of particular interest in recent years are those primes whose digits can be
 rearranged to produce other primes. Such primes include palindromic primes [5] which are left

 unchanged by reversing their digits, and absolute primes [3], [6] which remain prime under all
 permutations of their digits. Using only two types of rearrangements, reversal of digits and cyclic

 permutations, we introduce the classes of reversible, cyclic, and symmetric primes. First we show
 the relationships between these five classes of permutable primes, and note the importance of

 cyclic primes to the study of absolute primes. Then, based on data from experiments, we propose

 an asymptotic formula for the number of reversible primes with n digits. If this formula is correct,
 it could lead to a proof of the conjecture of Gabai and Coogan [4] that there are infinitely many

 palindromic primes.
 An absolute prime (base ten) is any prime such that every permutation of its digits produces a

 prime. Obviously each of the primes 2, 3, 5, 7, 11 is an absolute prime. We list in TABLE 1 all
 known absolute primes having two distinct digits, with primes having the same digits grouped in
 families.

 7=2: {13, 31 },{17, 71 },{37, 73}, {79, 97}

 n 3: { 13, 131, 311}, { 199, 919, 99 1}, { 337, 373, 733}.
 TABLE 1. Absolute primes with n digits

 It has been shown by Johnson [6] that if there is an absolute prime with two distinct digits that is

 not in TABLE 1, it will have more than nine billion digits. The only other absolute primes are the
 prime repunits. Repunits [1], [2], [5], [8], [9] are numbers all of whose digits are ones and are

 denoted by R,, where n is the number of digits. Besides R2= 11, it is known that R19, R23, and
 R317 are prime (see Yates [9]). The primality of the last of these, R317, was discovered only
 recently and came as a surprise [7].

 A slightly less restrictive condition on permutation of digits defines the set of cyclic primes. A

 cyclic prime is a prime such that every cyclic permutation of its digits is also prime. All absolute
 primes are cyclic primes. Using an Algol W program on a UNIVAC 90/80 computer we found
 the families of cyclic primes which are not absolute, shown in TABLE 2. Primality was tested using
 a list of primes generated by a subroutine based on a modified sieve of Eratosthenes. Using this
 program we also found that there are no cyclic primes with seven or eight digits.

 n = 3: {197,719,971}

 n=4: {1193,1931,9311,3119}, {3779,7793,7937,9377}

 n = 5: {11939,19391,93911,39119,91193},

 {19937,99371,93719,37199,71993}

 n =6: {193939,939391,393919,939193,391939,919393},

 {199933,999331,993319,933199,331999,3199931.

 TABLE 2. Cyclic primes with n digits that are not

 absolute primes
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 An absolute or cyclic prime of two or more digits may only contain the digits 1, 3, 7, 9.
 Otherwise some permutation of the number ends in 0, 2, 4, 5, 6, or 8, and is divisible by 2 or 5.
 Bhargava and Doyle [3] have shown that no absolute prime may coatain all four of the digits 1, 3,
 7, 9. Johnson [6] has extended this result and proved (i) no absolute prime may contain three of
 the four digits 1, 3, 7, 9, and (ii) no absolute prime may contain two or more of each of two digits
 from 1, 3, 7, 9. Several cyclic primes in TABLE 2 (e.g., 11939) show that neither of Johnson's results
 holds for cyclic primes. The cyclic prime 19937 shows that a cyclic prime may contain all four of
 the digits 1, 3, 7, 9. The prime 19937 is also the twenty-fourth Mersenne exponent and is the
 largest known Mersenne exponent which is also cyclic.

 A symmetric or dihedral prime is a prime such that every symmetric permutation of its digits
 also yields a prime. To obtain symmetric permutations of an n-digit number, imagine the digits
 attached in cyclic order to the vertices of an n-sided regular polygon and permute the digits
 according to the rotations and reflections that leave the polygon fixed. Rotations correspond to
 cyclic permutations of the digits. The reflection about the perpendicular bisector of the side of the
 polygon which connects the vertices corresponding to the first and last digits of the number
 reverses the digits of the number (see FIGURE 1). The symmetric permutations form the dihedral
 subgroup of the group of all permutations and are generated by the rotations and any single
 reflection. Thus a number is a symmetric prime if and only if the number and its reverse are both
 cyclic primes. The numbers 11939 and 193939 generate two families of symmetric primes that are
 not absolute primes. The only other known symmetric primes are the absolute primes.

 9 11 9

 reflect

 11939 r1 -T 93911
 3 1 1 3

 9 9

 FIGURE 1

 A palindrome is a string of characters which is the same when read from right to left as when
 read from left to right. A palindromic prime is a prime with this property. Reversible primes are
 primes which are also prime when read from right to left. Palindromic, symmetric, and absolute
 primes are all special classes of reversible primes. The relationships between the classes of
 permutable primes is illustrated in FIGURE 2. We note that the intersection of the class of
 reversible primes with the class of cyclic primes is larger than the class of symmetric primes since
 37199 is cyclic and reversible, but its reverse is not cyclic. However, the intersection of the class of
 palindromic primes with the class of cyclic primes is contained in the class of symmetric primes.
 This is clear since the reverse of such a number is itself.

 One relationship illustrated in FIGURE 2 merits special attention. From Johnson's results [6],
 every absolute prime must be a repunit (called type A by Johnson) or a number of the form
 aR,, + (b-a)lOm (called type B) where a and b are distinct digits selected from 1, 3, 7, 9 and
 0< m ? n. Thus a type B number consists of n - 1 digits a and one digit b. All distinct
 permutations of a type B number may be obtained as cyclic permutations. Hence,

 THEOREM. If x is a type A or a type B number, then the following are equivalent:

 (i) x is a cyclic prime,

 (ii) x is a symmetric prime,

 (iii) x is an absolute prime.

 The results of our computer search suggest that the classes of absolute, symmetric, and cyclic
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 primes may all be finite. Establishing this result is likely to be a difficult problem. An easier
 problem would be to prove that there are only a finite number of twin primes one or both of
 which are cyclic or absolute. The pair { 197, 199} is the largest pair of twin primes each of which is
 known to be cyclic.

 Gabai and Coogan [4] suggest that there may be infinitely many palindromic primes, and that
 there may be a larger relative percentage of primes in the set of palindromic numbers than in the
 set of positive integers. This behavior could be a special case of a more general property, namely,
 that the reverse of a number is more likely to be a prime if the original number is prime. To test
 this conjecture, consider the following experiments.

 EXPERIMENT 1: Choose at random a number with n digits that does not end in the digit 0 (so
 that the reverse also has n digits), and reverse the digits. The probability of obtaining a prime is
 p(n)/(81 X 0 n-2) where p(n) is the number of primes with ii digits. One can increase the
 chances of obtaining a prime by modifying Experiment 1.

 EXPERIMENT 2: Choose a prime number with n digits and reverse the digits. The probability of
 obtaining a prime is r(n)/p(n) where r(n) is the number of reversible primes with n digits. By a
 computer search, we obtained values of r( n) for n ?7. By comparing columns 4 and 5 of TABLE 3
 we see that for n < 7 the reverse of a number is more likely to be prime if the original number is
 prime. This behavior may be partially explained by a property of multiples of 3. A number is a

 multiple of 3 if and only if the sum of its digits is a multiple of 3. Thus a number is divisible by 3
 if and only if its reverse is divisible by 3. It is also known that a number is divisible by 11 if and
 only if its reverse is divisible by 11. Experiment 2 eliminates any multiple of 3 or 11, and hence the
 reverse is not divisible by 3 or 11 and is more likely to be prime. In order to test whether or not
 this completely explains the observed behavior of r(n) we modify Experiment 1 again.

 EXPERIMENT 3: Choose a number with n digits that is not divisible by 3, 10, or 11 and reverse
 its digits. Of the possible choices of numbers in Experiment 1, only (20/33)(81 X l0n-2) of these
 are possible choices in this experiment. Thus, the probability of obtaining a prime in Experiment 3
 is p(n)/(54/1 1X Ion-'). By comparing columns 5 and 6 of TABLE 3 we see that (except for
 n = 2) column 5 has larger values when n is odd, and that column 6 has larger values when n is
 even. This variation is most likely due to the fact that, except for 11, there are no palindromic
 primes with an even number of digits [4].

 The results of our computations suggest an asymptotic formula for r(n), namely

 r4 MATM Ap2(n)TM(54 X AAn-Z)
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 p(l) r(n) p(n)
 p(nl ) r(nl ) (81 X 10 t-2) p (n) (54/11 X iOtt-1)

 2 21 9 .259 .429 .428

 3 143 43 .177 .301 .291

 4 1061 204 .131 .192 .216

 5 8363 1499 .103 .179 .170

 6 68906 9538 .085 .138 .141

 7 586081 71142 .074 .121 .119

 TABLE 3

 If this formula is correct, it would prove the existence of an infinite number of reversible primes,
 and might lead to the same result for palindromic primes.

 The authors would like to thank the editor and the referees for their helpful suggestions which did much to

 improve the format of this paper.
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 V and 3

 Said an upside-down A to an inside-out E,

 "Universal 's the epithet measuring me.

 Your scope is so small

 Compared with For all-

 There is is no more than a form of To be."

 Said the upside-down A and the inside-out E,

 "Let's drop the dispute and agree to agree!

 A nifty notation

 Reversed in negation-

 Our tandem performance is something to see!"

 HMM

 A
 Said the inside-out E to the upside-down A,
 "To be is the question! Avoid it? No way!

 My role's existential-

 I'm basic, essential-

 Of equal importance the parts that we play!"

 -KATHARINE O'BRIEN
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