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Abstract. We propose a one-round 1-out-of-n computationally-private informa-
tion retrieval protocol for `-bit strings with low-degree polylogarithmic receiver-
computation, linear sender-computation and communication Θ(k · log2 n + ` ·

log n), where k is a possibly non-constant security parameter. The new proto-
col is receiver-private if the underlying length-flexible additively homomorphic
public-key cryptosystem is IND-CPA secure. It can be transformed to a one-round
computationally receiver-private and information-theoretically sender-private 1-
out-of-n oblivious-transfer protocol for `-bit strings, that has the same asymptotic
communication and is private in the standard complexity-theoretic model.
Keywords. Computationally-private information retrieval, length-flexible addi-
tively homomorphic public-key cryptosystem, oblivious transfer.

1 Introduction

During a 1-out-of-n computationally-private information retrieval protocol for `-
bit strings, CPIRn

` , Receiver retrieves an entry from Sender’s database S =

(S[1], . . . , S[n]), S[j] ∈ {0, 1}`, so that a computationally bounded Sender will not
obtain any information on which element was retrieved. The first and up to now
the only CPIRn

` protocol, CMSn
` , with polylogarithmic in n communication was

proposed in [CMS99]. Alternatively, based on an earlier work by Kushilevitz and
Ostrovsky [KO97], Julien P. Stern [Ste98] proposed another family—that we call
HomCPIRn

` (α)—of CPIRn
` protocols, based on an arbitrary IND-CPA secure addi-

tively homomorphic public-key cryptosystem. If say n < 240, then Stern’s protocol
is quite communication-efficient. In particular, for all realistic values of n and `, it is
vastly more communication-efficient than CMSn

` .
However, the communication of HomCPIRn

` (α) is not polylogarithmic, and may
be even more importantly, it has superpolylogarithmic Receiver’s computation and su-
perlinear Sender’s computation in n. In particular, Sender’s superlinear computation
makes Stern’s protocol inapplicable for say n > 215. This can be compared with essen-
tially constant-time Receiver’s computation and linear-time Sender’s computation in the
linear-communicationCPIRn

` protocols of [NP01,AIR01]. Construction of an efficient-
in-practice (this involves both communication-efficiency and computation-efficiency)
and yet polylogarithmic CPIRn

` protocol has been a major open problem.
In this paper, we propose a new CPIRn

` protocol with log-squared communication
that has a very low computational overhead. It takes advantage of the concept of length-
flexible additively homomorphic (LFAH) public-key cryptosystems [DJ01,DJ03]. Re-
call that a LFAH public-key cryptosystem has an additional length parameter s ∈ Z

+,



such that given a public and private key pair of the receiver and a random value be-
longing to an s-independent set, the encryption algorithm maps sk-bit plaintexts, for
any s and for a security parameter k, to (s + ξ)k-bit ciphertexts for some small integer
ξ ≥ 1; ξ = 1 in the case of the cryptosystem from [DJ01]. This can be compared to the
conventional additively homomorphic public-key cryptosystems [Pai99] that map k-bit
plaintexts to ηk-bit ciphertexts for some η ≥ 2.

Now, assume that s = d`/ke. Assume the existence of an LFAH public-key cryp-
tosystem with the mentioned properties. We show that for any α ∈ [log n], there exists a
CPIRn

` protocol LFCPIRn
` (α) with communication (α ·(s+ ξ

2 (α+1))(n1/α−1)+s+
αξ) ·k bits. In particular, in the asymptotically optimal case α = log n, the communica-
tion of LFCPIRn

` (log n) is ( ξ
2 · log2 n+(s+ 3ξ

2 ) · log n+s) ·k = Θ(k · log2 n+` · logn)
bits. Moreover, if ` ≥ k · log n, then LFCPIRn

` (log n) has communication Θ(` · log n)
bits with the constant in the Θ-expression being arbitrary close to 1; this is very close
to the communication of non-private information retrieval, dlog ne + `. An important
property of our protocols is that they are simple to understand and to implement.

Additionally, we describe some variants of our basic protocol that are especially
efficient for particular values of ` and n, and that enable to balance communication
and computation. For example, we describe an CPIRn

` protocol with communication
(1 + ξ)((n − 1)k + `); this results in close-to-optimal communication in the case of
small databases but long documents.

If one uses a fast exponentiation algorithm, Sender’s work in a slight variant of
LFCPIRn

` (log n) is equivalent to Θ(n`) · k2+o(1) bit-operations; this is optimal in n
up to a multiplicative constant. Receiver’s work is low-degree polylogarithmic in n,
Θ((k · log n + `)2+o(1)) bit-operations, and therefore also close to optimal.

Our results indicate that in the case of CPIRn
` protocols, one should not over-

emphasise complexity-theoretic notions like polylogarithmicity, but instead study the
communication of a protocol in a very concrete framework. This is best illustrated
by the fact that for n ≤ 240, the only previous polylogarithmic CPIRn

` protocol by
Cachin, Micali and Stadler requires more communication then just transferring the
whole database. On the other hand, we do not deny that having polylogarithmic com-
munication is important in theoretic frameworks. The new protocols, proposed in this
paper, are both polylogarithmic (“good in theory”) and require less communication than
any of the previous CPIRn

` protocols for practically any values of n and ` (“good in
practice”).

All previous protocols that use LFAH public-key cryptosystems utilise encryptions
only under a single, although possible very large, value of the length parameter s. A
transcript of the LFCPIRn

` (α) protocol includes encryptions of interrelated plaintexts
under different values of the length parameter. This use of LFAH public-key cryptosys-
tems is novel and therefore interesting by itself. We define a new security require-
ment for cryptosystems, α-IND-LFCPA-security, and show that known IND-CPA se-
cure LFAH public-key cryptosystems are secure in the sense of α-IND-LFCPA (under
a tight reduction), and that LFCPIRn

` (α) is secure under a tight reduction to the α-IND-
LFCPA-security of the underlying public-key cryptosystem, or under a looser reduction
to the IND-CPA-security of the underlying public-key cryptosystem.



We briefly discuss the potentially stronger setting where one needs security against
adversaries that work in time poly(n`). Since the Decisional Composite Residuos-
ity Problem modulo M can be solved in time exp(O(1) log1/3 M · (log log M)2/3)

by using general number field sieve, one must have k = Ω(log3−o(1)(n`)). Thus,
if security against such adversaries is required, LFCPIRn

` (log n) has communication
Ω(log3−o(1)(n`) · log2 n + ` · log n). If one comes up with a suitable cryptosystem that
has better security guarantees, then the exponent 3−o(1) can be improved to 2−o(1) or
even to 1. Additionally, we show that LFCPIRn

` (log n), if based on the cryptosystems
from [DJ01,DJ03], has communication Θ(κ3−o(1) · log2 n + ` · log n), where κ is a
security parameter that corresponds to the exponential security level.

Finally, we show that one can transform LFCPIRn
` (α) to a computationally receiver-

private and information-theoretically sender-private one-round OTn
` protocol, with log-

squared communication, that is secure in the standard complexity-theoretic model.
An early version of this paper (that in particular had the description of LFCPIRn

` (α))
was posted on the IACR eprint server [Lip04] in Spring 2004. The conference version
has been shortened due to the lack of space. The full version is available from [Lip04].

2 Preliminaries

For a t ∈ Z
+, let [t] denote the set {1, . . . , t}. All logarithms in this paper will be

on base 2, unless explicitly mentioned. Let e be the base of the natural logarithm,
that is, ln e = 1. For a distribution (random variable) X , let x ← X denote the as-
signment of x according to X . We often identify sets with the uniform distributions
on them, and algorithms with their output distributions, assuming that the algorithm
that outputs this distribution is clear from the context or just straightforward to con-
struct. Let k and κ be two security parameters, where k corresponds to the superpoly-
nomial security (breaking some primitive is hard in time poly(k)) and κ corresponds
to the exponential security (breaking some primitive is hard in time 2o(κ)). Denote
LM [a, b] := exp(a(ln M)b · (ln ln M)1−b). Throughout this paper, we denote Sender’s
database size by n, assume that database elements belong to {0, 1}` = Z2` for some
fixed positive integer `, and denote s := d`/ke. We denote sqrtlog(a, b) :=

√
loga b.

Assume that M = p1p2 is a product of two large primes. A number z is said to
be an M -th residue modulo M 2 if there exists a number y ∈ ZM2 such that z =
yM mod M2. The decisional composite residuosity problem [Pai99] (DCRP) is to
distinguish M -th residues from M -th non-residues. The fastest known way to break
DCRP is to factor the modulus M , which can be done in time O(LM [(64/9)1/3 +
o(1), 1/3]) by using general number field sieve.

A length-flexible additively homomorphic (LFAH) public-key cryptosystem is a tuple
Π = (Gen, Enc, Dec), where (a) Gen is a key generation algorithm, that on input 1k,
returns (sk, pk), where sk is a secret key and pk is a public key, (b) Enc is an encryption
algorithm, that on input (pk, s, m, r), where pk is a public key, s ∈ Z

+ is a length
parameter, m is a plaintext and r is a random coin, returns a ciphertext Encs

pk(m; r),
and (c) Dec is an decryption algorithm that on input (sk, s, c), where sk is a secret
key, s is a length parameter and c is a ciphertext, returns a plaintext Decs

sk(c). For any
(sk, pk) ← Gen(1k) and for any s ∈ Z

+, Encs
pk : Ms × R → Cs and Decs

pk : Cs →



Ms, where Cs is the ciphertext space andMs is the plaintext space corresponding to s,
andR is the s-independent randomness space. We require that for some positive integer
a, Cs ⊆ Ms+a for every s; we assume that ξ is the minimal among such a’s. Length-
flexible cryptosystems not satisfying the latter requirement exist but are not interesting
in the context of our application. An LFAH public-key cryptosystem Π is additively
homomorphic if for any key pair (sk, pk), any length parameter s, any m, m′ ∈ Ms =
Z]Ms

and any r, r′ ∈ R, Encs
pk(m; r) · Encs

pk(m
′; r′) = Encs

pk(m + m′; r ◦ r′), where
· is a multiplicative group operation in Cs, + is addition in Z]Ms

, and ◦ is a groupoid
operation inR. We assume that k = log ]M1 is the security parameter. For the sake of
simplicity, in our computations we will assume that ]Ms = (]M1)

s with log ]Ms =
sk, and that ]Cs = ]Ms+ξ .

Let Π = (Gen, Enc, Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithm A in breaking its IND-CPA security as follows:
Adv

indcpa
Π,k (A) := 2 ·

∣∣Pr[(sk, pk) ← Gen(1k), (m0, m1, s) ← A(pk), b ← {0, 1} , r ←

R : A(pk, m0, m1, s, Encs
pk(mb; r)) = b] − 1

2

∣∣. Here, the probability is taken over the
random coin tosses of Gen, A, Encs

pk and over the choice of b and r. We say that Π is

(ε, τ)-secure in the sense of IND-CPA if Adv
indcpa
Π,k (A) ≤ ε for any randomised algo-

rithm A that works in time τ . If τ(k) is polynomial in k and ε(k) is negligible in k, then
we sometimes just say that Π is secure in the sense of IND-CPA.

The Damgård-Jurik cryptosystem DJ01 from PKC 2001 [DJ01] was the first pub-
lished IND-CPA secure LFAH public-key cryptosystem. Assume that M = p1p2 is
an RSA modulus. Here, for a fixed length parameter s, Ms = ZMs , R = Z

∗
M

and Cs = Z
∗
Ms+1 , thus log ]Cs/ log ]Ms ≈ 1 + 1/s and ξ = 1. Encryption is

defined by Encs
pk(m; r) := (1 + M)m · rMs

mod Ms+1, where r ← ZM . The
DJ01 cryptosystem is additively homomorphic since Encs

pk(m1; r1) · Encs
pk(m2; r2) =

Encs
pk(m1 + m2; r1r2). The DJ01 LFAH public-key cryptosystem is secure in the

sense of IND-CPA, assuming that the DCRP is hard [DJ01]. The Damgård-Jurik cryp-
tosystem DJ03 from ACISP 2003 [DJ03] is slightly less efficient than DJ01, with
log ]Cs/ log ]Ms ≈ 1 + 2/s, that is, with ξ = 2.

IND-CPA secure LFAH public-key cryptosystems have been used before, in partic-
ular, to implement multi-candidate electronic voting [DJ01,DJ03] and large-scale elec-
tronic auctions [LAN02] over large plaintext spaces. We use LFAH cryptosystems in
a more complicated setup that requires the transfer of encryptions of related plaintexts
modulo different length parameters during the same protocol instance.

During a (single-server) 1-out-of-n computationally-private information retrieval
(CPIRn

` ) protocol for `-bit strings, Receiver fetches S[q] from the database S =

(S[1], . . . , S[n]), S[j] ∈ {0, 1}`, so that a computationally bounded Sender does not
know which entry Receiver is learning. We do not require Sender to commit to or even
“know” a database to which Client’s search is effectively applied. Such a relaxation
is standard in the case of protocols like oblivious transfer, computationally-private in-
formation retrieval and oblivious keyword search; our security definitions correspond
closely to the formalisation given in [NP01,AIR01].

Formally, a one-round CPIRn
` protocol Γ is a triple of algorithms,

(Query, Transfer, Recover), corresponding to the two messages of the protocol
and the recovery phase. Query and Transfer are randomised and Recover is, in the



context of this paper, deterministic. Let RQ and RT be two distributions, associated
with Γ , and let k be the security parameter. As usually, we assume that the database size
n is known to Receiver. The first message, msgq ← Query(1k, q, n; rQ), of a protocol
run is by Receiver Rec, where q is his input (index to the database), n is the database
size and rQ ← RQ is a new random value. The second message is by Sen, who replies
with msgt ← Transfer(1k, S, msgq; rT ), where S is her input (the database), msgq

is the first message of the protocol, and rT ← RT is a new random value. After the
second message, Receiver returns his private output Recover(1k, q, msgq, msgt). In
general, the communication of Γ is equal to |msgq| + |msgt|. However, we make a
convention that transferring Receiver’s public key—that is a part of several well-known
CPIRn

` protocols—does not increase the communication of Γ . We can do this because
the usually very short public key can often be transferred before the actual data itself
becomes available; the key can also be shared between many protocol runs. However,
we will not prove security in this setting. Note that the communication complexity
of information retrieval, without any privacy requirements and with no additional
information on the structure of the data that would enable to compress it, is dlog ne+ `.

We say that a CPIRn
` protocol Γ = (Query, Transfer, Recover) is correct if for

any n, S ∈ {0, 1}n`, q ∈ [n], Recover(1k, q, msgq, msgt) = S[q], given that msgq ←
Query(1k, q, n; rQ) for some rQ ∈ RQ and msgt ← Transfer(1k, S, msgq; rT ) for
some rT ∈ RT . For a randomised algorithm A executing Sender’s part in a CPIRn

`

protocol Γ and for a positive integer n, define

Adv
cpir
Γ,n,k(A) := 2 ·max

q0,q1

∣∣∣∣∣Pr

[
b← {0, 1} , rQ ← RQ :

A(1k, q0, q1, n, Query(1k, qb, n; rQ)) = b

]
−

1

2

∣∣∣∣∣

to be the scaled advantage over random coin-tossing that A has in guessing, which of the
two possible choices q0 and q1 was used by the receiver, after observing a single query
from Receiver. Here, q0 and q1 are supposed to be valid inputs to Query(·, ·, n; ·). The
probability is taken over the coin tosses of A and Query, and over the choices of b and
rQ. We call Γ a (τ, ε)-receiver-private CPIRn

` protocol, if Adv
cpir
Rec,n,k(A) ≤ ε(k, n, `)

for any probabilistic algorithm A that works in time τ(k, n, `). In Sect. 4, we study an
alternative definition where τ is an unspecified value with τ > poly(n`).

The first CPIRn
1 protocol with sublinear communication, O(2sqrtlog(2,n)·sqrtlog(2,k)),

was proposed by Kushilevitz and Ostrovsky in [KO97]. The first CPIRn
1 protocol

CMSn
1 with polylogarithmic communication was proposed by Cachin, Micali and

Stadler in [CMS99]. The security of the CMSn
1 protocol is based on the Φ Assump-

tion that basically states that there exists a constant f , such that given a large composite
M with unknown factorisation and a small prime p with M ≈ pf , it is hard to decide
whether p | φ(M). The CMSn

1 protocol has receiver-side communication 2κf + κ4

(Receiver sends a triple (m, x, Y ) with log m = log x = κf and log Y = κ4) and
sender-side communication κf (Sender sends a value r with log r = κf ). Its total com-
munication is κ4 + 3κf = Ω(log8 n + log2f n) for some constant f and a security pa-
rameter κ > log2 n. In particular, its communication depends on f , existence of which
is conjectured by the Φ Assumption. No hypothesis about the value of f was made
in [CMS99], except that f ≥ 4 to provide security against Coppersmith’s algorithm that
efficiently factors m on inputs (p, m), where p > m1/4 is a prime such that p | φ(m).
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Fig. 1. Logarithm of communication of some of the previously known CPIR’s on the logarithmic
scale in n, assuming that k = 1024 and η = 2. (Except for the CMSn

` protocol that has a security
parameter κ = max(80, log2 n).) Here, ` = 1024

One can transform CMSn
1 to a CPIRn

` protocol by running it ` times in parallel (with
the same Receiver’s query); thus CMSn

` has communication Ω(` · log2f n + log8 n).
Even if polylogarithmic, the communication of the CMSn

` protocol is larger than just
sending the database to Receiver for all relevant database sizes. (See Fig. 1.) In the
CMSn

` protocol, Receiver’s computation is polylogarithmic in n.
The Kushilevitz-Ostrovsky CPIRn

` was generalised by Julien P. Stern [Ste98];
Stern’s protocol was later rediscovered by Chang [Cha04]. Stern’s CPIRn

` is based
on an arbitrary IND-CPA secure additively homomorphic cryptosystem Π . Simi-
larly to our previous convention, M is Π’s plaintext space and C is Π’s ciphertext
space. Let η := dlog ]C/ log ]Me be the ciphertext expansion ratio of Π ; η = 2
for the Paillier cryptosystem [Pai99] and for the Damgård-Jurik cryptosystem from
PKC 2001 [DJ01] and η ∈ {2, 3} for another cryptosystem by Damgård and Ju-
rik [DJ03]. W.l.o.g., assume that Sender’s database S = (S[1], . . . , S[n]) contains
n = λα entries from {0, 1}` for some positive integer λ and for α ∈ [logη n]. As always,
let s := d`/ke. As shown in [Ste98], there exists an CPIRn

` protocol HomCPIRn
` (α)

with the communication (ηαn1/α + sηα) · k bits. In particular, for δ := sqrtlog(η, n),
HomCPIRn

` (δ) has communication (ηδ + s)ηδ · k bits. ([Ste98,Cha04] erroneously
claims that the communication of HomCPIRn

` (δ) is Θ(ηδ) · k.) While even in the opti-
mal case, HomCPIRn

` (α) has superpolylogarithmic communication, HomCPIRn
` (δ) is

significantly more communication-efficient than CMSn
` for all relevant database sizes

n ≤ 280. (See Fig. 1.) Finally, Sender’s (resp., Receiver’s) computation is dominated



by Θ(sn2δ) (resp., Θ(snδ2δ)) k-bit exponentiations. This means that Stern’s CPIR is
computationally less efficient than the Cachin-Micali-Stadler CPIR.

A CPIRn
` protocol (Query, Transfer, Recover) is an (computationally receiver-

private and information-theoretically sender-private) 1-out-of-n oblivious transfer pro-
tocol for `-bit strings (an OTn

` protocol) if also Sender’s privacy is guaranteed. For the
formal definition, we make a comparison to the ideal implementation, using a trusted
third party that receives S from Sender, receives q from Receiver, and sends S[q] to
Receiver. We assume that Receiver receives garbage (that is, a random value from some
S-independent set T ) if q 6∈ [n]. We do not need an explicit security definition of a
secure oblivious transfer protocol in this paper. (See, for example, [NP01].)

3 New CPIR
n

`
with Log-Squared Communication

In this section, we use a LFAH public-key cryptosystem Π = (Gen, Enc, Dec) to
improve over the concrete and the asymptotic communication (and computation) of
HomCPIRn

` (α), by presenting a family LFCPIRn
` (α) of CPIRn

` protocols. As always,
we define s := d`/ke.

The basic idea of Protocol 1 is relatively simple. Fix α ∈ [log n]. Assume that
the database S = (S[1], . . . , S[n]) is arranged as an α-dimensional λ1 × · · · × λα

hyperrectangle, for some positive integers λj that will be defined later. W.l.o.g., we
assume that n =

∏α
j=1 λj . In the simplest case, α = log n and λj = 2, then the

database is just arranged on a 2×· · ·×2 hypercube. We index every element S[i] in the
database by its coordinates (i1, . . . , iα) on this hyperrectangle, where ij ∈ Zλj

. I.e.,

S(i1, . . . , iα) := S[i1 ·
α∏

j=2

λj + i2 ·
α∏

j=3

λj + · · ·+ iα−1 · λα + iα + 1]

for ij ∈ Zλj
. Analogously, Receiver’s query is q = (q1, . . . , qα) with qj ∈ Zλj

.
We use homomorphic properties of Π to create a new database S1 that has α−1 di-

mensions, such that S1(i2, . . . , iα) is equal to an encryption of S0(q1, i2, . . . , iα), where
S0 = S. We use this procedure repeatedly for j ∈ [α], to create (α − j)-dimensional
databases Sj , where the (s + jξ)k-bit element Sj(ij , . . . , iα) encrypts j times the
value S(q1, . . . , qj−1, ij , . . . , iα). At the end of the αth iteration, Sender has a single
(s+αξ)k-bit element Sα that is an α-times encryption of S(q1, . . . , qα) = S[q]. There-
fore, it suffices for Sender to just transfer one value Sα, with length |Sα| = (s + αξ)k,
to Receiver. After that, Receiver recovers S[q] by decrypting Sα α times. Thus, the
basic idea of the new protocol is similar to that of HomCPIRn

` (α). Since Π is length-
flexible, instead of dividing every intermediate ciphertext into η chunks as in the case
of HomCPIRn

` (α), we additively increase the length of the plaintexts. Our underlying
observation is that Enc

s+ξ
pk (m2; r2)

Encs
pk(m1;r1) = Enc

s+ξ
pk (m2 · Encs

pk(m1; r1); r3) ∈
Ms+2ξ for any m1 ∈ Ms, m2 ∈ Ms+ξ and r1, r2 ∈ R, and for some r3 ∈ R. In
particular, it is equal to an encryption of zero if m2 = 0 and to a double-encryption
of m1 if m2 = 1. Protocol 1 depicts the new LFCPIRn

` (α) protocol with parameters,
optimised for large values of `. Note that hereRQ = R

P
j∈[α] λj andRT = ∅.



Private Input : Receiver has n and q = (q1, . . . , qα), Sender has S.
Private Output : Receiver obtains S(q1, . . . , qα).

Receiver, Query(1k, q, n;RQ):
Generate a key pair (sk, pk)← Gen(1k).
For j ← 1 to α do, for t← 0 to λj − 1 do:

Generate rjt ←R.
If qj = t then set bjt ← 1 else set bjt ← 0.
Set βjt ← Enc

s+(j−1)ξ
pk (bjt; rjt).

Send (pk, (βjt)j∈[α],t∈Zλj
) to Sender.

Sender, Transfer(1k, S0, msgq;RT ):
For j ← 1 to α do

For ij+1 ← 0 to λj+1 − 1, . . . , iα ← 0 to λα − 1 do:

Set Sj(ij+1, . . . , iα)←
Q

t∈Zλj

β
Sj−1(t,ij+1,...,iα)

jt .

Send Sα to Receiver.
Receiver Recover(1k, q, msgq, S′α):

For j ← α downto 1 do: Set S′j−1 ← Dec
s+(j−1)ξ
sk (S′j).

Output S′0.

Protocol 1: Protocol LFCPIRn
` (α) (non-optimised version), for fixed Π and fixed s.

Here, βjt, Sj(ij+1, . . . , iα) ∈ Cs+(j−1)ξ

We make the next simple observation that Sender can compute βj,λj−1 by him-

self, by setting βj,λj−1 ← Enc
s+(j−1)ξ
pk (1; 0)/

∏λj−2
t=0 βjt; this optimisation is valid

since
∏λj−1

t=1 βjt is always an encryption of 1. Therefore, in Protocol 1, Receiver does
not have to send βj,λj−1 to Sender. In the most practical case, where λj = 2, this
optimisation reduces communication by a factor of 2. In this case, this optimisation
also substantially simplifies some of the oblivious transfer protocols, mentioned later
in Sect. 4. In the following, when we talk about the LFCPIRn

` (α) protocol, we always
assume that one applies this optimisation. Moreover, recall that the communication of
a CPIRn

` protocol does not include pk.

Theorem 1. Let Π = (Gen, Enc, Dec) be an LFAH public-key cryptosystem. Assume
thatMs+1 < 2` ≤ Ms for some fixed s ≥ 1, that Receiver has private input q and
Sender has private input S = (S[1], . . . , S[n]). Assume that λj = n1/α for all j ∈ [α].

1. For every α ∈ [log n], there exists a correct CPIRn
` protocol LFCPIRn

` (α) with the
receiver-side and the sender-side communication α(s + (α + 1) ξ

2 )(n1/α − 1) · k
and (αξ + s) · k bits.

2. LFCPIRn
` (log n) has receiver-side communication ( ξ

2 · log2 n+(s+ ξ
2 ) · logn) ·k =

Θ(k · log2 n + ` · log n) and sender-side communication (ξ · log n + s) · k =
Θ(k · log n + `). In this case, Receiver’s workload is τRec = Θ((s2+o(1) · log n +

ξs · log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) and Sender’s workload is τSen :=
Θ(n) · (sk)2+o(1).



Proof. Correctness: clear, since Sj(ij+1, . . . , iα) is an j-times encryption of
S(q1, . . . , qj , ij+1, . . . , iα) and thus S′

α−1 = Sα−1(qα), S′α−2 = Sα−2(qα−1, qα), . . . ,
S′i−1 = Si−1(qi, . . . , qα), . . . , and S′

0 = S(q1, . . . , qα).
Communication: The receiver-side communication |msgq| is

α∑

j=1

λj−1∑

t=1

(s + jξ)k =

α∑

j=1

(s + jξ) · (n1/α− 1) · k = α · (s + (α + 1)ξ/2)(n1/α− 1) · k

bits. This is asymptotically optimal in s · log n if α = log n.
Computation (in the case (2)): Sender’s work is dominated by 2log n−j exponen-

tiations modulo M s+jξ for every j ∈ [2, α]. Assume that a k-bit exponentiation
can be done in time Θ(ka) for some a. Then, Sender’s workload is dominated by
n ·

∑log n
j=2 2−j · Θ((s + jξ)aka) bit-operations. Asymptotically in n, this is equal to

Θ(n) · (sk)a; fast exponentiation algorithms result in Sender’s time Θ(n) · (sk)2+o(1).

Receiver must do λj−1 encryptions Enc
s+(j−1)ξ
pk for any j ∈ [n]. Thus, Receiver’s work

is
∑log n

j=1 Θ((s + (j − 1)ξ)aka) =
∑log n

j=1 Θ((sa + (jξ)a)ka) = Θ((s2+o(1) log n +

ξs log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) bit-operations, if using asymptotically
fast exponentiation algorithms. ut

It is surprising that such a seemingly simple modification of HomCPIRn
` (α) results

in the important asymptotic improvement, stated by Thm. 1: namely, using an LFAH
public-key cryptosystem where (s + jξ)k-bit plaintexts are encrypted to (s + (j +
1)ξ)k-bit ciphertexts, we achieve communication Θ(k · log2 n + ` · log n), while using
an additively homomorphic public-key cryptosystem where (s + j)k-bit plaintexts are
encrypted to η(s + j)k-bit ciphertexts, enabled [Ste98] to get communication Θ(` ·
sqrtlog(η, n) ·2sqrtlog(η,n)+k ·sqrtlog(η, n) ·2sqrtlog(η,n)). Additionally, LFCPIRn

` (n) is
also more computation-efficient. These substantial improvements are possible because
a LFAH public-key cryptosystem is essentially a new primitive and not just another
off-the-shelf homomorphic cryptosystem.

We will prove the receiver-privacy of this protocol later in Section 4. In the rest of
this section, we propose some quite important optimisations.

Optimisation for long documents and in Sender’s computation. For long documents,
LFCPIRn

` (α) gains even more on the competitors than for short documents. For ` =
Ω(k·log n), the asymptotic communication of LFCPIRn

` (α) is Θ(`·log n) that is asymp-
totically optimal. Note that the constant inside the Θ expression gets arbitrary close to
1. If ` > k, then one can execute s = d`/ke instances of LFCPIRn

2k(α)’s in parallel,
with the same Receiver’s message, with the receiver-side and the sender-side communi-
cation of respectively

∑α
j=1

∑λj−1
t=1 (1 + jξ)k =

∑α
j=1(1 + jξ) · (n1/α − 1) · k =

α · (1 + (α + 1)ξ/2)(n1/α − 1) · k and s(αξ + 1) · k bits. We call this version
LFCPIRBIGn

` (α). For α = log n it has (s − 1)(ξ − 1)k · log n bits more computa-
tion than LFCPIRBIGn

` (α), however, Sender’s computation is only Θ(n`) · k2+o(1),
which is an important gain compared to LFCPIRn

` (log n). If needed, one can optimise
asymptotic communication of LFCPIRBIGn

` (α) in ` by setting α ← 1, then the com-
munication is (1 + ξ)(n − 1 + s) · k = Θ(n · k + `) bits; however, LFCPIRBIGn

` (1)



is the same as HomCPIRn
` (1). A variant like LFCPIRBIGn

` (sqrtlog(2, n)) seems to
perform reasonably well in the practice, with typically less communication than
HomCPIRn

` (sqrtlog(2, n)).

Optimisation for short documents. For short documents, we can apply a different
optimisation strategy. As always, let s := d`/ke. Let W be Lambert’s W func-
tion, that is, W satisfies the functional identity W (x)eW (x) = x. First, we can use
LFCPIRn

` (α0 · log n) with α0 = ln 2/(W (−2e−2) + 2) ≈ 0.435; this results in the
minimal communication≈ (0.371 · ξ · log2 n+1.706 ·s · logn+1.288 · ξ · log n+s) ·k
for small values of the length parameter s. Second, we can redefine the values of λj

as λj ← ((s + α)!/s!)
1/α · (s + j)−1 · n1/α. This choice of λj results in the mini-

mal value of
∑α

j=1(λj − 1)(s + j) =
∑α

j=1 λj(s + j) − α(s + (α + 1)/2) under
the constraint that

∏α
j=1 λj = n. (In practice, we must round λi-s to the nearest inte-

gers. For the simplicity of exposition, we will not explicitly mention such issues any-
more.) Call the resulting instantiation of the protocol LFCPIRHRn

` (α). LFCPIRHRn
` (α)

has receiver-side and sender-side communication of respectively ((s + α)!/s!)
1/α · α ·

(n1/α − 1) · k and (s + α) · k bits. In particular, LFCPIRHRn
` (α0 · log n) has com-

munication ≈ (0.273 · log n + (0.627 · s + 0.314) · log log n + O(1))k · log n =
Θ(k · log2 n + ` · log n · log log n). For s = 1, LFCPIRHRn

` (α) is asymptotically ap-
proximately 1.348 times more communication-efficient than LFCPIRn

` (α).
If z := bsk/`c > 1, then one can use the next optimisation. Execute LFCPIRn

` (ᾱ)
with the query q̄ := bq/zc and the database S̄ = (S̄[1], . . . , S̄ [bn/zc]), where S̄[j] is
the concatenation of z different consequent elements S [dj/ze] , . . . , S [dj/ze+ z − 1]
from the database S. Fixing ᾱ = log(n/z), one can construct a CPIRn

` with total
communication≈ (0.273 · log2(n`/(sk))+0.435 ·s · log(n`/(sk)) · log log(n`/(sk))+
O(1))·k. This optimisation can be quite important in practice. In the extreme case when
n = k = 1024 and ` = 1, the optimised version is 100 times more communication-
efficient than the unoptimised version.

4 On Security of LFCPIR And Transformation to OT

In all CPIRn
` protocols, proposed in Sect. 3, we have the next novel adversarial sit-

uation. Given a LFAH public-key cryptosystem Π = (Gen, Enc, Dec), the adversary
obtains encryptions of interrelated plaintexts by using potentially different values of the
length parameter s, where s is possibly chosen by herself. It must be the case that the ad-
versary obtains no new knowledge about the encrypted values. Clearly, security in this
adversarial situation is a generally desirable feature of LFAH public-key cryptosystems
whenever it might be the case that the adversary obtains different-length encryptions
of related plaintexts. This may happen almost always, except when all participants are
explicitly prohibited to encrypt related messages by using different values of s. There-
fore, we will introduce the corresponding security requirement formally and prove that
some of the previously introduced LFAH public-key cryptosystems have tight security
also in such an adversarial situation.

Let Π = (Gen, Enc, Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithm A in breaking Π’s α-IND-LFCPA security as fol-



lows:

Adv
lf-indcpa
Π,k (A, α) := 2 ·

∣∣∣∣∣∣∣∣∣∣∣∣

Pr




(sk, pk)← Gen(1k),

(m0, m1, s1, . . . , sα)← A(pk), b← {0, 1} ,

c1 ← Encs1

pk(mb mod ]Ms1 ;R), . . . ,

cα ← Encsα

pk (mb mod ]Msα
;R) :

A(pk, m0, m1, s1, . . . , sα, c1, . . . , cα) = b



−

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

.

(To prove the security of LFCPIRn
` (α), we could use a slightly weaker assumption

where s1, . . . , sα are not chosen by A; it is sufficient to consider the case sj =
s + (j − 1)ξ. We omit discussion because of the lack of space.) Here, probability is
taken over random coin tosses of Gen, Enc

sj

pk, A and over the choice of b and of ran-
dom elements fromR. We say that Π is (ε, τ)-secure in the sense of α-IND-LFCPA if
Adv

lf-indcpa
Π,k (A, α) ≤ ε for any probabilistic algorithm A that works in time τ . If τ(k)

is polynomial in k and ε(k) is negligible in k, then we just say that Π is secure in the
sense of α-IND-LFCPA. We omit α if α may be any polynomial in k.

By a standard hybrid argument, (αε, τ − O(α))-security in the sense of α-IND-
LFCPA follows from the (ε, τ)-security in the sense of IND-CPA. However, since IND-
LFCPA security is such a basic notion for LFAH public-key cryptosystems, it makes
sense to prove the IND-LFCPA security directly, without the intermediate α-times se-
curity degradation. Next, we will show that for both well-known LFAH public-key
cryptosystems (DJ01 and DJ03), IND-LFCPA security follows from IND-CPA secu-
rity under a tight reduction. First, we prove the following lemma that is motivated by
the observation that IND-LFCPA is a potentially stronger security notion than IND-CPA
only in situations where the adversary cannot herself compute, given Encs

pk(m;R), en-
cryptions of related plaintexts with different values of the length parameter s.

Lemma 1. Assume Π = (Gen, Enc, Dec) is a LFAH cryptosystem that is (ε, τ)-
secure in the sense of IND-CPA. Assume there exists an algorithm Shorten, such
that for all (sk, pk) ← Gen(1k), any s1 < s2, any m ∈ Ms1 and any r ∈ R,
Shorten(pk, s1, s2, Encs2

pk(m; r)) = Encs1

pk(m;R). Assume Shorten can be computed
in time tShorten(k, s2). Then Π is (ε, τ − α · tShorten(k, smax) − O(α))-secure in the
sense of α-IND-LFCPA where smax is the largest si that an admissible adversary can
choose.

Proof. Really, assume A is an adversary who breaks the α-IND-LFCPA security in
time τ ′ and with probability ε. Construct the next adversary MA that breaks the IND-
CPA security of Π : Obtain a new random public key pk, send this to A. M asks
A to produce (m0, m1, s1, . . . , sα). Assume that s1 ≤ s2 ≤ · · · ≤ sα ≤ smax.
Give (m0, m1, sα) to the black box, who returns cα ← Encsα

pk (mb;R). Compute
ci ← Shorten(pk, si, sα, Encs2

pk(mb;R)) for i ∈ [α−1]. Send (c1, . . . , cα) to A, obtain
her guess b′. Return b′. Clearly, if A has guessed correctly then b′ = b. ut

For both DJ01 and DJ03 it is straightforward to construct the required function Shorten.
In the case of the DJ01, Encs1

pk(m;R) = (Encs2

pk(m; r) mod M s) · Encs1

pk(0;R).
In the case of the DJ03 cryptosystem, Encs

pk(m; r) = (gr mod M, (1 + M)m(hr



mod M)Ms

mod Ms+1). Therefore, given Encs2

pk(m; r) = (a, b), one can compute
Encs1

pk(m;R) = (a, b mod M s1) · Encs1

pk(0;R). We would get a similar security re-
sult, if there existed an efficient function Expand, such that for s2 < s1, and for any
m ∈ Ms2 , Expand(pk, s1, s2, Encs2

pk(m;R)) = Encs1

pk(m;R). As we show in the full
version, the existence of such a function would additionally result in a CPIRn

` protocol
with logarithmic communication. Now, we can prove the next result.

Theorem 2. Fix n and α ∈ [log n]. Let Π = (Gen, Enc, Dec) be a LFAH public-key
cryptosystem that is (ε, τ)-secure in the sense of α-IND-LFCPA, where τ � τSen. Fix s.
Then LFCPIRn

` (α) is (ε, τ ′)-receiver-private. Here, τ ′ = τ − τRec−O(α · (sk)1+o(1)),
where τRec is the time to execute the honest Receiver.

Proof. Assume that some adversary A that works in time τ breaks the receiver-privacy
of LFCPIRn

` (α) with probability ε. More precisely, A generates a key pair (sk, pk) ←
Gen(1k). Given pk and an arbitrary (q0, q1), A generates S and sends n to Receiver.
Receiver picks a random bit b̂ and sends the first message Query(1k, qbb, n; rQ) =
(pk, (βjt)jt) of the LFCPIRn

` (α) protocol, where rQ is randomly chosen from RQ,
to A. A outputs a guess b̂′, such that 2 · |Pr[̂b = b̂′] − 1

2 | ≥ ε. Next, we construct a
machine M that uses A as an oracle to break the α-IND-LFCPA security of Π with
probability Adv

indcpa
Π,k (MA) = ε. That is, given a random key pair (sk, pk), M comes

up with a message pair (m0, m1) and length parameters (s1, . . . , sα), such that after
seeing Encsi

pk(mb;R) for a random b← {0, 1} and for i ∈ [α], M outputs a bit b′, such
that 2 · |Pr[b = b′]− 1

2 | ≥ ε.
M does the next: Let Receiver to generate (pk, sk), obtain pk and forward it

to A. Obtain (q0, q1) where qi = (qi1, . . . , qiα). Assume that q0 and q1 differ in
the coordinate set J . M sets m0 ← 0, m1 ← 1 and asks for a challenge on
(m0, m1, (s + (j − 1)ξ)j∈J ). For a random b← {0, 1}, M obtains the challenge tuple

(cj ← Enc
s+(j−1)ξ
pk (mb;R))j∈J . M constructs the query (βjt)j,t exactly as in Proto-

col 1, except that when j ∈ J , he sets βj,q0j
← cj and βj,q1j

← Enc
s+(j−1)ξ
pk (1; 0)·c−1

j .
Therefore, (pk, (βjt)j,t) = Query(1k, qb, n;RQ). M sends (pk, (βjt)j,t) to A and ob-
tains her guess b̂′. M returns b′ = b̂′. Clearly, b = b′ if A guessed correctly. Therefore,
M has success probability ε. M ’s time is equal to τ + τRec + O(α · (sk)1+o(1)). ut

This result means in particular that LFCPIRn
` (α) is receiver-private (a) under loose re-

duction with α-times security degradation, in the case Π is an arbitrary IND-CPA se-
cure LFAH public-key cryptosystem; (b) under tight reduction to the underlying cryp-
tographic problems, in the case Π is DJ01 or DJ03.

On Concrete Versus Polynomial Security. It is necessary to use concrete security
(that is, always talking about adversaries, working in time τ and breaking a primi-
tive with probability ε) when one wants to be able to precisely quantify the value of
the used security parameter. However, recall that the input size of Sender in a CPIRn

`

protocol is n` and that Sender’s computation is at least linear in n` (this follows di-
rectly from the privacy requirement). Clearly, an adversary should be given time that
is vastly larger than the time, given to the honest Sender. In Thm. 2, we resolved this



by requiring that τ � τSen. Alternatively, one can require that no adversary is able
to break CPIRn

` in time, polynomial in n`, with a non-negligible probability in n`.
Assume also that the underlying hard problem, with inputs M of size k, can be bro-
ken in time LM [a, b]. In the case of LFCPIRn

` (α), when based on the DJ01 or the
DJ03 cryptosystem, b = 1/3. Then, it is necessary that LM [a, b] = ω((n`)c) for ev-
ery constant c, or that kb log1−b k = ω(log(n`)). Omitting the logarithmic factor, we
get that k = Ω(log1/b(n`)). Therefore, if we want security against adversaries, work-
ing in time poly(n`), when basing LFCPIRn

` (α) on the DCRP, we must assume that
k = Ω(log3−o(1)(n`)) and thus the communication of the LFCPIRn

` (log n) becomes
Θ(log3−o(1)(n`) · log2 n + ` · log n). While such an analysis is usually not necessary
in stand-alone applications of computationally-private information retrieval, there are
theoretical settings where polynomial security is desired (e.g., when a CPIR protocol is
a subprotocol of a higher level application).

Alternatively, one can define another security parameter, κ, corresponding to the
desideratum that breaking the CPIRn

` protocol should be hard in time 2o(κ), and
then expressing the communication in the terms of κ. Based on the hypothesis that
the best attack against the DCRP is the general number field sieve, it means that

k · (ln k)2 = Ω( 9(ln 2)2κ3

64 ) = Ω(κ3) and thus LFCPIRn
` (α), based on any LFAH

public-key cryptosystem that relies on the DCRP being hard, has communication
Θ(κ3−o(1) · log2 n + ` · log n). In particular, this captures reasonably well the natu-
ral requirement that the adversary should be able to spend at least as much time as
Sender: in practice, given large enough κ (say, κ = 80), we may assume that a honest
Sender always spends considerably less time than 2κ units. This also means that n is
restricted to be considerably smaller than 2κ, but we do not see now problems with that
in practice; it is hard to imagine anybody executing a CPIRn

` protocol with n larger
than 240! Additionally, this gives us another argument why small sender-side computa-
tion is important for a CPIRn

` protocol. As mentioned before, LFCPIRn
` (·) does better

than HomCPIRn
` (·) also in this sense.

Oblivious Transfer with Log-Squared Communication. We can use one of several
existing techniques to transform the LFCPIRn

` (α) protocol into an oblivious transfer
protocol. For these techniques to apply, one must first modify Protocol 1 so that it
would be sender-private if the receiver is semi-honest. If R is a quasigroup (that is, if
∀a, b ∈ R there exist unique x, y ∈ R such that ax = b and ya = b, then also xR = R
for any x ∈ R), then it is sufficient that Sender masks all intermediate values wj by mul-
tiplying them with a random encryption of 0. Additionally, it is necessary for Receiver
to prove the correctness of his public key; this step can be done in a setup phase of the
protocol only once per every Sender, after that the same key can be used in many execu-
tions of the same protocol. We will assume that Protocol 1 has been modified like that,
thus this proof of correctness does not increase the number of rounds. Due to the lack
of space we omit the proof that this can be done in a secure way. We omit description of
some possible resulting oblivious transfer protocols—based on the Naor-Pinkas trans-
formation [NP99] and on the zero-knowledge proofs—from the proceedings version
of this paper. The Aiello-Ishai-Reingold transformation, described next, is superior to
the Naor-Pinkas transformation, since the latter only guarantees computational sender-



privacy, and to the transformation based on zero-knowledge proofs since the latter either
takes four rounds or works in a non-standard model (that is, either in the random oracle
model or in the common reference string model).

Let M be a plaintext space and C a ciphertext space, corresponding to some pa-
rameter choice of ElGamal public-key cryptosystem. In [AIR01], the authors proposed
the next generic transformation of a CPIRn

log ]C protocol to an OTn
log ]M protocol: Re-

ceiver sends an ElGamal encryption c of the query q, together with the first message of
CPIRn

log ]C , to Sender. Sender applies the computations, corresponding to the second
step of the AIRn

]M protocol, with input c, to her database, and then the second step of the
CPIRn

log ]C , to the resulting database of ciphertexts. When applied to LFCPIRn
` (log n),

the resulting OTn
` protocol has communication log ]C+( ξ

2 ·log2 n+(s′+ 3ξ
2 log n+s′)k

instead of ( ξ
2 ·log2 n+(s+ 3ξ

2 ) log n+s)k in the LFCPIRn
]M(log n) protocol. Here, s and

s′ are the smallest integers, such that sk ≥ log ]M and s′k ≥ log ]C; usually s′ = 2s.
Therefore, this transformation increases communication by log ]C + (s · log n + s)k
bits. The resulting

oblivious transfer protocol is information-theoretically sender-private (not like the
protocol based on the Naor-Pinkas transform) if ElGamal is IND-CPA secure and Π
is IND-LFCPA secure, that is, in the standard complexity-theoretic model (not like the
protocol based on non-interactive honest-verifier zero-knowledge proofs). However, it
still makes the additional assumption that ElGamal is IND-CPA secure.

5 Comparisons

Fix k = 1024 and s = 1. The difference between the communications of the
linear Aiello-Ishai-Reingold CPIR AIRn

` [AIR01] (with communication 2(n + 1)k),
the polylogarithmic CPIR CMSn

` [CMS99] (with possibly overly optimistic setting
κ = min(80, log2 n) and f = 4; whether the CMSn

` CPIR is actually secure in
this setting is unknown), the superpolylogarithmic HomCPIRn

` (sqrtlog(2, n)), and
LFCPIRn

` (log n) is depicted by Fig. 1. For small values of `, the best solution is to
use the LFCPIRn

` ( ln 2
W (−2e−2)+2 · log n) protocol. For large values of `, one might to use

LFCPIRBIGn
` (α) with a suitably tuned α, say α = sqrtlog(2, n).

Computation-efficiency is an important property of the LFCPIRn
` (α) protocol since

otherwise in some applications one would prefer a protocol with a smaller computa-
tional complexity but with linear communication. Moreover, in practice, Sender’s huge
computation is mostly likely going to be the first obstacle in applying CPIRn

` pro-
tocols on large databases. In LFCPIRn

` (log n), Sender’s computation is Θ(n`) k-bit
exponentiations, which is asymptotically optimal in n. This compares favourable with
Θ(` · n2sqrtlog(η,n)) k-bit exponentiations in HomCPIRn

` (sqrtlog(η, n)). In particular,
Sender’s computation cost in LFCPIRn

` (log n) is comparable to that of the 1-out-of-n
oblivious transfer protocols from [NP01,AIR01] that have linear communication.
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