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1. General Remarks 

The aim of this paper is to bring attention to some connections between these 
two fields. In the complexity theory there are difficult open problems most of 
which are essentially of combinatorial character. It is generally believed that 
some interaction between complexity theory and combinatorics may help to 
solve these problems. 

An n-dimensional Boolean function is any mapping f : {o,l}n --+ {O,l}. 
Thus a Boolean function can be also viewed as a partition of the n-cube {O, l}n. 
A Boolean function is called symmetric if f( a1, ... , an) depends only on the 
number of l's among a1, ... ,an. We call the set of all vectors with exactly k 
ones the k-th level of the n-cube. Hence a symmetric function is a function 
which is constant on every single level. Given a complete basis of connectives, 
we define the formula size complexity L(f) of a function f to be the size of the 
smallest formula realizing f, where the size of a formula is conveniently defined 
to be the number of all the occurrences of variables in it. (E.g. Xl 1\ (-'X1 V X2) 

has size 3). 

Theorem A. For every basis there exists f > 0 such that if f is n-dimensional 
and 

L(f) :::; f • n(log log n - log r), 

then there exists an interval I = (0, a) of length r in the n-cube such that 
(1) f I I is symmetric; 
(2) in f I I all the even levels, with a possible exeption of the O-th level, are 

of the same color, and all the odd levels are of the same color. (It is not 
excluded that f is constant on I.) 

Theorem B. For the basis of all at most binary connectives there exists f > 0 
such that it f is n-dimensional and 

L(f) :::; f· n· (logn -logr), 
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then there exists an interval I = (a, b) of length r in the middle of the n-cube 
such that 
(1) III is symmetric; 
(2) in III all the even levels are of the same color, and all the odd levels are 

of the same color. (The exact meaning of "the middle" is that the number 
of l's in a equals to the number of O's in b possibly -1.) 

Theorem A is a reformulation of the Hodes-Specker theorem (Hodes, 
Specker 1968) with the bound proved in (Pudlak 1984), the second theorem 
is a reformulation of the main theorem of Fischer, Meyer, Paterson (1982). The 
bounds are known to be of the best growth rate. I see at least three connections 
of these theorems to Ramsey theory. 

1. The general form of the statement is:"If an object is of small complexity, 
then it is locally very simple". If we consider e.g. the number of colors as 
the complexity of a coloration (say of a complete graph), then the Ramsey 
theorem is of this form. 

2. Using Ramsey theorem one can prove e.g. that there exists a function r(n), 
with limn -+oo r(n) = 00, such that for every n-dimensional Boolean function 
I there exists an interval I = (0, a) of length r(n) such that I I I is symme
tric. In case I is of small complexity Theorem A extends the information 
about III in two ways: gives us a larger interval I and the condition (2). 

3. The original proof of the Hodes-Specker theorem and the proof of Fischer
Meyer-Paterson theorem use the standard heuristic "divide and take the 
largest one" used also for Ramsey theorems. Ramsey theorem was also used 
in the proof of a generalization of Hodes-Specker theorem by Vilfan (1976). 
Ramsey theorem is the corner-stone of the proof of the bound of Theorem 
A in Pudlak (1984). Roughly speaking the proof goes as follows. Given 
a Boolean formula a(xl,""Xn), where Xl, ... ,Xn are the propositional 
variables of the formula, we define the induced formula aX for every X ~ 
{Xl, ... , xn} in a suitable way. The formula is called homogeneous if for 
every X, Y, IXI = IYI = 2, aX is isomorphic to aY, (which means that if 
we substitute the first variable of X for the first variable of Y and the second 
variable of X for the second variable of Yin aY, then we obtain aX). Given 
r, if tIre complexity of a(xl, ... , xn) is small (i.e. ~ f·n· (log log n -log r)), 
then using the Ramsey theorem one can find a subset of variables H of 
cardinality r such that aH is homogeneous. Then it is shown (and this is 
the difficult part of the proof) that every homogeneous formula determines 
a Boolean function which satisfies (1), (2) of Theorem A. 

The theorem of Ajtai (1983) and Furst, Saxe and Sipser (1981) can be stated 
also in a form resembling the Ramsey theorem. A theorem of Hodes-Specker 
type for branching programs was announced in Pudlak (1984). 

During the preparation of this book several new lower bounds to the com
plexity of Boolean functions have been obtained. A large part of these re
sults uses some version of the Ramsey theorem. The lower bound of this paper 


