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1. Introduction

Recently, there have been a number of results that
show that certain NP-hard problems cannot be ap-
proximated in polynomial time [2,3,8,11,12,16]. For
example, it is now known that, if there is a polyno-
mial-time function that approximates the size of the
largest clique of G, w(G), within a factor of n®,
then P = NP. There are upper bounds on &,; but the
best value is unknown.

Our main result is the observation that there is a
fundamental connection between these results and
certain Ramsey-like results [7,10,13], This seems to
be surprising. Roughly the connection shows that if
certain approximation problems are NP-hard, then
either co-NP has ‘‘feasible’’ proofs or certain Ram-
sey results are true. It is, of course, believed that
co-NP does not have polynomial size proofs. How-
ever, by ‘‘feasible’’ proofs we mean proofs that are
at most n®°&") Jong This is still a reasonable
assumption.

These Ramsey results are interesting in their own
right. Moreover, they appear to be difficult to re-
solve independently [15]. Of course, if they are
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eventually shown to be false, then we would have
either proved that co-NP has feasible proofs or that
certain approximation problems are not NP-hard.
Either case would be interesting.

In order to state our results, it is natural to
introduce a new concept: the notion of an NP-hard
pair of sets. This new definition allows us to simply
state the known results about hard approximation
problems. Further, it makes the connection with
Ramsey theory easy to establish. The notion of an
NP-hard pair is related to an old concept from
recursion theory of effectively inseparable sets [14].

2. Definitions

We need a ‘‘Ramsey’’-like function [13]. It is
essentially the functional inverse of the usual one.
For a graph G, define R(G) to be the size of the
largest **‘monochromatic’’ clique that must appear in
any 2-coloring of the edges of G. Recall that a
monochromatic clique is one that has all its edges
colored in the same way. Clearly, R(G) is at most
w(G) since the maximum is over the cliques of G.
The usual Ramsey theorem is just the statement that
R(K ) is unbounded as a function of m. K, denotes
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the complete graph on m vertices. It is known that
R(K,) is ©(log(m)) [10].

We can as usual extend this Ramsey function to
I-colorings of ¢ cliques instead of 2-colorings of 2
cliques, i.e. edges. A monochromatic clique is now
required to have all its ¢ subsets colored in the same
manner. Then, define R{’(G) to be the size of the
largest monochromatic clique in any I-coloring of its
t cliques. Clearly, R(G) = RP(G). Again RYX(K,)
is known to be unbounded as a function of m. It
grows at most O(log(m)). Even stronger, for ¢ large
it behaves like an iterated logarithm [10].

As usual NP denotes the class of nondeterministic
polynomial-time sets and co-NP denotes those sets
whose complements are in NP. SAT is the NP-com-
plete set of satisfiable formulas in disjunctive normal
form. Also NTIME(t(n)) is the sets accepted in
nondeterministic time #(n) [4,5]. Say that a set is
fln)-sparse if for each n, there are at most f(n)
elements in the set of size n. Let NTIME((n))/f(n)
denote the sets accepted by nondeterministic ma-
chines that run in time #(n) and have access to an
oracle that is f(n) sparse. Let .#" denote the sets in

NTIME( n®""™) /(log log(n)).

Our assumption is that co-NP does not lie in 7"
Given our current understanding of complexity the-
ory it would certainly be surprising if this assump-
tion was false.

Finally, say that a pair of disjoint sets (A, B) is
an NP-hard pair provided for any L in NP there is a
polynomial-time computable function g so that the
following are true:

(1) for each xe L, g(x) € A;

(2) foreach x¢ L, g(x) €B.

Note, if L is NP-complete in the usual sense of
many-one polynomial-time reduction, then (L, L) is
an NP-hard pair. The new approximation results are
statements that certain pairs are NP-hard. Let s(n)
and b(n) be functions. Define the following sets:

Sss(n)={G|w(G) <S(")’ n= |G|}
and
S um={Glw(G)>b(n), n=|Gl}.

Then, it is of course classic that (S, , 3, S¢,,5-))
is an NP-hard pair. On the other hand the new results
[2,3,8,11,12,16] show that (S, ., Sc ) is an

NP-hard pair for b(n)=n?® and s(n)=n® where
0, > 8, are known constants.

3. The main result

Qur main result assumes, as stated earlier, that
co-NP does not lie in the class 7.

Main Theorem. Suppose that (S, ). S¢ ) is an
NP-hard pair for some functions b(n) and s(n).
Also suppose that | > 1 and t are fixed. Then, for
arbitrarily large n, there are graphs G, on n ver-
tices so that (G, < s(n) and R{NG)) >
RI(K 4 )-

Thus, the graphs G, have only small cliques yet
from the point of view of Ramsey theory they ‘‘look”
like they have large cliques.

Before we proceed with the proof of this theorem
we will first prove a number of simple facts about
NP-hard pairs.

Lemma 1. The pair of disjoint sets (A, B) is NP-
hard if and only if there is a polynomial-time com-
putable function g such that the following are true:
(1) for each x € SAT iff g(x) € A,
(2) for each x & SAT iff g(x) € B.

Proof. Routine from the definition. [

Define A C B provided A — B is finite, i.e., pro-
vided all but a finite number of elements from A are
in B.

Lemma 2. Suppose that (A, B) is an NP-hard pair.
Also suppose that L is a non-empty set such that
ANL=@ and BC L. Then, (A, L) is an NP-hard
pair.

Proof. Just modify the reduction to avoid the finite
part of B that is not contained in L. O

Lemma 3. Suppose that ( A, B) is NP-hard and that
B is in . Then, co-NP is contained in V.

Proof. Follows directly from the definition of #
and from Lemma 1. O
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Proof of the theorem. The key is the set L defined
by

L={GIRP(G) <R{(K,,), n=1Gl}.

We first claim that L is in .#". Suppose that G is an
n-vertex graph. Guess an [-coloring of the ¢ cliques
of G. Since ¢ is fixed this can be done in polynomial
time. Now assume that r=R{"’(K,) is known.
Since it is at most O(log(n)) this can be encoded in
an oracle that is log log(n) + O(1) sparse. Find the
largest monochromatic clique of size <r. Let its
size be gq. If g <r, then conclude that G is in L.
Clearly, this last step can be done in time at most
n™" which is at most %" Thus, L is in /.

We claim next that (S, ,,,, L) is not an NP-hard
pair. If it was, then by Lemma 3, it follows that
co-NP is in .#". Since we have assumed that this is
false, it follows that it is not an NP-hard pair.

Clearly, S, ;) and L must be disjoint: if G has a
clique of size at least b(n), then R{AG) >
RY(K ). Thus, (S, ., L) satisfies the first part
of the definition of an NP-hard pair. Thus, by Lemma
2, S_ nEL must be false. Otherwise, (S, ,,, L)
would be an NP-hard pair. Thus, there must exist an
infinite sequence of graphs G,.G,,... so that
o(G,) < s(n) and RIAG,)> RV(K,, ). This
proves the theorem. O

4. Extensions

It is possible to extend the theorem so that the
graphs G ““work’’ for more than one /> 1 and ¢. It
is easy to see that the following is true:

Theorem. Suppose that (S, . S_ ) is an NP-
hard pair for some functions b(n) and s(n). Then,
for arbitrarily large n, there are graphs G, on n
vertices so that for all 1 <1< O(log”(n)), and t <
O(log*(n)), w(G,) < s(n) and R{NG,) >
R(K ).

The proof is the same except that now we must
assume that co-NP does not lie in

NTIME( n®(°¢") /O(log " (n) log log( n)).

This theorem is clearly much stronger: a graph G
must work for all nontrivial colorings of edges or
triangles and so on up to cliques of size O(log *(n)).

One weakness of these results is that we have
only proved that there is a graph G, for an infinite
number of n’s. It is possible to improve this by
making a stronger assumption about co-NP. The
assumption we now need is that if TAUT (the set of
unsatisfiable formulas) is accepted by a Nondeter-
ministic Turing Machine, then it must take time at
least n*0°¢™) for an infinite number of n. These
machines have access to an O(log*(r) log log(n))
sparse set. Under this assumption it follows that the
following is true:

Theorem. Suppose that (S ). S, ) is an NP-
hard pair for some functions b(n) and s(n). Then,
Jor all n large enough, there are graphs G, on n
vertices so that for all 1 <1< O(log”(n)), and t <
O(log* (n)), w(G,) < s(n) and R{(G,) = R{ (K .

5. Discussion

The central question is: What do these results
‘““mean’’? What do they say about the relationship
between Ramsey Theory and Complexity Theory?

It seems interesting that the Ramsey results are
“‘pure’’ questions of combinatorics. They do not
encode computation in any obvious way. Indeed,
they are quite natural questions. For example, it is
known that for any k there exists a graph G on n
vertices so that o(G) = k and R(G) = k. Thus, there
is a graph with only small cliques of size %, yet in
any 2-coloring of the edges of G, there is a
monochromatic clique of size k. The problem with
the known constructions of such graphs is that they
appear to require very large n as a function of & [10].
Thus, they are not counterexamples to our Ramsey
results.

Thus, the key question is whether or not the
Ramsey results are true without any complexity hy-
pothesis. If they are shown to be false, then our
results would be very important. Either, they would
show that our complexity assumptions about co-NP
are false or that certain approximation problems are
not intractable. Either would be quite interesting.

Thus, the critical question that must be resolved is
whether or not the Ramsey questions have a simple
direct proof, i.e. whether or not there are graphs
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graphs G, on n vertices so that w(G,) < s(n) and
RYNG,) > R{XK ). Szemeredi [15] has remarked
that the general case of this question where ¢ > 1
appears to be quite difficult. The reason is that our
understanding of such Ramsey functions is fairly
weak. The current situation is that for such Ramsey
functions there is an exponential gap between the
upper and the lower bounds [10]. This gap may make
proving that these graphs do not exist difficult or
even impossible. Recently, Alon [1] has also stated
that such results may be quite impossible to prove or
disprove.

The situation is somewhat different for r=2.
Here the upper and lower bound on the Ramsey
function is tighter: it is known that R(K,) grows at
least as fast as ¢, log(m) and at most as fast as
¢, log(m) for constants ¢, < c,. However, even this
smaller gap should make resolving the Ramsey ques-
tions for b(n) much larger than s(n) difficult.
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