Decision trees and downward closures*
(Extended Abstract)

Russell Impagliazzo and Moni Naor

University of California, Berkeley

1. Introduction

A general principle of complexity
theory is that smaller complexity
classes are easier to separate than
larger ones. This is supported by vari-
ous upward closure results, proved by
trivial padding arguments, which
state that if a relationship between
complexity measures holds for all
problems of a fixed complexity, it will
hold for all problems of greater com-
plexity. Along similar lines, we know
that for certain hierarchies of com-
plexity classes (for example the poly-
nomial hierarchy), a collapse at a
low-level would collapse the entire
hierarchy. In both situations, a
separation between two larger classes
would imply the separation of
corresponding smaller classes.

It is also true that methods from
concrete complexity have been success-
fully used to separate small classes;
for example, AC? from NC! [FSS],[Y2],
or the following easy proof separating
sub-linear deterministic and non-
deterministic times. Consider the
problem: is there a bit in the input
which is a one? Non-deterministicly,
one can simply examine an arbitrary
bit, accepting if the bit is one; deter-
ministicly, any algorithm to solve this
problem must look at all bits of the

input. Thus, the problem is in
NTIME (logn), but requires DTIME(n).
Less trivially, consider the following
problem and its complement: given an
n node undirected graph in the form of
an adjacency matrix, does it contain a
star of size n as a subgraph? (Here, a
star is a graph that consists of a node
connected to all other nodes). The non-
deterministic and co-nondeterministic
complexities of this problem are n,
since one can guess a node connected
to all others, or a missing edge at
every node. The deterministic com-
plexity is O(n?.

In this paper we show that, at
least for some measures of complexity,
this intuition is misleading.
Specifically, we give several downward
closure results, showing that if P=NP,
then DTIME (polylog)=
NTIME (polylog) () Co — NTIME (polylog)
=RandomTIME (polylog). Thus any
result separating the above low-level
classes would actually prove P=NP !
We do this by giving uniform versions
of simulations in the decision tree
model of concrete complexity. The
only other result we can think of
which is at all similar is that due to
Hartmanis, Sewelson and Immerman
[HSI] proving that the E=NE ques-
tion is equivalent to the existence of

*This work was supported in part by NSF grant DCF-85-13926.

CH2542-9/88/0000/0029$01.00 © 1988 IEEE

29

sparse sets in NP - P,

Our results correspond closely to
robust and generic oracle results
((HH],[BI] respectively). However, not
only do we present a new interpreta-
tion of these results, but many of the
theorems presented here give
corresponding new results in these
models. In particular, the issue of pro-
babilistic computation in these models
was hitherto unresolved. Also, we
weaken the assumption needed for the
simulation of NP{)Co~NP type com-
putations in these models. Note that,
because of the standard upward clo-
sure results if we could prove these
collapses without assumptions we
would have shown P=NP(Co-NP
and P =BPP respectively.

Notation

We will denote by DPL the class
of predicates computable in deter-
ministic polylog time (see section 2 for
our model of sublinear computation).

Similarly, NPL denotes nondeter-
ministic polylog time , Co-NPL
denotes co-nondeterministic polylog

time, and BPPL denotes probabilistic
polylog time computation with two-
sided error bounded away from 1/2.

Organization of the paper

In section two we present our
model of sub-linear computation, and
show the equivalence of questions
involving sub-linear computation with
corresponding ones involving robust or
generic oracles. The result that, if
P=NP, then DPL=NPL(\Co-NPL
then follows from either [HH] or [BI].

In section three, we show that if
P=NP than DPL=BPPL. We also
extend this proof to a general tech-
nique for making decision tree simula-
tions uniform.

In section four, we address the
problem of whether the full power of

30

the P=NP assumption is necessary for
these results. For the DPL vs.
NPL(Co—-NPL question, we give a
weaker condition under which collapse
still occurs. This assumption, that it
is easy to find an accepting path for a
poly-time NTM accepting all of {0,1)",
is a fairly natural question presented,
to our knowledge, for the first time in
this paper. We show that , at least in
relativized worlds, this assumption is
not equivalent to P=NP()Co-NP;
this can be interpreted as showing
that, for NP(\Co~NP type computa-
tion, search problems do not reduce to
decision problems.

Section five consists of conclu-
sions and open problems.
and their

2. Various Models

Equivalence

The model of Turing Machine we
use is standard in all but one respect.
In order for sub-linear time computa-
tion to be nontrivial, we need to have
random access to bits of the input. For
this purpose, we give our model of
Turing Machine a special query tape.
When the machine enters one of a
designated set of query states, the bit
of the input addressed by the contents
of the query tape appears in the first
square of this tape. This is similar to
the model used by Chandra Kozen and
Stockmeyer [CKS], and Ruzzo [R] for
alternating time.

Decision Tree Complexity Meas-
ures

Decision tree complexity is a
model of concrete complexity in which
the only charge is for examining a bit
of the input [SW],[Y1]. Algorithms in
this model correspond to binary trees,

whose nodes are labeled with
addresses of bits of the input, and
whose leaves are labeled either

"accept" or "reject”. To run the algo-
rithm on an input, start at the root.

Find the value of the bit of the input
written there. If this value is 0, go to
the right child; if 1, the left. Recurse.
When a leaf is reached, accept or
reject according to its label. Thus,
each such tree with nodes labeled from
1 to n determines a subset of {0,1}".
The cost of a tree will be its depth.
For LC{0,1}%, let D(L) be the least cost
of a tree recognizing L.

We can also define measures
corresponding to non-deterministic
and probabilistic computation in this
model. Let LC{0,1}*. A 1-certificate for
L is a sequence of indices of bits of the
input along with contents at these
places (e.g., "third bit=1, tenth bit=0,
twelfth bit=0, ...") so that any input x
which agrees with the sequence in the
specified places is in L. A O-certificate
for L is a l-certificate for the comple-
ment of L. The 1-sided non-
deterministic complexity of L, N,(L), is
the maximum length, over x in L, of
the shortest 1-certificate for L agree-
ing with x. (Thus, a prover who
knows the input x can convince a
verifier that x is in L by revealing
fewer than N,(L) bits of x.) Let
Co—N,(L) be N, of the complement of
L, and let N(L) be the maximum of
N,(L) and Co—N,(L). (Problems with
small N complexity correspond intui-
tively to problems in NP{)Co—NP.)

We will consider randomized
algorithms that allow an error, but
the error will be bounded away from
1/2. A probabilistic decision tree looks
like a deterministic decision tree,
except that certain nodes are desig-
nated coin-flipping nodes rather than
labeled with a bit of input. At these
nodes, the algorithin decides randomly
whether to move to the left or right
child. The cost of a probabilistic deci-
sion tree is the expected number of
input nodes transversed during a com-
putation on the worst case input.
Such a tree recognizes a subset
LC{6,1)" if , Vx€L, it accepts with pro-

bability greater than 3/4, and Vx €L, it
accepts with probability less than 1/4.
let BP(L) be the least cost of a tree
recognizing L. (In this paper, as
opposed to [SW] who insist on Las-
Vegas algorithms, we allow probabilis-
tic trees to have a constant error on
both sides.

Theorem 2.1[Blum]: For any LC{0,1}",
D(L)=N¥L).

Proof: Note that any 1-certificate and
any O-certificate must intersect in at
least one bit at which they disagree.
Otherwise, we can find an input con-
taining as substrings both certificates;
this input must thus be both in L and
inL.

Consider the following deter-
ministic decision tree algorithm: start
by choosing any 1-certificate of length
=N(L) and querying all the indices
mentioned in it. If all agree with the
1-certificate we are done. Else, con-
tinue choosing another 1-certificate
consistent with the information about
the input we have so far. Repeat N(L)
times, or until we can no longer find a
short 1-certificate consistent with our
information.

We claim that this algorithm
eventually finds either a 1-certificate
or a O-certificate. Assume our input x
is not in L. Then x has a Q-certificate
C of length =N(L). If the algorithm
runs for fewer than N(L) rounds, it is
because it has found either a 0-
certificate or a i-certificate (impossible
in this case). Else, at each round i,
1=i<N(L), the algorithm finds a 1-
certificate D, consistent with the infor-
mation so far. Each D, must disagree
with C at some index o, Now, for
1<j, a,#a;, since otherwise, at time j
we would already have asked about
bit a;. Then D; would have to be con-
sistent with the input, and hence with
C, at this place, contrary to the
definition of a;. This means that, for
each run of the algorithm, we find a

new bit of C, so by N(L) runs we have
found all of C. Thus, for every input x
not in L, our algorithm finds a 0-
certificate ; hence, if we have not
found a O-certificate , we can conclude
the input is in fact in L. []

Robust and Generic Oracles

For a OTM (Oracle Turing
Machine) M and an oracle O, let Lo
represent the language accepted by M
with oracle O. We say two oracle
machines M,N are robustly equivalent
if for every oracle O, L, 0=Lyo. We
define robustly complementary analo-
gously. (See [HH].)

Let w be a finite sequence of 0’s
and 1's. The interval determined by w
is the set of oracles which agree with
w on the first |w| bits. Say w forces
M=N iff for every oracle O in the
interval determined by w, L,o0=Lyo.
A oracle G is generic, if for every
OTM’s M and N so that Lyc=Lyg,
there is a finite prefix w of G, with w
forcing M=N. (See [BIl. This
definition should actually be for 1-
genericity [Ku].)

Theorem 2.2: The
equivalent

i) DPL =NPL () Co - NPL
ii)For every robustly complementary
polynomial time nondeterministic
OTM’s N,M, there exist a determinis-
tic polynomial time OTM Q robustly
equivalent to M.

following are

iii)for a generic oracle G,
PS=NPS(Co~-NPS,
Proof: We will prove

(1) = > (1) = >(ii) = >(3).

(i)=>(ii) Let M,N be NPOTM’s. Let
M’ N’ be polylog NTM’s which treat
their inputs as consisting of two parts:
an input of size k, and an oracle of size
2r°b® where poly is some polynomial
time bound for both M and N. M’,N’
simulate M and N accordingly, and
thus take time poly(k) (which is O(log

32

n) where n is the size of the input).
Since M,N disagree on every input x
and every oracle O, M’,N’ must recog-
nize complementary languages. Thus,
there will be a deterministic polylog
machine Q' recognizing Ly.. Let Q be
the deterministic polynomial OTM
which simulates @ in a converse
manner to that described for M’ and
N’.

(ii) = >(iii) is from [BI].

(iii)=>(i) Let M’, N’ be polylog time
non-deterministic machines accepting
complementary languages. Let M and
N be polynomial time NOTM’s which,
on input k, simulate M’ and N,
respectively, on an input of length k,
making query (k,i) to the oracle when-
ever the polylog machine would ask
about bit i of its input. Note that M
and N are robustly complementary,
and that the parts of the oracle
queried on distinct inputs are disjoint.
Since M and N are robustly comple-
mentary, L§ and L§ are complemen-
tary for G generic, and thus, by
assumption, there is a polynomial
time deterministic machine D with
oracle G accepting L§;. Since G is gen-
eric, there is a finite prefix of G w forc-
ing D=M. Let D’ be a polylog time
machine simulating D, but with w
"hard-wired" into the program; i.e., on
an input of length k, D’ simulates D,
but when D makes an oracle query in
the domain of w, D’ answers according
to w, when D makes a query of the
form (k,i), D’ queries bit i of its input,
all other queries being answered "0".
A run of D’ simulates a run of D on
some oracle consistent with w, and D’
will therefore agree with M’ on all
inputs k where no bit (k,i) is in the
range of w. Since the range of w is
finite, we can thus hardwire a finite
list of strings into D’ to get a deter-
ministic machine D” always agreeing
with M’. [

Similar equivalences will hold for

almost all identities involving
different types of computation; in par-
ticular, DPL=BPPL is equivalent to
P =BPP relative to a generic oracle.

Theorem 2.3[BI],[HH]: If P=NP, then
for any pair of robustly complemen-
tary NPOTM’s M,N there exists a
deterministic polynomial time OTM Q
robustly equivalent to M.

We prove a somewhat sharper version
of this theorem in section 4.
Corollary 2.4: If P=NP, then
DPL=NPL()Co—~NPL.

3. Random time

In this section we compare BPPL
with DPL, showing that, if P=NP,
these classes collapse. As before, this
is a uniform version of a result in the
decision tree model.

Theorem 3.1(Nisan[N]): Let Lc{0,1}",
then 4-BPXL)=N().

We provide Nisan’s proof to illus-
trate the non-constructive nature of
the proof.

Proof: Let x be an n-bit string, and
let s be a set of bits. We say L is sensi-
tive to s on x if x€L <>x,¢L, where x,
is x with all of the bits in s flipped.
The block sensitivity of L on x is the
maximum b so that there exist disjoint
sets of bits, sy, ...,s, with L sensitive
to s; on x for all 1=;<b. The block
sensitivity of L, bs(L), is the maximum
over all x€{0,1}* of the block sensi-
tivity of L on x. Let L be sensitive to
s on x. Any probabilistic algorithm
which, with probability >1/2 on input
x, asks no bit of s, will fail with proba-
bility >1/4 either on x or on x,. Thus,
if L has block sensitivity & on x, any
probabilistic decision tree for L with
error probability < 1/4 must ask at
least /2 queries on average on input
x. Therefore, bs(L)<2-BP(L).

3

We now show that N(L)<bs%L).
Given x, we will find a certificate for x
of length =bs%L). Without loss of gen-
erality, assume x€L. Say s is a
minimal block for x if L is sensitive to
s on x, but to no proper subset of s on
x. Note that any set s for which L is
sensitive on x contains some minimal
block s for x. We claim that the size
of any minimal block is is no more
than bs(L). This is because, if s is a
minimal block for x, L is sensitive to
every bit of s on x,. Let s;,s9, - - - ,55 be
a maximal collection of disjoint
minimal blocks for x. We claim that
the bits of x the union of the s;’s form
a l-certificate. For, if not, there is a
y€L agreeing with x at all these bits
Let ¢ be the set of bits where x and y
disagree. L is sensitive to ¢ on x,
hence t contains a minimal block ¢ for
x. t is disjoint from each s; contradict-
ing the maximality of sy,sg, " ,s.
Since by definition b<bs(L) and each
Is;|=bs(L) we have the certificate of
the desired length. [

The proof gives no way of recognizing
a certificate.

Theorem 3.2: Assume P=NP, then
DPL =BPPL.

Proof: We know by Corollary 2.4 that
it is enough to show that, assuming
P=NP, then BPPLCNPL()Co-NPL.

We will show that BPPLCNPL;
BPPLCCo—NPL is similar.
Let L€BPPL, L,={wé€L:|w|=n}

then has probabilistic decision tree
complexity €O(log*n). Hence, by
theorem 3.1 it has nondeterministic
decision tree complexity €0 (log%n).
We would like to apply that fact, by
guessing non-deterministically a short
1-certificate for the instance, and then
verifying that it is indeed a certificate.
However, the proof of Theorem 3.1
does not yield a constructive way of
checking if a string is a certificate.
The only constructive algorithm we

have is the probabilistic O(log*n) algo-
rithm for L.

We will make use of that algo-
rithm, to give an Arthur Merlin (actu-
ally an Merlin Arthur). game for the
problem of 1-certificate recognition.
Since we are assuming P=NP, and
bounded rounds AM belongs to the
polynomial hierarchy we have that
AM=P, and hence we have a polyno-
mial (in the length of the certificate)
time algorithm for 1-certificate recog-
nition. This yields an NPL algorithm
for L.

From the discussion above, it is
enough if we put the complement of
the problem of 1-certificate recognition
in Babai’s class MA [B]. In a Merlin
Arthur game, an all powerful Merlin
makes a polynomial length statement
to a probabilistic poly time machine
Arthur, who is supposed to verify the
statement with bounded probability of
error. Formally, a MA game is a poly-
time predicate of 3 inputs x,y and r,
Q(x,y,r) with |y|,|r] a fixed polynomial
of |x]. The probability of accepting x
is the maximum over all y of
Prob[Q(x,y,r)=1] where all the r’s are
assumed to have equal probability. A
language L€MA if there is a Merlin
Arthur game Q(x,y,r) such that, Vx¢€L
Probl[@ accepts x1>2/3 and Vx€L
Prob[@ accepts x]<1/3.

The protocol to test for not being
a 1-certificate for L, goes as follows: If
a set of bit S is not a l-certificate, it
can be extended to an input x, x€L, .
Thus, since L, has nondeterministic
decision tree complexity €0(log?*n), x
contains a O-certificate of Ilength
O(log?*n). This O0-certificate is con-
sistent with the (fallacious) candidate
for 1-certificate. Thus, Merlin’s move
is to give an extension T of S, adding
fewer than O(log?n) bits, such that T
is a O-certificate. Arthur than simu-
lates the probabilistic algorithm for L,
answering queries about bits mention
in T consistent with T, and all other

34

queries with a zero. Arthur accepts iff
the algorithm rejects. If S was a 1-
certificate, then any extension T is
such, and hence 7 with 0’s at the
other places €L,. Therefore the algo-
rithm will accept with Prob>2/3 and
Arthur rejects with Prob>2/3 no
matter what Merlin’s move was. If S
was not a 1l-certificate, Merlin can
make T a O-certificate, so the algo-
rithm rejects with Prob>2/3 and
Arthur accepts with Prob>2/3.]

This gives us a general technique
for making decision tree simulations
uniform. For example, we can define
equivalents of AM games for both
decision tree and sublinear time.
Using the same proof as Theorem 3.1,
we find that max(AM(P),Co—AM(P)) is
polynomially related to N(P) in the
decision tree model. We can then con-
clude, by similar arguments to the
previous theorem that if P=NP,
DPL =AM (polylog){) Co — AM (polylog)
This combines both Theorems 2.3 and
3.2,

4. Tautology Search and relativiza-
tion results

An obvious problem that arises
from the previous section is to deter-
mine the minimum complexity
assumptions that would still result in
the aforementioned collapses. Since
these collapses in polylog time classes
imply P=NP(Co—-NP and P=BPP
respectively we will need assumptions
at least as strong. We introduce the
notion of tautology search (TS), and
show that the assumption that it can
be done in polynomial time can
replace the assumption P=NP in the
first collapse. "TS(poly)€¢P" abbrevi-
ates: for all NPTM’s, N, such that
Ly={0,1f, there exists a polynomial
time function, fy(x) which finds an
accepting N path for x. "TS(poly)eP"
is equivalent to saying that, for prob-
lems in NP(\Co—NP, both decision

and search is in P.
Theorem 4.1:TS(poly)€EP implies
DPL=NPL (" Co~NPL.

Proof: Let M and N be complemen-
tary polylog time NTM’s. Recall the
proof that D(P)<N(P)%.. The main idea
was that asking all the queries along
any l-certificate for P shortens by one
query every O-certificate consistent
with the information about the input
thus found. Think of accepting paths
for M as being 1-certificates, those for
N as O-certificates. (Here we mean
computation paths on any input of
length n which is accepted. We iden-
tify a path with the set of bits of the
input queried along the path.) Thus, if
we could find a sequence of polylog
accepting paths for M, each consistent
with the actual input at places queried
in the previous ones, we would have
asked all the places of the input
queried by any accepting path for N.
By symmetry, a corresponding
sequence for N would be just as good.
Thus, at each stage of our algorithm,
we would like to find either an accept-
ing path for N or one for M consistent
with all the information we have
about the input to date. We then
query all the places mentioned along
the path, updating our information.
We repeat 2*polylog +1 times, where
polylog is a time bound for both M and
N, accepting if the last path was an
accepting path for M rather than N.

To make use of our complexity
assumption, we need to reduce the
problem of finding an accepting path
for either N or M consistent with the
information we have so far to a search
version of a problem in NP[{)Co-NP.
On any fixed input, either M has an
accepting path or N does. For certain
dramatically compressible inputs, say
those consisting mostly of 0’s, the
problem of deciding which machine
accepts will be in NTIME [Co-

NTIME polynomial in the compressed

35

length, and thus, by our assumption,
finding some accepting path will be
feasible in time polynomial in the
compressed length.

Formally, let T be the following
NPTM: T has two inputs: a length n
(in binary) and a sequence b,, .. b,
where b,<n. T non-deterministically
choses one of M or N, and simulates,
again, non-deterministically, a compu-
tational path for the machine chosen,
say M, on an input of length n. When
M asks about place i of the input, T
checks whether i is an element of the
sequence b;,..b,. If so, the simulated
answer is 1; if not, 0. Clearly, T
accepts iff either M or N accepts the
input of length n which is 1 in the
places mentioned in the sequence, and
0 elsewhere; i.e., T always accepts.
Thus, by our assumption, it is possible
in polynomial time (in n and k) to find
an accepting path for T, which will
yield a corresponding path for either
MorN.

Our polylog algorithm to recog-
nize Ly follows the basic outline
sketched above. We let n be the
length of the input, and initialize the
sequence b,,..b; to the empty sequence.
We find an accepting path for T on
this input, and query in all places
mentioned along this path. We update
the sequence b; to include all the 1’s
found in the querying process. We
repeat 2-polylog +1 times. We then test
to see whether the last path found is
accepting for M, accepting if it is.

Remark 1
P=NP => TS(poly)€P => P:NPﬂCo
The implications are strict, at least in
relativized worlds.

Proposition 4.2:There are oracles A,B
such that

i) PA=NP4(Co-NP4,
TS (poly) € P4,

ii) TS(poly)€P5B, but PB = NP5,
Proof: The intuition behind the con-

but

—-NP,

struction of oracle A is as follows:
Assume there is an onto one-way func-
tion f from 2n bit string to n bits
strings. Then the NTM n which
guessed, on input x, a string y,
lyl=2|%|, accepting if f(y)=x, would
always accept. However , finding such
a y would not be feasible in
polynomial-time Formally, we con-
struct a class of oracles which define
onto functions from 2n bits to n bits
strings. The oracle construction is to
first take an oracle A, with
PA‘=NPA1, then adjoin an oracle A,
which is generic in the above oracle
class. (The class will be a natural
class of oracles in the sense of [BI];
thus it will have generic elements.)

For B, we give what is essentially
the construction in [BGS] of an oracle
relative to which
P=NP()Co—NP=NP. Call an oracle
linearly sparse if it has at most one
element of any length. The class of
linearly sparse oracles is a natural
class, and thus has generic elements.
Let B consist of any oracle A with
PA=NP4, together with a generic
linearly sparse oracle L. Let T be any
NPTM with oracle B which always
accepts. (From now on, we treat A as
"background"; i.e., we treat T as hav-
ing oracle L, and assume P=NP in
the "real" world; i.e, complexity rela-
tive to A.) L will then have a finite
prefix 1 forcing T to always accept; i.e.,
T with any linearly sparse oracle L’
agreeing with 1 always accepts. On
input x, we find an accepting path for
T as follows: first, find an accepting
path for T on x with the oracle L’
which is 0 on all strings not in 1.
Check to see if all places in the oracle
queried by T are in fact consistent
with L. If so, we have found an
accepting path for T on L; if not, we
have found at least one string in L
which is not in L’; update L’ accord-
ingly. Since L’ is always a subset of
L, and since L has at most n elements

36

of length <= n, we can repeat this
process at most poly(|x|) times, where
poly is a time bound for T, before we
find an accepting path. Since L’ never
exceeds poly(|x)) + c elements, and
since P=NP relative to A, each phase
of the algorithm can be done in poly-
nomial time.[]

Remark 2:We can define the
TS (polylog) € DPL question analogously
to TS(poly)éP. Somewhat surpris-
ingly, the polylog version of this ques-
tion is simply false, regardless of com-
plexity assumptions.

Proposition 4.3 TS (polylog)€DPL

Proof:From Ramsey theory [GRS], we
know that every graph on n nodes has
either a clique or an independent set
of size at least 1/2logn. On the other
hand, we know that there exist graphs
on n'* nodes without such cliques or
independent sets. Thus a machine

which treats inputs of size [’2‘] as
graphs on n nodes, guesses nondeter-
ministicly 1/2logn nodes, accepting if
they form a clique or independent set
has an accepting path on every input.
However, the existence of large graphs
without 1/2logn cliques or independent
sets leads to an adversary argument
showing that an deterministic algo-
rithm must examine at least Q(n!/%
bits of the input before finding the
desired clique or independent set.

This argument also shows that
Proposition 4.4: For G generic
TS%(poly)€PC.

This leads to an oracle construction
showing that it is improbable that
DPL=NPL () Co-NPL implies
TS (poly)€P:

Proposition 4.5: There exists an ora-
cle O, such that

DPLO=NPL? (" Co—NPL?,

but TS (poly)€P°

Proof: If A and B are oracles, let
A®B be the oracle defined by
A®B(1,x)=A(x) and A®B(0,x)=B(x).
Let O be any oracle of the form A®G
where PA=NP4 and G is generic with
respect to A. From proposition 4.4
relativized to A we have TSO¢P?. Let
H be an oracle generic with respect to
O0=A®G. Then G®H is generic with
respect to A, and so since P4=NP4,
from a relativized version of theorem
2.3 we have that

PA$(G$H)=NPA BGBH) nCO —NPA(B(G@H).

In other words, in the world of O, a
generic oracle H makes
PH=NP*(Co-NPH#. Thus, from
Theorem 2.2 relativized to O, we can
conclude that

DPL®=NPL° (Co—NPLP.

For the same construction and by
similar arguments we have
Proposition 4.6: There exists an ora-
cle O such that

DPLO=BPPL? , but P°=NPC,

5. Conclusions and Open Problems

Our results show that sub-linear
time computation has enough power to
code interesting questions in
polynomial-time complexity. Perhaps
this is true of other "low-level" com-
plexity classes. If this is a general
phenomenon, it would be a damper on
a current research program, in which
researches hope to gradually separate
classes "from the bottom up", with
ever more powerful combinatorial
techniques. On the other hand, an
eternal optimist might claim that
these results suggest a hope that a
separation of P from NP is within our
grasp.

A broad issue our research sug-
gests is the question of what other
consequences collapses of high level
complexity classes have on low level

3

classes. The nearest parallel we are

aware of is the result of
Hartmanis,Swelson and Immerman
[HSI83], stating that E=NE is

equivalent to the non-existence of
sparse sets in NP-P.

Another line for future inquiry, is
whether we can weaken the assump-
tions under which downward closures
occur. Specifically, does
P=NP()Co-NP imply
DPL=NPL{)Co~NPL ? The current
assumption seems not much stronger
than P=NP()Co-NP We have no
oracles relative to which
P=NP(\Co—NP or P=BPP, yet the
corresponding collapses fail to occur.

6. Acknowledgements

Discussions with Leonid Levin
and Umesh Vazirani lead to this
research.

7. References

[A] M. Ajtai, Z,'~ formulae on finite
structures, Pure and Apllied
Logic, 24, (1983), pp. 1-48.

[Bl L. Babai, Trading Group theory
for Randomness, Proc. 17th
STOC, (1985), pp. 421-429.

{BGS]

T. Baker, J. Giil and R. Solovay,
Relativizations of the P=NP
question, SIAM J. on Computing
4, (1975), pp. 431-452.

[BI] M. Blum and R. Impagliazzo Gen-
eric Oracles and Oracle Classes,
Proc. 28th FOCS, (1987).

[CKS]
A. Chandra, D. Kozen, L. Stock-
meyer, Alternation, Journal of
the ACM 28 (1981), pp. 114-133.

[FSSIM. Furst, J. Saxe and M. Sipser,
Parity circuits and the polyno-
mial time hierarchy, Mathemati-
cal System Theory, 17, (1984), pp.
113-28.

[GRS]
R. Graham, Rothshild and J.
Spencer, Ramsey Theory,Wiley,
New-York, 1980.

[(HH]}J. Hartmanis and L. Hemachan-
dra, One-way Functions, Robust-
ness, and the Non-Isomorphism of
NP-complete Sets Structure in
Complexity Theory, 1987

[HSI}J. Hartmanis, V. Sewelson and
N. Immerman, Sparse Sets in
NP-P : EXPTIME vs. NEXP-
TIME, Proc 15th STOC, (1983).

[Ku]S. Kurtz, Notions of Weak Gener-
icity, J. of Symbolic Logic, 48, 3,
(Sep. 83), pp. 724-743. (1983)

[N] N. Nisan, Probabilistic vs. Deter-
ministic Decision trees and
CREW PRAM Complexity,
Manuscript, UC Berkeley, (1987).

[R] L. Ruzzo, On Uniform Circuit
Complexity, Journal of Computer
and Systems Sciences 22 (1981),
pp. 365-383.

[SW]Probabilistic Boolean Decision
Tree and the Complexity of

Evaluating Games, Proc. 27th
FOCS, (1986), pp. 29-38.

[Y1] A.C. Yao, Probabilistic Computa-
tions: Toward a Unified Measure
of Complexity, Proc. 18th FOCS,
(1977).

[Y2] A.C. Yao, Separating the Polyno-

mial Time Hierarchy by Oracles,
Proc. 26th FOCS, (1985) pp. 1-10.

38

