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On Lower Bounds for the Communication Complexity of
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SUMMARY Private information retrieval for k ≥ 1 data-
bases (denoted by (k, �)-PIR for short) is a protocol that (1)
a user sends an � tuple query to each of k noncommunicating
replicated databases; (2) each database responds the user with
an answer corresponding to the � tuple query; (3) the user pri-
vately retrieve any single bit out of the n bits of data stored in
k databases. In this model, “privacy” implies that the user re-
trieves the bit he is interested in but releases to each database
nothing about which bit he wishes to get. In general, the effi-
ciency of (k, �)-PIR is measured by the total amount of bits ex-
changed between the user and the k databases, but few about its
lower bounds are known except for restricted cases. In this paper,
we classify (k, �)-PIR into a linear type, a multilinear type, and
an aÆne type with respect to the relationship between queries to
each database (made by the user) and answers to the user (made
by each database), and show that (1) the lower bound for the
communication complexity of any multilinear type (k, �)-PIR is
Ω( �+1√n) (Theorem 3.1); (2) the lower bound for the communica-
tion complexity of any linear type (k, �)-PIR is Ω(

√
n) (Corollary

3.2); (3) the lower bound for the communication complexity of
any affine type (k, �)-PIR is Ω( �+1√n) (Theorem 4.2).
key words: private information retrieval, communication com-

plexity, linear type, multilinear type, aÆne type

1. Introduction

1.1 Background

Private information retrieval for k ≥ 1 databases (de-
noted by (k, �)-PIR for short) is initiated by Chor et
al. [4] as a useful tool for a user to privately get infor-
mation through networks. It seems quite natural to
ask for the privacy of the user. For example, an in-
vestor (or a speculator) that makes access to the stock-
market database to get the value of a certain stock may
wish to keep private which stock he is interested in.
Informally, (k, �)-PIR is an interactive protocol that
(1) a user sends an � tuple query to each of k non-
communicating replicated databases; (2) each of the
k databases responds the user with an answer corre-
sponding to the � tuple query; (3) the user privately
retrieves any single bit out of the n bits of data stored
in the databases. In this model, “private” implies that
the user is able to retrieve his desired bit but releases
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to each database nothing about which bit he wishes to
get in the information-theoretic sense. In the practical
point of view, the communication complexity between
the user and each of the k databases would be one of
the most essential resources for constructing efficient
(k, �)-PIR.

When the user makes access to only a sin-
gle database, he may ask for a copy of the whole
database to privately retrieve the bit that he is inter-
ested in. This requires O(n) communication complex-
ity, however, it is proved to be essentially the best he
can do. In fact, Chor et al. [4] showed that for any inte-
ger � ≥ 1, (1, �)-PIR requires Ω(n) communication com-
plexity. To reduce the communication complexity of
(k, �)-PIR, Chor et al. [4] proposed (2,1)-PIR with com-
munication complexity 12 3

√
n by applying the covering

codes [13], Ambainis [1] showed (k, k − 1)-PIR with
communication complexity O(2k2

2k−1
√

n), and Ishai and
Kushilevitz [9] showed (k, (2k − 1)(k − 1))-PIR with
communication complexity O(k3 2k−1

√
n), where n is the

length of the data stored in the k replicated databases.
It is conjectured by Chor et al. [4] that O( 3

√
n) is

the lower bound for the communication complexity of
(2, �)-PIR for any integer � ≥ 1. To overcome this,
Chor and Gilboa [3] extended (k, �)-PIR and defined in
a natural manner computationally private information
retrieval for k ≥ 1 databases (denoted by (k, �)-CPIR)
applying cryptographic primitives. This is also an in-
teractive protocol similar to (k, �)-PIR but the user re-
leases to each of the k databases nothing about which
bit he really tries to get in the computational sense. In
this model, Chor and Gilboa [3] showed that for any
ε > 0, there exists (2, �)-CPIR with communication
complexity O(nε) assuming that pseudorandom gener-
ators exist [8], [10]. For any integer � ≥ 1, it seems
impossible to construct (1, �)-CPIR with communica-
tion complexity o(n). However, Kushilevitz and Os-
trovsky [11] showed that for any ε > 0, there exists
(1, �)-CPIR with communication complexity O(nε) un-
der the stronger assumption that the quadratic resid-
uosity is hard [7], and Cachin et al. [5] showed that
there exists (1, �)-CPIR with communication complex-
ity O(logO(1) n) under the novel assumption that the
Φ-hiding is hard. Recently, Kushilevitz and Ostrovsky
[12] showed that there exists (1, �)-CPIR with commu-
nication complexity less than n under a general assump-
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tion that one-way trapdoor permutations exist.

1.2 Motivation

In general, the privacy of users in any (k, �)-CPIR is
asymptotically guaranteed with respect to n (the length
of data stored in the database), i.e., the privacy of users
in any (k, �)-CPIR is protected for sufficiently large n.
This implies that the privacy of users in any (k, �)-CPIR
is not necessarily guaranteed for reasonable size of data
stored in the database(s). Thus from the privacy point
of view, (k, �)-PIR is more advantageous than (k, �)-
CPIR, because any (k, �)-PIR protects the privacy of
users (in the information-theoretic sense) for any size
of data stored in the k replicated databases.

As mentioned in Sect. 1.1, we already have (1, �)-
CPIR with low communication complexity under the
reasonable assumptions, but we know few about how
small the communication complexity of (k, �)-PIR could
be. So we investigate lower bounds for the communi-
cation complexity of (k, �)-PIR to precisely understand
the inherent natures and properties of (k, �)-PIR.

1.3 Main Results

To investigate the lower bounds for the communication
complexity of (k, �)-PIR, we classify (k, �)-PIR into lin-
ear , multilinear , and affine types with respect to the
relationship between queries to each database and an-
swers to the user (the definitions of linear, multilinear,
and affine types will be given later). It is not known
whether every (k, �)-PIR necessarily belongs to one of
these three types, however, all known (k, �)-PIR (see,
e.g., [1], [4], [9]) can be classified into a linear type, an
multilinear type, or an affine type.

Then we show that (1) the lower bound for the
communication complexity of any multilinear type
(k, �)-PIR is Ω( �+1

√
n) (Theorem 3.1); (2) the lower

bound for the communication complexity of any lin-
ear type (k, �)-PIR is Ω(

√
n) (Corollary 3.2); (3) the

lower bound for the communication complexity of any
affine type (k, �)-PIR is Ω( �+1

√
n) (Theorem 4.2).

2. Preliminaries

A model of (k, �)-PIR is similar to that of multi-
prover interactive proofs [2]. We use U to denote a
user that is a probabilistic polynomial time (interac-
tive) Turing machine and DB1,DB2, . . . ,DBk to de-
note deterministic polynomial time (interactive) Tur-
ing machines that are allowed to communicate with U
but are not allowed to communicate with each other,
i.e., DB1,DB2, . . . ,DBk are physically separated. As-
sume that each database DBj stores the same content
x ∈ {0, 1}n of length n > 0 and that for some polyno-
mial s in n, the user U has access to random sequence
r ∈ {0, 1}s(n). For simplicity, we use s instead of s(n)

in the rest of the paper.
In general, we can define multiple round (k, �)-PIR

for any integers k, � ≥ 1. In this paper, however, we
consider only single round (k, �)-PIR, because all known
(k, �)-PIR (see, e.g., [1], [4], [9]) are single round. For
simplicity, we use [h] to denote the set {1, 2, . . . , h} for
any integer h ≥ 1.

Definition 2.1 (Information Retrieval Scheme [4]):
We say that Π = (U ;DB1,DB2, . . . ,DBk) is single
round information retrieval for k ≥ 1 databases (denoted
by (k, �)-IR for short) if for any n > 0 and any
x ∈ {0, 1}n, it satisfies the following: For each i ∈ [n],
each j ∈ [k], and each r ∈ {0, 1}s, (1) U sends qj(i, r) =
〈qj,1(i, r), qj,2(i, r), . . . , qj,�(i, r)〉 = U(i, j, r;n) to DBj ;
(2) DBj sends aj = DBj(x, qj(i, r)) to U ; (3) U com-
putes xi = U(i, r; a1, a2, . . . , ak).

Since U is a probabilistic polynomial time Turing
machine, qj(i, r) : {0, 1}s → {0, 1}∗ is a random vari-
able for any j ∈ [k] and any i ∈ [n]. Informally, we say
that Π = (U ;DB1,DB2, . . . ,DBk) ∈ (k, �)-IR is pri-
vate if U releases nothing about which bit he tries to
retrieve.

Definition 2.2 (User Privacy [4]): We say that Π =
(U ;DB1,DB2, . . . ,DBk) is single round private informa-
tion retrieval for k ≥ 1 databases (denoted by (k, �)-PIR
for short) if it is (k, �)-IR and satisfies the following: For
each j ∈ [k], any n > 0, and any i1, i2 ∈ [n], qj(i1, r)
and qj(i2, r) are identically distributed.

Definition 2.3 (Communication Complexity [4]): Let
Π = (U ;DB1,DB2, . . . ,DBk) be (k, �)-PIR for any in-
tegers k, � ≥ 1. Then for all n > 0, the communication
complexity CommΠ(n) of the protocol Π is the sum of
the total bits exchanged between U and DBj ’s, i.e.,

CommΠ(n)

= max
(x,i,r)∈{0,1}n×[n]×{0,1}s

∑
j∈[k]

{|qj(i, r)|+ |aj |}.

For each j ∈ [k], each i ∈ [n], and any r ∈ {0, 1}s,
we can assume without loss of generality that aj ∈
{0, 1}∗ and qj(i, r) ∈ {0, 1}∗, and we can regard aj and
qj(i, r) as vectors over GF (2).

Remark 2.4: For any pair of integers k, � ≥ 1, let
Π = 〈U ;DB1,DB2, . . . ,DBk〉 be (k, �)-IR as given in
Definition 2.1. For each j ∈ [k], each i ∈ [n], and
each h ∈ [�], assume that qj,h(i, r) ∈ {0, 1}mj,h for any
r ∈ {0, 1}s, and let ej,h[tj,h] = 0tj,h−110mj,h−tj,h for
each tj,h ∈ [mj,h] and ej,h[0] = 0mj,h .

For any pair of vectors a, b ∈ {0, 1}m, we use a⊕ b
to denote the bitwise Xor of a and b. We classify (k, �)-
PIR into a linear type, a multilinear type, and an affine
type according to the relationship between queries to
each database and answers to the user.
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Definition 2.5 (Multilinear): For any pair of integers
k, � ≥ 1, we say that Π = (U ;DB1,DB2, . . . ,DBk) is
multilinear type (k, �)-PIR (denoted by (k, �)-MLPIR for
short) if it is (k, �)-PIR and satisfies that

DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), α ⊕ β,

qj,h+1(i, r), . . . , qj,�(i, r)〉)
= DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), α,

qj,h+1(i, r), . . . , qj,�(i, r)〉)
⊕DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), β,

qj,h+1(i, r), . . . , qj,�(i, r)〉),
for any j ∈ [k], any h ∈ [�], any x ∈ {0, 1}n, any i ∈ [n],
any r ∈ {0, 1}s, and any α, β ∈ {0, 1}mj,h .

For any pair of integers k, � ≥ 1, we say that
Π = (U ;DB1,DB2, . . . ,DBk) is linear type (k, �)-PIR
(denoted by (k, �)-LPIR for short) if it is multilinear
type (k, �)-PIR and � = 1.

Definition 2.6 (Affine): For any pair of integers k, � ≥
1, we say that Π = (U ;DB1,DB2, . . . ,DBk) is affine
type (k, �)-PIR (denoted by (k, �)-APIR for short) if it
is (k, �)-PIR and satisfies that

DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), α ⊕ β,

qj,h+1(i, r), . . . , qj,�(i, r)〉)
= DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), α,

qj,h+1(i, r), . . . , qj,�(i, r)〉)
⊕DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), β,

qj,h+1(i, r), . . . , qj,�(i, r)〉)
⊕DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r), 0mj,h ,

qj,h+1(i, r), . . . , qj,�(i, r)〉),
for any j ∈ [k], any h ∈ [�], any x ∈ {0, 1}n, any i ∈ [n],
any r ∈ {0, 1}s, and any α, β ∈ {0, 1}mj,h .

In the rest of this paper, we simply denote k-LPIR
instead of (k, �)-LPIR, because � = 1 for (k, �)-LPIR.
For any integers k, � ≥ 1, we use k-LPIR to denote
the collection of k-LPIR, (k, �)-MLPIR to denote the
collection of (k, �)-MLPIR, and (k, �)-APIR to denote
the collection of (k, �)-APIR. We also use (k, �)-PIR to
denote the collection of (k, �)-PIR for any integer k ≥ 1
and any integer � ≥ 1.

The following fact plays a crucial role to derive
lower bounds for the communication complexity of
(k, �)-MLPIR, k-LPIR, and (k, �)-APIR for any integer
k ≥ 2 and any integer � ≥ 1.

Fact 2.7 [4, §5.1]: For all n > 0, any integer � ≥ 1,
and any protocol Π ∈ (1, �)-PIR, CommΠ(n) ≥ n.

3. Communication Complexity of Multilinear
Type PIR

3.1 A Lower Bound for Multilinear Type PIR

In this subsection, we derive a lower bound for the com-

munication complexity of (k, �)-MLPIR.

Theorem 3.1: For any pair of integer k ≥ 2, any inte-
ger � ≥ 1, any protocol Π ∈ (k, �)-MLPIR, any ε > 0,
and all but finitely many n > 0, the following holds:
CommΠ(n) ≥ (1/ �+1

√
k − 1− ε) �+1

√
n.

Proof: We show the theorem by contradiction. Then
we assume that CommΠ(n) < (1/ �+1

√
k − 1 − ε) �+1

√
n

for some k ≥ 2, some Π = (U ;DB1,DB2, . . . ,DBk) ∈
(k, �)-MLPIR, some ε > 0, and infinitely many n >
0. Recall Remark 2.4 and define the single database
protocol Π′ = (U ′;DB′) as follows:

Step 1: U ′ simulates U to generate

q1(i, r), q2(i, r), . . . , qk(i, r)

and sends q1(i, r) to DB′.

Step 2: DB′ simulates DB1 to generate

a1 = DB1(x, q1(i, r))

and sends a1 to U ′.

Step 3: For each 2 ≤ j ≤ k, each h ∈ [�], and each
tj,h ∈ [mj,h], DB′ simulates DBj to generate

ãj [tj,1, . . . , tj,�]
= DBj(x, 〈ej,1[tj,1], . . . , ej,�[tj,�]〉),

and sends ãj [tj,1, . . . , tj,�] to U ′.

Step 4: For each 2 ≤ j ≤ k and each h ∈ [�], U ′ com-
putes cj,h[1], . . . , cj,h[mj,h] ∈ {0, 1} such that

qj,h(i, r) =
mj,h⊕

tj,h=1

cj,h[tj,h]ej,h[tj,h].

Step 5: For each 2 ≤ j ≤ k, U ′ computes

a′
j =

mj,1⊕
tj,1=1

· · ·
mj,�⊕

tj,�=1

{(cj,1[tj,1] · · · cj,�[tj,�])

× ãj [tj,1, . . . , tj,�]}.

Step 6: U ′ outputs U(i, r; a1, a′
2, a

′
3, . . . , a

′
k).

We show that Π′ ∈ (1, �)-PIR. From the definition of
(k, �)-MLPIR, it follows that for each 2 ≤ j ≤ k,

aj = DBj (x, 〈qj,1(i, r), . . . , qj,�(i, r)〉)

= DBj


x,

〈 mj,1⊕
tj,1=1

cj,1[tj,1]ej,1[tj,1], . . . ,

mj,�⊕
tj,�=1

cj,�[tj,�]ej,�[tj,�]

〉
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=
mj,1⊕

tj,1=1

· · ·
mj,�⊕

tj,�=1

{(cj,1[tj,1] · · · cj,�[tj,�])

×DBj (x, 〈ej,1[tj,1], . . . , ej,�[tj,�]〉)}

=
mj,1⊕

tj,1=1

· · ·
mj,�⊕

tj,�=1

{(cj,1[tj,1] · · · cj,�[tj,�])

× ãj [tj,1, . . . , tj,�]}
= a′

j ,

where the second equality follows from Step 4, the third
equality follows from the multilinearity of the proto-
col Π (Definition 2.5), the fourth equality follows from
Step 3, and the fifth equality follows from Step 5. Thus
we have that in Step 6 of the protocol Π′,

U(i; a1, a′
2, . . . , a

′
k) = U(i; a1, a2, . . . , ak) = xi,

i.e., U ′ retrieves xi for any i ∈ [n]. Since U ′ sends
only q1(i) to DB′ in the protocol Π′ and the protocol
Π ∈ (k, �)-MLPIR satisfies the condition of Definition
2.2, we can conclude that Π′ ∈ (1, �)-PIR.

We estimate the communication complexity of the
protocol Π′ ∈ (1, �)-PIR. For the underlying protocol
Π ∈ (k, �)-MLPIR, recall the assumption that

CommΠ(n) < (1/ �+1
√

k − 1− ε) �+1
√

n

for some k ≥ 2, some ε > 0, and infinitely many n > 0.
So we have that

|q1(i, r)| < (1/ �+1
√

k − 1− ε) �+1
√

n;

|a1| < (1/ �+1
√

k − 1− ε) �+1
√

n;

mj,h < (1/ �+1
√

k − 1− ε) �+1
√

n;

|ãj [tj,1, tj,2, . . . , tj,�]| < (1/ �+1
√

k − 1− ε) �+1
√

n,

for each 2 ≤ j ≤ k, each h ∈ [�], and each tj,h ∈ [mj,h].
Then it follows that for infinitely many n > 0,

CommΠ′(n) = |q1(i, r)|+ |a1|

+
k∑

j=2

mj,1∑
tj,1=1

· · ·
mj,�∑

tj,�=1

|ãj [tj,1, . . . , tj,�]|

< 2
(

1
�+1
√

k − 1
− ε

)
�+1
√

n

+ (k − 1)
{(

1
�+1
√

k − 1
− ε

)
�+1
√

n

}�+1

= 2
(

1
�+1
√

k − 1
− ε

)
�+1
√

n

+ (k − 1)
(

1
�+1
√

k − 1
− ε

)�+1

n.

Since ε > 0, we have that (k−1)(1/ �+1
√

k − 1−ε)�+1 <
1. So CommΠ′(n) < 2(1/ �+1

√
k − 1 − ε) �+1

√
n + (k −

1)(1/ �+1
√

k − 1− ε)�+1n < n for infinitely many n > 0,
which contradicts Fact 2.7.

Thus for any integer k ≥ 2, any integer � ≥ 1, any
protocol Π ∈ (k, �)-MLPIR, and any ε > 0, it follows
that CommΠ(n) ≥ (1/ �+1

√
k − 1 − ε) �+1

√
n for all but

finitely many n > 0. ✷

Corollary 3.2 (to Theorem 3.1): For any integer k ≥
2, any protocol Π ∈ k-LPIR, any ε > 0, and all but
finitely many n > 0, the following holds: CommΠ(n) ≥
(1/

√
k − 1− ε)

√
n.

Proof: From Definition 2.5, we have that k-LPIR =
(k, 1)-MLPIR for any integer k ≥ 2. Thus the corol-
lary follows from Theorem 3.1 by letting � = 1. ✷

3.2 An Upper Bound for Multilinear Type PIR

To evaluate the lower bound for the communication
complexity of (k, �)-MLPIR given in Theorem 3.1, we
show an upper bound for the communication complex-
ity of (k, �)-MLPIR.

Theorem 3.3 [9, §3.2]: For any integer k ≥ 2, there
exist an integer � = (k − 1)2 and a protocol Π ∈ (k, �)-
MLPIR such that CommΠ(n) = O(k3 k

√
n).

Proof: For any integer k ≥ 2, Ishai and Kushilevitz
[9, §3.2] showed the protocol IK[1] ∈ (k, �)-PIR such
that � = (k − 1)2 and CommIK[1](n) = O(k3 k

√
n). We

note that the protocol IK[1] is based on the multilinear
function

∏
(see [9]) and the balancing scheme [3]. So

from the definition of (k, �)-MLPIR (Definition 2.5), it
is easy to verify that IK[1] ∈ (k, �)-MLPIR. ✷

It follows from Theorem 3.1 that for any integer
k ≥ 2, any protocol Π ∈ (k, (k − 1)2)-MLPIR, any
ε > 0, and all but finitely many n > 0,

CommΠ(n) ≥
(

1
(k−1)2+1

√
k − 1

− ε

)
(k−1)2+1

√
n. (1)

From Theorem 3.3 and Eq. (1), it is obvious that we
still have a gap between the lower and upper bounds
for the communication complexity of (k, �)-MLPIR.

Table 1 exemplifies the upper and lower bounds
for the communication complexity of (k, �)-MLPIR for
each k ≥ 2, where � = (k − 1)2.

To evaluate the lower bound for the communica-
tion complexity of k-LPIR given in Corollary 3.2, we
also show a upper bound for the communication com-
plexity of k-LPIR (especially for k = 2).

Table 1 Communication complexity of (k, �)-MLPIR.

Number of
Databases: k

Upper Bound Lower Bound

2 O(
√

n) Ω(
√

n)

3 O( 3√n) Ω( 5√n)

4 O( 4√n) Ω( 10√n)

5 O( 5√n) Ω( 17√n)

..

.
..
.

..

.
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Table 2 Communication complexity of k-LPIR.

Number of
Databases: k

Upper Bound Lower Bound

2 O(
√

n) Ω(
√

n)

3 O(
√

n) Ω(
√

n)

4 O(
√

n) Ω(
√

n)

5 O(
√

n) Ω(
√

n)

..

.
..
.

..

.

Theorem 3.4: For all n > 0, there exists a protocol
Π ∈ 2-LPIR such that CommΠ(n) = 4

√
n.

Proof: For any S ⊆ [m] and any i ∈ [m], define S ⊕
i = S − {i} if i ∈ S; S ⊕ i = S ∪ {i} otherwise. Let
s =

√
n. For any x ∈ {0, 1}n, regard x as an s × s

matrix X = (x1, x2, . . . , xs) over GF (2), where xj ∈
{0, 1}s is the column vector over GF (2) for each j ∈
[s]. Let i ∈ [n] be the bit position of x that U tries
to get and (i1, i2) ∈ [s] × [s] be the bit position in
the matrix X corresponding to i ∈ [n]. Combining
the protocol Π′ ∈ (2, �)-PIR given by Chor et al. [4,
§3.1] and the balancing scheme [3], we define the two
database protocol Π = (U ;DB1,DB2) as follows:

Step 1: U chooses S1 ⊆ [s] uniformly at random and
computes S2 = S1 ⊕ i2.

Step 2: U sends S1 ⊆ [s] to DB1 and S2 ⊆ [s] to DB2.
Step 3: DB1 computes a1 =

⊕
h∈S1

xh and sends a1 ∈
{0, 1}s to U .

Step 4: DB2 computes a2 =
⊕

h∈S2
xh and sends a2 ∈

{0, 1}s to U .
Step 5: U computes a = a1 ⊕ a2 and picks the i1th

position of the column vector a ∈ {0, 1}s.

It is easy to verify that Π = (U ;DB1,DB2) ∈ 2-LPIR
and that CommΠ(n) = 4

√
n. ✷

From Theorem 3.4, it follows that for any integer
k ≥ 2, the lower bound for the communication com-
plexity of k-LPIR given in Corollary 3.2 is optimal up
to constant factor. Table 2 exemplifies the upper and
lower bounds for the communication complexity of k-
LPIR for each k ≥ 2.

4. Communication Complexity of Affine Type
PIR

4.1 A Lower Bound for Affine Type PIR

In this subsection, we derive a lower bound for the com-
munication complexity of (k, �)-APIR for any integer
k ≥ 2 and any integer � ≥ 1 in almost the same way as
the proof of Theorem 3.1.

Recall Remark 2.4. For each j ∈ [k] and each h ∈
[�], the coefficients cj,h[0], cj,h[1], . . . , cj,h[mj,h] ∈ {0, 1}
are said to be good for qj,h(i, r) if

mj,h⊕
tj,h=0

cj,h[tj,h] = 1;

qj,h(i, r) =
mj,h∑

tj,h=0

cj,h[tj,h]ej,h[tj,h].

It is immediate that there exist the unique good coeffi-
cients cj,h[0], cj,h[1], . . . , cj,h[mj,h] ∈ {0, 1} for qj,h(i, r),
because ej,h[0] = 0mj,h and {ej,h[1], . . . , ej,h[mj,h]} is
the basis for the linear space {0, 1}mj,h .

Lemma 4.1: For each j ∈ [k], each h ∈ [�], and each
i ∈ [n], let cj,h[0], cj,h[1], . . . , cj,h[mj,h] ∈ {0, 1} be the
good coefficients for qj,h(i, r). Then for each j ∈ [k]
and each h ∈ [�], the following holds:

DBj

(
x,

〈
qj,1(i, r), . . . , qj,h−1(i, r),

mj,h⊕
tj,h=0

cj,h[tj,h]ej,h[tj,h],

qj,h+1(i, r), . . . , qj,�(i, r)

〉)

=
mj,h⊕

tj,h=0

cj,h[tj,h]DBj(x, 〈qj,1(i, r), . . . , qj,h−1(i, r),

ej,h[tj,h], qj,h+1(i, r), . . . , qj,�(i, r)〉).
Proof: The lemma follows from Definition 2.6 and the
condition that

⊕mj,h

tj,h=0
cj,h[tj,h] = 1. ✷

Theorem 4.2: For any integer k ≥ 2, any integer
� ≥ 1, any protocol Π ∈ (k, �)-APIR, any ε > 0,
and all but finitely many n > 0, the following holds:
CommΠ(n) ≥ (1/ �+1

√
k − 1− ε) · �+1

√
n.

Proof: In a way similar to the proof of Theorem
3.1, we show the theorem by contradiction. Assume
that CommΠ(n) < (1/ �+1

√
k − 1 − ε) �+1

√
n for some

k ≥ 2, some protocol Π = (U ;DB1,DB2, . . . ,DBk) ∈
(k, �)-APIR, some ε > 0, and infinitely many n > 0.
We notice that (k, �)-APIR is the same as (k, �)-MLPIR
except for the third additive term in Definition 2.6. To
construct single database protocol Π′ = (U ′,DB′) as in
the proof of Theorem 3.1, we need to remove those third
additive terms. So we employ ej,h[0] = 0mj,h to ap-
ply Lemma 4.1 and define the following single database
protocol Π′ = (U ′;DB′):

Step 1: U ′ simulates U to generate

q1(i, r), q2(i, r), . . . , qk(i, r)

and sends q1(i, r) to DB′.

Step 2: DB′ simulates DB1 to generate

a1 = DB1(x, q1(i, r))

and sends a1 to U ′.
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Step 3: For each 2 ≤ j ≤ k, each h ∈ [�], and each 0 ≤
tj,h ≤ mj,h, DB′ simulates DBj to generate

ãj [tj,1, . . . , tj,�]
= DBj(x, 〈ej,1[tj,1], . . . , ej,�[tj,�]〉),

and sends ãj [tj,1, . . . , tj,�] to U ′.

Step 4: For each 2 ≤ j ≤ k and each h ∈ [�], U ′ com-
putes the good coefficients cj,h[0], . . . , cj,h[mj,h]
for qj,h(i, r) ∈ {0, 1}mj,h .

Step 5: For each 2 ≤ j ≤ k, U ′ computes

a′
j =

mj,1⊕
tj,1=0

· · ·
mj,�⊕

tj,�=0

{(cj,1[tj,1] · · · cj,�[tj,�])

× ãj [tj,1, . . . , tj,�]}.

Step 6: U ′ outputs U(i, r; a1, a′
2, a

′
3, . . . , a

′
k).

We show that Π′ ∈ (1, �)-PIR. From the definition of
(k, �)-APIR, it follows that for each 2 ≤ j ≤ k,

aj = DBj (x, 〈qj,1(i, r), . . . , qj,�(i, r)〉)

= DBj

(
x,

〈
mj,1⊕

tj,1=0

cj,1[tj,1]ej,1[tj,1], . . . ,

mj,�⊕
tj,�=0

cj,�[tj,�]ej,�[tj,�]

〉)

=
mj,1⊕

tj,1=0

· · ·
mj,�⊕

tj,�=0

{(cj,1[tj,1] · · · cj,�[tj,�])

×DBj (x, 〈ej,1[tj,1], . . . , ej,�[tj,�]〉)

=
mj,1⊕

tj,1=0

· · ·
mj,�⊕

tj,�=0

{(cj,1[tj,1] · · · cj,�[tj,�])

× ãj [tj,1, tj,2, . . . , tj,�]
= a′

j ,

where the second equality follows from Step 4, the third
equality follows from Lemma 4.1, the fourth equality
follows from Step 3, and the fifth equality follows from
Step 5. Thus in Step 6 of the protocol Π′, we have
that U(i; a1, a′

2, a
′
3, . . . , a

′
k) = U(i; a1, a2, a3, . . . , ak) =

xi, i.e., U ′ retrieves xi for any i ∈ [n]. Since U ′ sends
only q1(i) to DB′ in the protocol Π′ and the protocol
Π ∈ (k, �)-APIR satisfies the condition of Definition
2.2, we can conclude that Π′ ∈ (1, �)-PIR.

We estimate the communication complexity of the
protocol Π′ ∈ (1, �)-PIR. For the underlying protocol
Π ∈ (k, �)-APIR, recall the assumption that

CommΠ(n) < (1/ �+1
√

k − 1− ε) �+1
√

n

for some k ≥ 2, some ε > 0, and infinitely many n > 0.
So we have that

|q1(i, r)| < (1/ �+1
√

k − 1− ε) �+1
√

n;

|a1| < (1/ �+1
√

k − 1− ε) �+1
√

n;

mj,h < (1/ �+1
√

k − 1− ε) �+1
√

n;

|ãj [tj,1, tj,2, . . . , tj,�]| < (1/ �+1
√

k − 1− ε) �+1
√

n,

for each 2 ≤ j ≤ k, each h ∈ [�], and each 0 ≤ tj,h ≤
mj,h. It follows that for infinitely many n > 0,

CommΠ′(n) = |q1(i)|+ |a1|

+
k∑

j=2

mj1∑
t1=0

· · ·
mj�∑
t�=0

|ãj [tj,1, . . . , tj,�]|

< 2
(

1
�+1
√

k − 1
− ε

)
�+1
√

n

+ (k − 1)
{(

1
�+1
√

k − 1
− ε

)
�+1
√

n + 1
}�

×
(

1
�+1
√

k − 1
− ε

)
�+1
√

n

< 2
(

1
�+1
√

k − 1
− ε

)
�+1
√

n

+ (k − 1)
(

1
�+1
√

k − 1
− ε

2

)�+1

n.

Since ε > 0, it is immediate that (k − 1)(1/ �+1
√

k − 1−
ε/2)�+1 < 1. So CommΠ′(n) < 2(1/ �+1

√
k − 1 −

ε) �+1
√

n + (k − 1)(1/ �+1
√

k − 1 − ε/2)�+1n < n for in-
finitely many n > 0, which contradicts Fact 2.7.

Thus for any integer k ≥ 2, any integer � ≥ 1, any
protocol Π ∈ (k, �)-APIR, and any ε > 0, it follows
that CommΠ(n) ≥ (1/ �+1

√
k − 1 − ε) �+1

√
n for all but

finitely many n > 0. ✷

4.2 An Upper Bound for Affine Type PIR

To evaluate the lower bound for the communication
complexity of (k, �)-APIR given in Theorem 4.2, we
show an upper bound for the communication complex-
ity of (k, �)-APIR.

Theorem 4.3 [9, §3.3]: For any integer k ≥ 2, there
exist an integer � = (2k − 1)(k − 1) and a protocol
Π ∈ (k, �)-APIR such that CommΠ(n) = O(k3 2k−1

√
n).

Proof: For any integer k ≥ 2, Ishai and Kushilevitz [9,
§3.3] showed the protocol IK[2] ∈ (k, �)-PIR such that
� = (2k − 1)(k − 1) and CommIK[2](n) = O(k3 2k−1

√
n).

Note that the protocol IK[2] is based on the multilin-
ear function

∏
(see [9] for the definition) and the idea

similar to the covering code scheme [4]. From the defi-
nition of (k, �)-APIR (Definition 2.6), it is obvious that
IK[2] ∈ (k, �)-APIR. ✷

It follows from Theorem 4.2 that for any integer
k ≥ 2, any protocol Π ∈ (k, (2k − 1)(k − 1))-APIR,
any ε > 0, and all but finitely many n > 0,
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Table 3 Communication complexity of (k, �)-APIR.

Number of
Databases: k

Upper Bound Lower Bound

2 O( 3√n) Ω( 4√n)

3 O( 5√n) Ω( 11√n)

4 O( 7√n) Ω( 22√n)

5 O( 9√n) Ω( 37√n)

.

..
.
..

.

..

CommΠ(n)

≥
(

1
(2k−1)(k−1)+1

√
k − 1

− ε

)
(2k−1)(k−1)+1

√
n. (2)

From Theorem 4.3 and Eq. (2), it is obvious that we
still have a gap between the lower and upper bounds
for the communication complexity of (k, �)-APIR.

Table 3 exemplifies the upper and lower bounds for
the communication complexity of (k, �)-APIR for each
k ≥ 2, where � = (2k − 1)(k − 1).

5. Concluding Remarks

In this paper, we have classified (k, �)-PIR into a linear
type, an multilinear type, and an affine type and then
we have shown the lower bounds for the communication
complexity of each type, i.e.,

(1) for any protocol Π ∈ (k, �)-MLPIR, CommΠ(n) ≥
Ω( �+1

√
n) (Theorem 3.1);

(2) for any protocol Π ∈ k-LPIR, CommΠ(n) ≥
Ω(

√
n) (Corollary 3.2);

(3) for any protocol Π ∈ (k, �)-APIR, CommΠ(n) ≥
Ω( �+1

√
n) (Theorem 4.2).

To evaluate those lower bounds, we have also shown
that for any integer k ≥ 2,

(4) there exist Π ∈ (k, (k − 1)2)-MLPIR with
CommΠ(n) = O(k3 k

√
n) (Theorem 3.3);

(5) there exists Π ∈ 2-LPIR with CommΠ(n) = 4
√

n
(Theorem 3.4);

(6) there exists Π ∈ (k, (2k − 1)(k − 1))-APIR with
CommΠ(n) = O(k3 2k−1

√
n) (Theorem 4.3).

Note that the protocols given in Theorems 3.3, 3.4,
and 4.3 are communication-efficient, but do not sat-
isfy the data privacy [6]. To achieve the data privacy,
we need to slightly modify the present model into the
shared randomness model. Gertner et al. [6] proposed
the multiparty protocol that conditional discloses se-
crets (CDS protocol) to transform specific (k, �)-PIR
into (k, �′)-PIR with the data privacy under the shared
randomness model. In a way similar to the transfor-
mation by Gertner et al. [6], we can show the theorems
below applying the CDS protocol to the protocols in
Theorems 3.3, 3.4, and 4.3.

Theorem 5.1: For any integer k ≥ 2, the protocol
Π given in Theorem 3.3 can be transformed into the
protocol Π′ with user privacy and data privacy such that
CommΠ′(n) = O(k3 k

√
n log n).

Theorem 5.2: The protocol Π given in Theorem 3.4
can be transformed into the protocol Π′ with user
privacy and data privacy such that CommΠ′(n) =
O(n logn).

Theorem 5.3: For any integer k ≥ 2, the protocol
Π given in Theorem 4.3 can be transformed into the
protocol Π′ with user privacy and data privacy such that
CommΠ′(n) = O(k3 2k−1

√
n log n).

As we have mentioned at the end of Sect. 3.2,
the communication complexity of the protocol Π ∈ 2-
LPIR given in Theorem 3.4 is optimal up to constant
factor, but we still have large gaps between the lower
and upper bounds for the communication complexity
of (k, �)-MLPIR and (k, �)-APIR. So

(1) Improve the lower bound for the communication
complexity of Π ∈ (k, �)-MLPIR;

(2) Improve the lower bound for the communication
complexity of Π ∈ (k, �)-APIR;

(3) Improve the upper bound for the communication
complexity of Π ∈ (k, �)-MLPIR;

(4) Improve the upper bound for the communication
complexity of Π ∈ (k, �)-APIR.
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