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A PROOF OF BEIGEL’S CARDINALITY CONJECTURE
MARTIN KUMMER

In 1986, Beigel [Be87] (see also [Od89, II1.5.9]) proved the nonspeedup theo-
rem: if A, B € w, and as a function of 2" variables () 4(x,), ..., x4(x2»)) can be com-
puted by an algorithm which makes at most n queries to B, then A is recursive
(informally, 2" parallel queries to a nonrecursive oracle 4 cannot be answered by
making n sequential (or “adaptive”) queries to an arbitrary oracle B). Here, 2"
cannot be replaced by 2" — 1. In subsequent papers of Beigel, Gasarch, Gill, Hay,
and Owings the theory of “bounded query classes” has been further developed (see,
for example, [BGGOta], [BGH89], and [Ow89]). The topic has also been studied
in the context of structural complexity theory (see, for example, [AG88], [Be90],
and [JY90]).

If ACw and n>1, let #Xx,,...,x,) = #{i:x;€ A} = X7_ | x4(x;). Beigel
[Be87] stated the powerful “cardinality conjecture” (CC): if 4, B < w, and #%.
can be computed by an algorithm which makes at most n queries to B, then 4 is
recursive. Owings [Ow89] verified CC for n = 1, and, for n > 1, he proved that A
is recursive in the halting problem. We prove that CC is true for all n.

NoTATION. @ = {0,1,2,3,...}. W; S wis the ith r.e. set in the standard enumera-
tion of all r.e. sets. For unexplained recursion theoretic notation the reader is
referred to [Od89]. #4 denotes the cardinality of the set A. y 4 is the characteristic
function of 4. {0,1}<“ is the set of all finite strings of zeros and ones. 4 is the
empty string, |s| denotes the length of string s, and |A| = 0. s C ¢t means that s is
an initial segment of t. s(n) = b iff n <|s| and b is the (n + 1)st symbol of s. A
tree T is a subset of {0,1}<° which is closed under initial segments; s € T is called
anode of T.te {0,1}*is a branch of T iff every finite initial segment of ¢ is a node
of Tt is the characteristic function of the set {n € w: t(n) = 1}.

We wish to prove that if #%. can be computed with n queries to some set B, then
A is recursive. As in the proof of Beigel’s nonspeedup theorem we need to view
functions computed by bounded queries in a different light.

LemMa 0 ([Be87], [BGGOta]). If a function f can be computed with n queries
to some set B, then there exists a set S of at most 2" partial recursive functions such
that for each argument x there is a function h € S such that g(x) = f(x).

PROOF. Assume that f is computed by the oracle Turing machine M® such that,
for any oracle X and any input, M* makes at most n queries to X. For each string
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w € {0, 1}" define a partial recursive function h,, and let S = {h,,;: w € {0,1}"}. h,,(x)
is computed by running M with input x using the bits of w consecutively for the
query answers. Since one of the sequences is correct (i.e. would be the sequence of
answers if B was used for the oracle), h,(x) is equal to f(x) for some w. ]

By Lemma 0 Beigel’s conjecture is reduced to the following theorem:

CARDINALITY THEOREM (CT). Let A = w and m > 1. Assume that there exists a
recursive function g(x,...,X,) such that, for any m-tuple (x,...,x,,) of distinct
natural numbers, (1) Wy, . < {0,1,...,m} (note that it is a proper inclusion), and
(2) #m(xys. s Xm) € Wy, .. Then A is recursive.

Proor. Corresponding to a set A and a recursive function g satisfying the ante-
cedent of CT we have an r.e. tree of possibilities defined as follows:

T,= {t e{0,1}=: Vxl,...,xm|:x1 << X, <t .Zl t(x;) e M(xl'mxm{l}

Note that, by (2), x4 is a branch of T,. Our proof will proceed in two phases: First,
we prove a general lemma about conditions under which r.e. trees actually have
every branch recursive. We then show that T, satisfies these conditions. The latter
proof is purely combinatorial and uses a Ramsey-type theorem.

Let B, = {0,1}=" (the full binary tree of height n). * denotes concatenation of
strings. f: B,— T is an embedding of B, into T iff Vs[|s|<n—[f(s)*O0C f(s * 0) A
f(s)* 1 f(s * 1)]]. B, is embeddable into T above e e T iff there exists an em-
bedding f of B, into T such that e [_ f(A). The rank of T, denoted by rk(T), is the
supremum of all n such that B, is embeddable into T.

LeEMMA 1. If T is an r.e. tree of finite rank, then every branch of T is recursive.

Proor. Suppose that T is r.e., rk(T) is finite, and ¢ is a branch of T. Let k, be
the supremum of all n such that B, is embeddable above every node e [ t. Then
ko < rk(T). Choose a node e, [ t such that B, ., is not embeddable above e,. We
claim that ¢ is recursive via the following algorithm:

t(x) is computed for x > |ey| by enumerating T and searching for an embedding
f of B, into T above ¢, such that | f(1)| > x. Output (f(A)(x). If x < |e,|, then £(x)
is looked up in a finite table.

By choice of k, the algorithm terminates. We show that f(1) C ¢, for every
embedding f of B, into T above ey; thus the algorithm is correct. Suppose for
a contradiction that there exists an embedding f of B,, into T above e, such
that f (/I)Q_ t. Let de T be the maximal common prefix of f(4) and t. Clearly
eo L d. Since B, is embeddable above d * (¢(|d|)), it follows that d is the root of an
embedded B, ,,, contradicting the choice of e, (Figure 1 visualizes this case).

(]

Now we turn to the combinatorial part of the proof. First we need a Ramsey-
theoretic lemma. For a generalization see Deuber [D75].

LEMMA 2 ([D75]). For any 2-coloring of B,, there exists an embedding g of B,
into By, such that all nodes of g(By,) are monochromatic.

Proor. By induction onm + n, any coloring of B,,,, with two colors, green and
red, contains either an embedded green B,,, or an embedded red B,. O

Note that the bound in Lemma 2 is tight. In our final lemma we show that for
any tree of large rank there exist n distinct numbers x,,...,x, and n + 1 nodes
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FIGURE 1

ty,...,tnq sSuch that 37_, t;(x;) takes on all values from {0,1,...,n},for 1 <j<n+1.
See Figure 2 for a typical example.

Forn>land 1<i<2n—1,let h(n,2n —1)=0 and h(n,i — 1) = 2(h(n,i) + 1),
and let k(n) = h(n,0) = 4" — 2.

LeMMA 3. For each n > 1 and any tree T such that B, is embeddable into T
there exist nodes t,,...,t,., of T and numbers x, <--- < x,, and b € {0, 1}, such
that:

forj=1,...,n+landi=1,...,n:
ti(x)=1—=>b fori<j and tj(x;)=>b fori>j.

In particular, {} i-1t;(x): 1< j<n+1} ={0,1,...,n}.

ProoF. Let the tree T be given, and suppose that B, is embeddable into T
via fj.

Fori=1,...,2n — 1 we define inductively w;, s; = T, b; € {0, 1}, and f;: By, > T
as follows: By the induction hypothesis we are given f;_,: B, ;—;,— T. Let sbe a
leaf node of By, ;- such that f;_,(s) has maximal length. Let s; = f;_(s). Then s;
induces a 2-coloring of By, ;_;), as follows: each inner node e is colored by
si(Ifi—1(e)]), and each leaf node is colored arbitrarily, say by 0. By Lemma 2 and
the definition of h, there exists an embedding g of B, ;+; into By, ;_;, such that
9(Byn.iy+1) is monochromatic. Let w; = f;_,(g(4)), and let b; = s;(|w;|). Define f; by
fis) = fi—1(g((1 — b;) * 5)), for |s] < h(n,i).

Note that f;(Byp,i)) S fi-1(Bym,i-1)) Wi * (1 — b)) C wisy, 8;44, and s;(Iwi]) = b
for i > j. By the pigeonhole principle, there exist b € {0,1} and n indices 1 < i, <
iy <--<i,<2n—1 such that s; (lw; |)=>b. Let ¢, =s; and x,=|w,; | for
l<m<n,andt,,, =w;, *(1 —b). Now (+) follows immediately.

(+)
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FIGURE 2

REMARKS. (1) Owings observed that already {Y7I_, silwil): 1 <j<n+1} =
{0,1,...,n}, which is sufficient for the proof of CT. However, the more general
property (+) may be useful for other applications.

(2) Note that, for each m-element subset {x;, <. <x; }(m=1)of {x,...,x,},

{ Z tj(xik): ] € {il,...,im, im + 1}} = {0, 1,...,m}. [:]
k=1

Now we are ready to finish the proof of CT. Suppose that tk(T;) > k(m). Then,
by Lemma 3, there exist t,,...,t,., € T, and numbers x; < --- < x,, such that

{i tx)1<j<m+ 1} ={0,1,...,m}.
i1

From the definition of T, it follows that {0,1,...,m} = W, . , which contra-
dicts hypothesis (1) of CT.

Thus rk(7;) < k(m). Therefore, by Lemma 1, each branch of T, is recursive. Since
X4 is a branch of T, A4 is recursive. O

REMARKS. (1) Inthe same way, some interesting variants of CT can be obtained:

(a) Hypothesis (2) can be replaced by:

(2') Wy,....xn contains the length of the maximal block of consecutive 1’s
occurring in the string y ,(x,)- - x 4(x,,).

The proof uses property (+) of Lemma 3.

(b) Given 4 < w, call a finite set D = w A-biased iff

[#D/2] < max(#(D N A), #(D N A)).
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(*) Suppose n> 3, and one can compute for all numbers x; <--- < x, the
canonical index of an A-biased subset of {x,,...,x,}. Then 4 is recursive.

The proof uses Remark (2), above.

For any r.e. semirecursive set 4 there exists a recursive 4-place function g such
that W, .. .. is an A-biased subset of {x; <--- < x,}. As there exist nonrecursive
r.e. semirecursive sets, (*) does not hold if canonical indices are replaced by
2;-indices.

(2) A special case of CT arises if condition (1) is replaced by:

(ll) {05 n} -¢— VKI(M ,,,, Xn)*
Precursors of this variant are due to Trakhtenbrot [Tr63] and Kinber [Ki72,
Theorem 5]. It has a direct proof which is much easier than the proof of

Theorem 1. For more details and additional information the reader is referred to
[HKO92].
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