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Abstract. We present the first private information retrieval (PIR) sche-
me which is both, deterministically correct and has poly-logarithmic
communication complexity. Our PIR protocol is symmetrically secure,
and improves by a few orders of magnitude the known probabilistically
correct poly-logarithmic scheme. This result is achieved as an applica-
tion of our methodology which introduces a broad family of games, called
Secure Games with Polynomial Expressions (SGPEs), that involve two
interacting players: Alice and Bob. The objective of these games is the
secure “interactive computation” of the value of a polynomial expression
which is made up of polynomials and field elements that both players dis-
tributedly contribute to the game. The players wish to keep some or all
the data (field elements and polynomials) they contribute to the game,
secret and independently secure. We show that any SGPE can be played
much more efficiently than by using generic methods, and so that no
party reveals more than what it intends to. Besides the above mentioned
PIR application, we present additional applications such as the “lists’
intersection predicate” which is useful for secure conduct of e-commerce
procedures, such as negotiation methods known as “settlement escrows”
in the legal/ economics/ business literature.

1 Introduction

One of the most important results on the foundations of cryptography (suggested
by Yao [Yao86], generalized to multi-party by Goldreich, Micali and Wigderson
[GMW87], and characterized based on the Oblivious Transfer primitive by Kilian
[Kil90]) is that given any polynomially computable function f(x, y), it is possible
for two parties, Alice (A for short) and Bob (B for short), to jointly compute
f(α, β), with A contributing α and B contributing β, in such a way so that
no party learns anything more than what can be deduced by the final output.
The resulting protocols are relative to the size of the circuit that computes f
that, even for simple functions, are considerably expensive to implement. Conse-
quently, nowadays where distributed applications over the Internet are about to
become a reality, it is worthwhile to seek special cases of useful function families
that can accept more efficient protocol techniques (as advocated in [Gol97]).

In that spirit, Naor and Pinkas [NP99] introduced an efficient protocol for
obliviously computing the value of a polynomial (Oblivious Polynomial Evalua-
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tion, OPE). In their setting, B possesses a polynomial P , A has a value α and
wishes to obliviously compute P (α).

In this paper, we further investigate possibilities for efficient solutions of new
useful problems in the general area of secure function evaluation by introducing
a family of protocols called Secure Games with Polynomial Expressions (SG-
PEs). The general idea of our approach is to consider the joint computation of
a polynomial expression that is made up of secret polynomials owned by the
two players (as well as non-secret components). Player A selects an input for
the expression, and wishes to obtain the value of the expression on this input.
Depending on the contribution of A to the expression we can categorize SGPEs
to those that A contributes only field elements to the expression (type 1), and
to those that A contributes also polynomials (type 2). An example of a type-
1 SGPE is the Secure Multivariate Polynomial Evaluation (SMPE): B holds a
secret multivariate polynomial P , and A wishes to obtain a point in the graph
of P of her choice. A Secure Nested Polynomial Game (SNPG for short) is an
example of SGPE of type-2: A holds a constant number of c secret polynomials
Q2, . . . , Qc and wants to compute Pc(Qc(. . . (P2(Q2(P1(α)))) . . .)) for an α of
her choice, where the polynomials P1, P2, . . . , Pc are contributed by B.

The security conditions that we consider, are the following: A does not want
to reveal anything about the data she contributes to the game, and B does
not want to disclose his data beyond what is trivially inferred from A’s output.
In addition to the above (traditional) conditions, both players wish that if the
secrecy of some of their private data is compromised or the search space of some
part of the data is small, this has no effect on the secrecy of the remaining inputs
(this property can be called secret independence). More generally players wish
that their data are secure even if they are not uniformly distributed over all
possible inputs.

We present an efficient construction for SGPEs of type-1 and an efficient
transformation of a type-2 game to a type-1 game. We get a protocol of two
flows of communication, one of which is employing an implementation of a single
t-out-of-n Oblivious Transfer over values of the proper field, where t and n are
small polynomial functions (in the size of the polynomial expression used in
the game). Our security assumption is coding theoretic and is related to the
Polynomial Reconstruction Problem. In fact, one of the basic contributions of
Naor and Pinkas [NP99] is the consideration of this problem as a hard problem
to base protocol security on.

Using SMPE, we provide a new Private Information Retrieval scheme (PIR)
with polylogarithmic communication complexity. Our scheme is the first direct
polylogarithmic Symmetric PIR that is deterministically correct and is at least
five orders of magnitude better, in the polylogarithmic sense, compared to the
previous polylogarithmic PIR of [CMS99]. Our PIR protocol assures correct ex-
ecution always in contrast with the [CMS99]-scheme, which is a probabilistically
correct protocol that exhibits a trade-off between error probability and commu-
nication complexity.
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Using our construction for type-1 games we can solve a variety of other prob-
lems such as the “Lists’ Intersection Predicate.” In this problem, two agencies
A and B, have two lists SA, SB respectively, and they want to check whether
SA ∩ SB 6= ∅. If this is the case, no agency wants to reveal any witness for this
fact. This procedure enables negotiating parties to know that there is a common
issue to be discussed without revealing mutual interests up front. This can be
applied to solving (without any trusted party) the problem known as “settlement
escrows.” This procedure was originally proposed for pretrial negotiations (em-
ploying a trusted third party) in out of court legal settlements [GM95]. It allows
two negotiating parties to figure out if their price ranges intersect and nothing
more, in order to further continue with negotiating a deal. It can be applied to
distributed decision-making in general e-commerce and business procedures (see
[BN96]).Additional applications of our setting such as “Oblivious Negotiations”
or “Oblivious Bargaining” will appear in the full version due to lack of space.

We note that trying to reduce our setting to OPE encounters a number of
problems, mainly with respect to security, as the reduction fails to enforce secret-
independence, a property that is necessary for the new applications. Ultimately
secret-independence appears to require a stronger intractability assumption com-
pared to the one needed for the security of OPE, which we formulate in this work.
The OPE protocol has a two-flow structure for two layer computation (polyno-
mial over data). We note that it is not at all obvious how to retain this protocol
structure for our multi-layer setting, but, interestingly, we show it to be possible.

2 Preliminaries and Definitions

Let P := {P1, P2, . . .} be a set of predicates, and X := {x1, x2, . . .} a set of
variables. An expression E is a rooted-DAG (direct acyclic graph) with all arcs
directed towards the root specified as follows: each node is one of the following:
Pi, +, ·, or a natural number. If a node is + or · then it has two children, if a node
is a number it has a single child; if a node is Pi then it has any non-zero number
of children; each arc entering Pi is labeled by a non-zero natural number; The
leaves of the DAG are selected from X . The value of a path from a leaf to the
root, is the product of all labels and number nodes that are in its course (and
is set to 1, if there are no labels or number nodes). The degree of a variable is
defined as the maximum path value taken over all paths from the variable node
to the root. Let E be an expression, and let P1, . . . , Pv denote its predicate nodes;
if we map each predicate Pi to a polynomial with the same number of variables
as the children of Pi and of the same degrees as the labels of its incoming arcs,
an in-order traversal of E can be seen as a polynomial (interpreting each number
node as exponentiation); we denote this polynomial by E(P1, . . . , Pv), and say
that the polynomials P1, . . . , Pv “fit into” E .

If P is a predicate node we denote by label(P, j) the label of the j-th incoming
arc. Let |E| denote the size of the DAG (number of arcs). We define size(E) :=
|E| + ∑

P

∏
j(label(P, j) + 1) where the sum is over all predicate nodes of E .

In order to store E(P1, . . . , Pv) we need size(E) space. One of the reasons for
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introducing expressions instead of talking simply about polynomials is space: if
coef(P ) denotes the number of coefficients of a polynomial P , then it holds that
coef(E(P1, . . . , Pv)) can be exponentially large compared to size(E). In order to
compute a value of E(P1, . . . , Pv) using the expression representation we need
O(size(E)) field operations. If E is an expression, denote by d1, . . . , dr the degrees
of its variables. For a fixed constant c, we say that an expression is c-bound if
lcm(d1, . . . , dr) = O([size(E)]c).

Fig. 1. Example of an expression that defines the polynomial Q(x1, x2 + x3P (x4) +
x5(P (x4))2 + x6(P (x4))3), with degree(x2) = degree(x3) = degree(x5) = degree(x6) =
d, degree(x1) = d′, degree(x4) = 3dd′′.

For the following, fix a c-bound expression E with v predicates and r variables.
Note that we restrict the applicability of our protocol to c-bound expressions.
Although we do not rule out the existence of a construction for unbounded
expressions, c-bound expressions are sufficient for all applications discussed here.

A type-1 SGPE is as follows: player B has v secret polynomials
P1, . . . , Pv, player A has r secret values α1, . . . , αr ∈ IF and wants to obtain
E(P1, . . . , Pv)(α1, . . . , αr). Some of the polynomials of player B may be publicly
known. If v = 1 and E(P ) := P , then the game is called “Secure Multivariate
Polynomial Evaluation” (SMPE). A type-2 SGPE is defined similarly with the
only difference that some of the P1, . . . , Pv polynomials are contributed by A.
When E has the form Pc(Qc(. . . (P2(Q2(P1(x)))) . . .)) with the Pi contributed
by B, and the Qi contributed by A then we will call this game a “Secure Nested
Polynomial Game” (SNPG). Our game schema involves two flows of informa-
tion, from A to B and from B to A (this latter flow employs a t-out-of-n OT).
Correctness and security requirements for both types of games are as follows:

Definition 1. Let E be a c-bound expression with v predicates P1, . . . , Pv, and
r variables. Let HA,HB denote the sequence of secrets contributed by the two
players to the expression. There are two probabilistic polynomial time (PPT)
algorithms A,B and a deterministic algorithm C (parts of our protocol) so that:
C(B(A(HA),HB)) = E(P1, . . . , Pv)(α1, . . . , αr) (independently of the coin tosses
of A,B). Informally, A is used by A to hide her secrets and give them to B; B
uses B to hide his secrets and apply them over the secrets of A; C is used by A
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to reconstruct the output of the protocol from the reply of B (which is obtained
through a t-out-of-n OT). The computation cost is polynomial in size(E).
Security of A. Informally, the security of A is established by showing that B
cannot deduce anything meaningful out of the protocol transcript he receives.
More formally, for all PPT B′ playing B’s part and all probability distributions
DA for HA there is a PPT B′′ such that the following is negligible:

| Prob[Z = HA : Z ← B′(A(HA))]−Prob[Z = HA : Z ← B′′] |
Security of B. Informally, security of B can be claimed by comparing with the
ideal implementation. Let I(HA,HB) denote the output of player A in the ideal
implementation of the protocol. Also, let T (HA,HB) be the protocol transcript
obtained by player A at the end of the protocol. We show that for any PPT A′

and any HA there is a PPT A′′ s.t.

| Prob[A′(T (HA,HB)) = 1]−Prob[A′′(I(HA,HB)) = 1] |
is negligible (the probability is taken over the internal coin tosses of A′,A′′ and
HB is distributed according to some probability distribution DB).

The security of the party A for the OPE protocol of [NP99] was based on the
following problem, which is also related to the security of A in our construction:

Definition 2. Polynomial Reconstruction (PR). Given n, k, t and the
pairs {〈zi, yi〉}ni=1 in IF2, output all 〈p, I〉 such that p ∈ IF[x], degree(p) < k,
I ⊆ {1, . . . , n}, |I| = t and ∀i ∈ I(p(zi) = yi).

PR is of prime interest in Coding Theory, since it corresponds to the decod-
ing problem of Reed-Solomon codes. Translated in this context PR asks for all
messages that agree with at least t positions of the received codeword. For a
general treatment on the subject the interested reader is referred to [Ber68] or
[MS77]. From the perspective of Reed-Solomon codes, we will further specialize
definition 2 to require: (i) k < n since k/n is the message rate of the code, and
(ii) at least one solution 〈p, I〉 exists, since before the addition of the noise all
pairs belong in the graph of some polynomial.

When t ≥ n+k
2 then PR has only one solution and it can be found with the

algorithm of Berlekamp and Welch [BW86] (n+k
2 is the error-correction bound of

Reed-Solomon codes). The problem has been investigated further for smaller val-
ues of t ([Sud97,GS98,GSR95]) and it is believed that PR is hard when t <

√
kn

(the best algorithm known, by Guruswami and Sudan [GS98], finds all solutions
when t ≥ √kn). From a cryptographic perspective we are more interested in
the hardness of PR on the average. It is easy to see that PR on the average
(termed also noisy PR) has only one solution 〈p, I〉 such that |I| = t with very
high probability. It is believed that the noisy PR is not easier than the PR (see
[NP99]). This is because given an instance of the PR it is possible to randomize
the polynomial (but it is not known how to randomize the noise). PR was further
investigated in [BN00].

Our proof of security (for player A) is based on the following problem, which
we call Multisample Polynomial Reconstruction (MPR):
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Definition 3. MPR. Given n, k, t, r, and the distinct tuples {〈zi, yi,1, . . . ,
yi,r〉}ni=1 so that each {〈zi, yi,`〉}ni=1 is a noisy PR instance with parameters n, k, t
and solution 〈p`, I〉, find 〈p1, . . . , pr, I〉.

MPR appears to be not much easier than PR, a fact that is justified similarly
to the case of PR vs. noisy PR: given an instance of PR it is possible to randomize
the polynomial r times and get a version of MPR, but as before it is not apparent
how to replicate and randomize the noise. We will formulate this as a complexity
assumption:

Complexity Assumption. For any r there are n, k, t polynomially related
parameters so that any probabilistic algorithm solving the MPR has negligible
success probability in n.

Solving MPR either involves using techniques against a specific noisy PR
instance that is included in the MPR instance (since the recovery of some 〈p`, I〉
immediately implies the recovery of 〈p1, . . . , pr, I〉) or in a more direct fashion
trying to take advantage of the relation between the noisy PR instances in-
cluded in the MPR instance. The best algorithm for solving PR is [GS98], which
succeeds when t ≥ √kn. Solving MPR directly has been discussed recently in
[KY01] and succeeds for choices of r > n

t . As a result the current state of the
art suggests that MPR is hard when ct <

√
kn and c′r < n

t for some c, c′ > 1.
To complete this section, let us comment briefly on the relation of SGPEs

and OPE. In particular if it is possible to simulate a SGPE using OPE; there
are two possibilities: (1) if only univariate polynomials appear in the expression
the two players can use many individual OPEs to obtain intermediate results
and finally player A will compose the final output. Nevertheless to conform
to the security requirements randomization of the partial results is necessary
something that appears to be hard unless the expression degenerates to an affine
transformation. (2) The case of multivariate polynomial evaluation e.g. P (α, β),
it can be performed by OPE as follows: A sends to B random s(x), s′(x) ∈ IF[x]
s.t. s(x0) = α and s′(x0) = β (x0 is kept secret by A); A and B engage in OPE
so that A obtains P (s(x0), s′(x0)). This approach has the deficiency that the
values contributed by A are not “independently secure”, i.e. partial knowledge
of some of the values (or a small search-space for one of the values) can lead to
the recovery of all secret input of A with non-negligible probability.

3 SPGEs of Type 1

In the following construction, a t-out-of n OT protocol is used as a primitive.

- Protocol parameter: a c-bound expression E of v predicates.
- Input of B: Polynomials P1, . . . , Pv that fit into E .
- Input of A: r elements of IF, α1, . . . , αr.
- Output of A: E(P1, . . . , Pv)(α1, . . . , αr).
- Security parameters: n, l.
- Let P (x1, . . . , xr) := E(P1, . . . , Pv)(x1, . . . , xr), and denote by d` the de-
gree of x` in P . Set d := lrlcm(d1, . . . , dr), and k := min`

d
rd`

+ 1.
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Step 1. A generates r instances of the noisy PR, {〈zi, yi,`〉}ni=1 with solution
〈p`, I〉, such that p`(0) := α`, degree(p`) = k − 1, zi 6= 0 and zi 6= zj for all i, j,
j 6= i. Then, A, forms the (r + 1)-tuples {〈zi, yi,1, . . . , yi,r〉}ni=1, and she sends
them to B.
Step 2. B hides P in a random polynomial Q: Let C, C ′ ∈ IF[x] be ran-
dom polynomials of degree d such that C(x) = C ′(x) = 0. Define a polyno-
mial Q ∈ IF[x0, x1, . . . , xr] as follows: Q(x0, . . . , xr) = P (x1, . . . , xr) + C(x0) +
xd1

1 . . . xdr
r C ′(x0). The storage space needed for Q is size(E) + 2d. Comput-

ing a value of Q requires O(size(E) + d) field operations. For each tuple
(zi, yi,1, . . . , yi,r) B computes the value Q(zi, yi,1, . . . , yi,r). Note that the polyno-
mial R(x) := Q(x, p1(x), . . . , pr(x)) on 0 gives R(0) = P (α1, . . . , αr). The degree
of R is dR = d + d1dp1 + . . . + drdpr

≤ 2d. Therefore, if A learns t := 2d + 1
values of R, she can interpolate it and compute R(0).
Step 3. A and B engage in a t-out-of n OT in which A chooses to learn the
values Q(zi, p1(zi), . . . , pr(zi)). Now A knows 2d + 1 values of the polynomial R
and can interpolate it to compute R(0) = P (α1, . . . , αr).
Implementation and Complexity. Clearly, A can compute P (α1, . . . , αr) for
any α1, . . . , αr of her choice. The time-complexity of the protocol is O(rn +
d log2 d + fA(t, n)) for player A and O(nd + nsize(E) + fB(t, n)) for player B,
where fA(t, n), fB(t, n) denotes the running time of the t-out-of n OT protocol
for each player respectively. The communication complexity is O(rn + c(t, n))
where c(t, n) is the communication complexity of the t-out-of n OT. Regarding
the security parameters, in section 3.1 we show that n = O(rd+d2/l) is sufficient;
l relates to the value k and is chosen so that k is large enough so that player B
is not be able to find p1, . . . , pr by brute-force in min{(n

t

)
,
(
n
k

)} steps. We point
here that if the expression E is 0-bound, then the complexity of player A does
not depend on the size of the expression. For a t-out-of-n OT protocol the reader
is referred to e.g. [NP99] where t-out-of n OT is efficiently and unconditionally
reduced to 1-out-of-2 OT.

3.1 Security of A

The security of A is based on the hardness of MPR as the following theorem
reveals:

Theorem 1. If B breaks the security of A in our protocol then, assuming that
the underlying t-out-of-n OT is secure, MPR is polynomial time for parameters
n, k − 1 := min`

d
rd`

, t := 2d + 1, r.

By a suitably large choice of the security parameter n we can enforce the
security of A under the MPR-complexity-assumption (provided that the security
parameter l is large enough to withstand a brute-force attack – see previous
section). Both ct <

√
kn and c′r < n

t should be satisfied (the parameters c, c′

allow for small improvements to the results against MPR). It is easy to see that
it suffices to select n = O(rd + d2/l).
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3.2 Security of B

The security of player B is established by showing that the output of player A
out of a protocol execution (the protocol transcript obtained by A) is essen-
tially identical to what she gets in an ideal implementation. This holds true
independently of A’s behavior. In an ideal implementation, A gives to a trusted
third party C all information send to B in step 1 of the protocol together with
the randomness she used — note that this reveals her secret values α1, . . . , αr.
Player B gives to C its secret input P1, . . . , Pv. In turn, C returns to A, either
a value of E(P1, . . . , Pv)(x1, . . . , xr) or a linear combination of some values of
E(P1, . . . , Pv)(x1, . . . , xr) (the exact formulation is given in the full version).

Lemma 1. There is a PPT G that given the output of the ideal implementation
of the protocol for player A, and all information available to player A, generates
a protocol transcript that is statistically indistinguishable from legitimate protocol
transcripts generated during normal operation, under the assumption that t-out-
of-n OT can be implemented ideally.

Theorem 2. Our construction is secure with respect to player B under the as-
sumption that the underlying t-out-of-n OT is secure.

4 SGPEs of Type 2

In this section we present a transformation of type-2 games to type-1 games.
First we deal with SNPGs: we will consider only the two round case and it
will become clear how to generalize to any constant number of rounds. Suppose
B possesses the secret polynomials P2, P1 ∈ IF[x] and A the secret polynomial
Q2 ∈ IF[x] of degree δ (known to B). A wants to compute P2(Q2(P1(α))) for
an α of her choice. B defines the expression E(P1, P2)(x0, . . . , xδ, x) = P2(x0 +
x1P1(x) + . . . xδ(P1(x))δ).

If Q2(x) = a0+a1x+ . . . aδx
δ then A, using the type-1 protocol, can compute

the value E(P2, P1)(a0, . . . , aδ, α) for an α of her choice. Now by the definition:
E(P2, P1)(a0, . . . , aδ, α) = P2(a0 + a1P1(α) + . . . aδ(P1(α))δ) = P2(Q2(P1(α))).

The case of any type-2 game can be sketched as follows: player A should
obtain E(P1, . . . , Pv, Q1, . . . , Qv′)(α1, . . . , αr) where the polynomials P1, . . . , Pv

are contributed by B, and the values α1, . . . , αr, and polynomials Q1, . . . , Qv′

are contributed by A. For simplicity we assume that the polynomials Qi are
univariate. Let the degree of Qi be δi. B substitutes in the expression E each
occurrence of Qi(V ) with x0+x1V + . . . xδi

V δi for all i = 1, . . . , v′. The resulting
expression is E ′. Note that E ′ is independent of the sequence of the substitutions
(each substitution works on a disjoint portion of the DAG). It is not hard to
show that |E ′| = O(size(E)), and consequently size(E ′) = O(size(E)). Note also
that if E is c-bound then E ′ is also c-bound. By engaging in type-1 game with
E ′, player A can “plug-in” all the coefficients of her polynomials, along with the
values α1, . . . , αr, and therefore the type-2 game transforms to a type-1 game.
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Theorem 3. The correctness and security of our construction for type-1 games,
implies the correctness and security of the type-2 protocol described above.

We note that in general, SNPGs are not produced by c-bound expressions. An
expression for an SNPG is c-bound only if the number of polynomials contributed
by both players is constant (constant nesting).

5 Private Information Retrieval

In Private Information Retrieval (PIR for short), the database prober, wants
to obtain a bit or an object of her choice from a database of size N , without
revealing her choice to the database moderator. The problem was introduced in
[CGKS95]. A PIR can be seen as a 1-out-of-N OT with the additional restriction
that we are interested in achieving prober time complexity which is sublinear
in N , and more specifically sublinear communication complexity. Note that in a
PIR scheme the security of the database is not enforced; something that happens
in a Symmetric PIR – SPIR for short, [GIKM98]. Communication complexity of
O(N1/k) in [CGKS95] (replication of the databases), and later O(N c) in [CG97]
(computational setting – cPIR) was shown. In [KO97] replication was dropped
as a requirement (for the computational setting), and in [CMS99] the first cPIR
with polylogarithmic communication complexity was presented. For any cPIR,
it seems inevitable that the communication complexity is polynomial in some
security parameter l. A polylogarithmic PIR has communication complexity of
O(polylog(N)), therefore it is meaningful to require l = O(polylog(N)) also.
In [CMS99], communication is polynomial in the security parameter l and the
moderator can break the security of the prober by an O(2cl) computation (pro-
vided that the underlying security assumption is true); therefore by choosing
l = Ω(δ2), where δ = log N , breaking the security of the prober becomes super-
polynomial in N . Here, we present the first direct (computational) SPIR protocol
that has polylogarithmic communication complexity. We achieve substantial im-
provements compared to the result of [CMS99]:
1. The correctness of our PIR protocol is deterministic, rather than probabilistic
as in [CMS99]. Note that in the [CMS99]-PIR reducing the error probability
results in asymptotic increase of the communication complexity.
2. The communication complexity of our SPIR protocol is O(hl2δ3), where h
denotes the number of bits that are required to store a single object of the
database. The choice l = Ω(δ) is sufficient in order to ensure that the moderator
needs to spend super-polynomial time in N for the search. If we set l := δ the
communication complexity of our scheme is O(hδ5). The communication of the
[CMS99]-PIR is O(hlf ) where f ≥ 5 and depends on the underlying Φ-Hiding
Assumption (its second constant). If f = 5, and l = δ2 then the communication
of the PIR is O(hδ10). Increasing l to achieve stronger security for the prober,
yields larger asymptotic speed-up for our PIR-scheme.

The time-complexity of the two parties is low: O(l2δ3) for the prober, and
O(Nlδ2) for the moderator; our construction requires an O(N2) pre-processing
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stage by the database moderator that needs to be performed only once, prior to
servicing any number of requests.

Note that we deal directly with a database containing words rather than
bits. Let ∆ be a database consisting of N := 2δ words, ∆ := {w0, . . . , wN−1}.
Define a polynomial P (x1, . . . , xδ) :=

∑
j1,...,jδ

aj1j2...jδ
xj1

1 xj2
2 . . . xjδ

δ , where each
j` ∈ {0, 1}, ` = 1, . . . , δ. Let v(j1, . . . , jδ) := jδ + 2jδ−1 + . . . + 2δ−1j1. We
write 〈j1, . . . , jδ〉 ≺ 〈i1, . . . , iδ〉 to denote the coordinate-wise ordering of bit-
strings. The coefficient aj1j2...jδ

of P is defined recursively as follows: aj1j2...jδ
:=

wv(j1,j2,...,jδ) −
∑

〈j′
1,j′

2,...,j′
δ
〉≺〈j1,j2,...,jδ〉 aj′

1j′
2...j′

δ
(note that a00...0 := w0).

In our PIR protocol, A plays the role of the prober and player B is the mod-
erator of the database. B prepares P during a pre-processing stage. A wants to
obtain the word wq of the database. Let 〈j1, . . . , jδ〉 be the binary representation
of q. By using the type-1 protocol for SMPE, A obtains the value P (j1, . . . , jδ)
which is equal to wq.

Theorem 4. The scheme above is a deterministically correct SPIR scheme with
polylogarithmic communication complexity.

We point out that the multivariate polynomial setting is suitable for PIR,
since only in such a polynomial it is possible to directly store “exponentially”
many words while at the same time keeping the degree logarithmically small
w.r.t. the number of coefficients. This is what allows the complexity of the prober
to be sublinear in the database size, as the prober has to spend polynomial time
in the degree of the polynomial.

6 Lists’ Intersection Predicate

The List Intersection Problem was introduced and solved in [NP99]: two agen-
cies holding two lists, jointly compute their intersection, without revealing any
elements not common to both lists. Here we consider a different setting for this
problem where even the common part needs to remain secret. More specifically,
the two agencies have a number of lists and want to check whether there exist
any common items in these lists; if this is the case no party should get any infor-
mation about these elements. This makes it possible for two parties to discover
whether they are holding the same elements without revealing them if this is the
case.

Assume that B has a collection of sets S1
B , . . . , Sv

B and A has a collection of
sets S1

A, . . . , Sv
A. A wants to compute the truth-value of the following predicate:

(S1
A ∩ S1

B 6= ∅) ∧ (S2
A ∩ S2

B 6= ∅) ∧ . . . ∧ (Sv
A ∩ Sv

B 6= ∅)

B agrees that A can learn the truth-value of the predicate however he does not
want to let A find out anything more (e.g. in case S1

A ∩ S1
B 6= ∅, A should not

find a witness for this fact). For simplicity, we assume that ∀j, |Sj
B | = L. Let

S1
A = {α1, . . . , αk1} and for j = 2, . . . , v, Sj

A = {αkj−1 + 1, . . . , αkj
}. Let k :=
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kv =
∑v

j=1 |Sj
A|. B computes k polynomials pi such that s ∈ Sj

B iff (pi(s) = 0)∧
(kj−1 ≤ i ≤ kj). The degree of each pi is L, (note that given Sj

B , there are |IF|−1
possible choices for each pi). We define the following expression: P (x1, . . . , xr) :=
E(p1, . . . , pk)(x1, . . . , xk) =

∑v
j=1

∏kj

i=kj−1+1 pi(xi) (where k0 := 0). Note that E
is 1-bound. Following the type-1 protocol, A securely computes P (α1, . . . , αk).
The lists’ intersection predicate is [P (α1, . . . , αr) = 0].

Theorem 5. The above scheme computes the lists’ intersection predicate with
error probability at most 1/|IF| (error probability 0, in the case v = 1).

Note two interesting special cases: (1) when v=1, A merely checks whether
SA ∩ SB 6= ∅. If they are disjoint A does not gain any additional information,
and if they have common elements A does not obtain a witness. (2) If ∀j (|Sj

A| =
1) ∧ (Sj

B = SB), A checks whether SA ⊆ SB (where SA := ∪jS
j
A)). If this is not

the case A does not gain any information about SB .
An application of the above is the Settlement Escrows Problem [GM95,

BN96]: A (the buyer) and B (the seller) negotiate in some fixed price range
[1, . . . , N ]. B will accept any offer over pB and A will give at most pA. A and
B wish to know whether pA and pB “cross” i.e. pA ≥ pB . Traditionally this
problem is solved by revealing the prices to a third party (escrow). Using the
lists’ intersection predicate scheme twice with v = 1, and SA = {1, . . . , pA} and
SB = {pB , . . . , N} each player checks whether there is a cross, without a third
party.

7 Other Applications

SGPEs can capture a variety of other “oblivious” interactions between two play-
ers. In the full version we present more applications of our construction for
type-1 and type-2 games such as Oblivious Negotiations, Oblivious Bargaining,
Committing to Large Files and Oblivious Scoring.

Acknowledgments. We would like to thank Dan Boneh and Yuval Ishai for
their helpful suggestions.
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