Languages Defined With Modular Counting
Quantifiers

Howard Straubing

Computer Science Department
Boston College
Chestnut Hill, MA 02167
Tel.: (617)-552-3977
e-mail:straubin@cs.bc.edu

Abstract. We prove that a regular language defined by a boolean com-
bination of generalized X;-sentences built using modular counting quan-
tifiers can be defined by a boolean combination of X';-sentences in which
only regular numerical predicates appear. The same statement, with
“X1” replaced by “first-order” is equivalent to the conjecture that the
non-uniform circuit complexity class ACC is strictly contained in NC?.
The argument introduces some new techniques, based on a combination
of semigroup theory and Ramsey theory, which may shed some light on
the general case.

A preliminary version of this paper appeared in the Proceedings of the
1998 STACS conference.

1 Background

1.1 Lower bounds questions for small-depth circuit families

This paper was motivated by some open problems about the computational
power of families of boolean circuits. As it turns out, we will not mention circuits
at all after this introductory section. Nonetheless, our main result represents a
positive contribution toward the resolution of these problems.

For the moment, we define a circuit with n inputs to be a directed acyclic
graph with 2n source nodes (labeled 0,1,z1,T1,...,Zn,Ty) and a single sink
node, with all the nodes other than the sources labeled AND or OR. The size
of the circuit is the number of nodes, and the depth of the circuit is the length
of the longest path from a source to the sink. A circuit C computes a function
fe :{0,1}™ — {0,1} as follows. Given a; - -a, € {0,1}", we assign the value q;
to the node z;, and 1 — a; to the node 7;. Each node other than a source node
is assigned the conjunction or disjunction of the values of its predecessor nodes,
depending on whether the node is labeled AN D or OR. Since there are no cycles
in the graph, this procedure assigns a well-defined boolean value to every node
in the circuit; fc(aq ---ay) is the value assigned to the sink node.

Ordinarily we talk about the behavior of families of circuits, consisting of
one circuit for each input length n. A family {C,},>0 of circuits recognizes the
language

{w e {0,1}*: fe,, (w) = 1}.

AC? is the name given to the class of languages recognized by families of circuits
whose depth is bounded above by a constant and whose size is bounded above
by a polynomial in n.

What can we do in AC®? We can compare two numbers in binary—that is,
AC? contains the set of strings a,_1 - - - agbn_1 - - - b such that the integer whose
binary representation is a,—1 - - - ag is less than the integer whose binary repre-
sentation is b,_1 - - - bg. If we allow the circuits to have more than one output, we
can add two numbers in binary with a polynomial-size family of depth 3 circuits.
We can recognize aperiodic regular languages (see subsection 1.4); in particular,
we can determine whether the number of 1’s in the input string is at least k,
where k is a constant. We can even determine whether the number of 1’s in the
input is at least logn. (This last fact is far from obvious—see Fagin, et. al. [9].)

Furst, Saxe and Sipser [10] and, independently, Ajtai [1] showed that if £ > 1
then the regular language

MODy, ={a1---an € {0,1}*: Y a; =0 (mod k)}

i=1

is not in AC?. Tt follows from this that one cannot perform binary multiplication
in AC?, or determine whether the majority of the input bits are on.

What happens if we build the ability to recognize M ODy, directly into our
circuits? That is, we will allow nodes to be labeled M ODy; the value assigned to
such a node is 1 if and only if the sum of the values assigned to the predecessor
nodes is divisible by k. There are several outstanding open problems concerning
the power of circuits that contain such “modular gates”. Let CC°(k) denote
the class of languages recognized by constant-depth polynomial-size families of
circuits, all of whose nodes are labeled M ODy,.

Conjecture 1. If p is a prime that does not divide k, then MOD,, ¢ CC°(k).

Let CC® = Upso CC(K). (The class CC° has been called “pure-ACC”
elsewhere in the literature.) Let AND denote the language 1* C {0,1}*. The
following conjecture is a kind of dual to the theorem of Furst-Saxe-Sipser and
Ajtai cited above.

Conjecture2. AND ¢ CC°.

We denote by ACC(k) the class of languages recognized by constant-depth
polynomial-size families of circuits in which nodes may be labeled AND, OR, or
MODy. We further set ACC = |J,5, ACC(k). The following is a strengthened
form of Conjecture 1:

Conjecture 3. If p is a prime that does not divide k, then MOD, ¢ ACC(k).

Conjecture 3 implies, among other things, that we cannot determine in ACC
whther the majority of the bits in an input string are equal to 1. (If we could,
then we could do this in ACC(k) for some particular k; but [10] shows that

we can recognize any M OD), by a constant-depth circuit built from AND, OR,
and MAJORITY gates, and thus we would have MOD,, € ACC(k) for all p,
contradicting Conjecture 3.)

All these conjectures are known to hold when k is itself prime or a prime
power. The proof of Conjecture 3 in the prime-power case is due to Smolen-
sky [21]. Smolensky’s methods do not work when % has two distinct prime fac-
tors, and almost nothing is known about the status of the three conjectures
in this case. There are some results for Conjectures 1 and 2 for circuits with
MODy, gates on the input level, and a MOD, gate at the outputs, where p is
prime. (See Barrington, Thérien and Straubing [4], Barrington and Straubing [5],
Krause and Pudlak [15], Grolmusz and Tardos [12].)

1.2 Connections with logic

For a full account of the results cited in this subsection and the next one, see
Straubing [22].

We will use formulas of first-order logic to define properties of strings over a
finite alphabet A. The variables in these formulas denote positions in the string
(that is, integers in the range between 1 and the length of the string, inclusive).
There are two kinds of atomic formulas: First, for each a € A, there is a unary
predicate symbol Q,, where @,z is interpreted to mean ‘the letter in position z is
a’. The second kind of atomic formula is called a numerical predicate—the truth
of v(z1,...,z,), where v is a numerical predicate, depends only on the values
of the positions z1,...,z, and the length of the string, and not on the letters
in those positions. For example, z < y, £ = 1 (mod 2), z + y = length, and
length =0 (mod 3) are numerical predicates of arity 2,1,2 and 0, respectively.

First-order formulas are built from atomic formulas in the usual way by
applying boolean operations and the existential quantifier. (The universal quan-
tifier is obtained from the existential quantifier by negation.) A formula without
free variables is called a sentence. A sentence ¢ defines a property of strings
over A, and the set of all strings over A that satisfy this property is called the
language defined by ¢.

For example, let A = {a,b}. Then the sentence

23y (Quz A Qoy A (z <y))
defines the regular language A*aA*bA*. The sentence

Jz(z + z = length)

defines the set of strings of even length. The sentence

Jz((z + = = length) AVy(y < z ¢ Qay))

defines the nonregular language {a™b™ : n > 0}.

Immerman [14] and Gurevich and Lewis [13] showed that if A = {0,1}, then
the class of languages defined by first-order sentences is precisely the circuit
complexity class AC? introduced in 1.1.

We can give similar logical characterizations of CC°(q) and ACC(q) by in-
troducing a new kind of quantifier. If s > 0, p > 1, we define an equivalence
relation on the set N of nonnegative integers by setting

m=n (mod (s,p))

if and only if either m = n, or m,n > s and m = n (mod p). Every nontrivial
equivalence relation on N that is compatible with addition has this form. We call
s the stem of the equivalence relation, and p the period. Observe that if s = 0,
then this is just the usual congruence modulo p.
The new quantifiers are denoted 3(45?) where s > 0,p > 0,and 0 < i < s+p.
We interpret
El(i’s”’):c¢(a:)

to mean that the number of positions x for which ¢(z) holds is equivalent to
i modulo (s, p). Observe that 351 is the ordinary existential quantifier, and
3(0.1,1) is the negated existential quantifier.

If ¢ > 2, then CCP(q) is the class of languages defined by sentences that use
only the quantifiers 3:0:9) and if ¢ > 1, then ACC(q) is the class of languages
defined by sentences that use only quantifiers of the form 3(:5:9)

Let us make a couple of remarks concerning this last statement. Observe that

dzé
is equivalent to
q
\/ 3@10) g,
i=1
If ¢ < s, then
a(ivsaQ)x¢
is equivalent to .
I zg(x),

where 3=% means “there exist exactly 5", while if i > s, then
F(65:0) g

is equivalent to .
IZ5zp(z) A A0 pg(x),

where 32% means “there exist at least s”. It is easy to express both 3=¢ and 32°
in terms of the ordinary existential quantifier (as long as we have equality in our
language). Thus, we could just as well say that ACC(q) consists of all languages
defined by sentences using only ordinary existential quantifiers and generalized
quantifiers of the form 3(:%:9) which is in fact the form in which this theorem is
stated in [22]. Furthermore, this argument shows that it suffices to work with
the quantifiers 3(49:9) and 319 a5 all the others can be expressed in terms
of these two. The second remark is that the circuit complexity class CC°(2) is
somewhat anomalous, since circuits that contain M OD, gates alone have very

restricted computing power. In fact, the languages definable by sentences that
use only the quantifiers 3(+%2) are precisely those in CC°(4), which is identical
to CC°(2F) for all k > 1.

The theorem of Furst, Saxe and Sipser and Ajtai cited in 1.1 thus asserts
that the languages MOD, for ¢ > 1 are not definable by first-order sentences.
As MOD, is a regular language, it is natural to pose the question of which
regular languages are first-order definable. The answer is given by a result of
Barrington, Compton, Straubing and Thérien [2]: Let us say that a numerical
predicate is regular if and only if it is equivalent to a first-order formula over the
atoms

r<y

and
z =1 (mod q).

For example, the 0-ary numerical predicate
length =0 (mod 2)

is equivalent to
Vy(y <z Az =0 (mod 2)),

and is consequently a regular numerical predicate. The regular numerical pred-
icates form the largest class of numerical predicates such that every sentence
which uses only the numerical predicates of this class defines a regular language.
It is proved in [2] that a regular language is first-order definable (and hence in
AC?) if and only if it is defined by a first-order sentence in which only regular
numerical predicates are used. There is a particularly compelling notation in
which to express this result. Let FO denote the family of languages definable by
first-order sentences (so that in the case of a binary alphabet FO = AC?) and
let FO[Reg] denote the family of languages defined by first-order sentences that
use only regular numerical predicates. Let Reg denote the family of all regular
languages. Then

FO N Reg = FO[Reg].

This result, which holds over any finite alphabet, is proved by appeal to the
circuit lower bounds of Ajtai and Furst, Saxe and Sipser, although the statement
does not itself refer to circuits, only to the definability of regular languages in
first-order logic. It would be of more than passing interest to find a direct proof
of the above equality, since this would give an alternative proof of the circuit
lower bounds.

We conjecture that the analogous equalities hold for classes of languages
defined by sentences containing the generalized quantifiers. This is equivalent to
the conjectures from Subsection 1.1 concerning CC® and ACC. More precisely,
let Mod(s,q) denote the class of languages defined by sentences that use only
the quantifiers 3(»%9) and let Mod(s,q)[Reg] denote the the subclass defined
by such sentences in which only regular numerical predicates are used. Then

Theorem4. Let g > 0. The following are equivalent:
(1) Conjectures 1 and 2.
(2) Mod(0,q) N Reg = Mod(0, q)[Reg].

Theorem 5. Let q,s > 0. The following are equivalent:
(1) Conjecture 3.
(2) Mod(s,q) N Reg = Mod(s, q)[Reg].

1.3 Statement of the main result

One might try to prove an equality of the form

FO N Reg = FO[Reg]

by induction on the quantifier complexity of sentences, beginning with the X'-
sentences. Indeed, if we denote by X the family of languages defined by Xi-
sentences, and by Y';1[Reg] the family of languages defined by X;-sentences that
use only regular numerical predicates, then

Y1 NReg = Y1[Reg].

The rather simple proof (see [22]) directly transforms a ¥;-sentence for L into an
equivalent sentence which, if L is regular, contains only regular numerical predi-
cates. The analogous identity is true, by complementation, for IT;-sentences, but
to extend this even to general boolean combinations of X;-sentences is already
a very difficult problem.

We generalize the notion of X';-sentences to our new quantifiers as follows:
We can write formulas in which we quantify over k-tuples of positions rather
than over individual positions. Thus

36 (zy, . k)P, - -, k)

means ‘the number of k-tuples of positions satisfying ¢ is congruent to ¢ mod-
ulo (s,p)’. If ¢ is quantifier-free, then we call such a formula a generalized X -
formula. Observe that while for ordinary X;-formulas,

Nx1,y ..., z)0
is equivalent to

dxy13dxs - - - g,

the precise analogue is not true for the generalized quantifiers. Nonetheless,
generalized quantification over k-tuples can be expressed in terms of generalized
quantification over individuals. For example, in the case k = 2,

3(4:5,p) (z1,22)

is equivalent to
s+p—1

\/ /\ 3Gp) g, 30 52) gy .

j=1

where the disjunction is over all sequences (i(1),...,4(s +p — 1)) such that

s+p—1

i=) i(i)-j (mod (s,p)).

i=1

Thus, quantification over k-tuples does not introduce any new operations.
Let us denote by XZ{*P) the class of languages defined by generalized -

sentences of modulus (s,p), and by BEF"” the class of languages defined by
boolean combinations of such sentences. As usual, we use the suffix [Reg] to in-
dicate the restriction to regular numerical predicates. Here is our main theorem.

Theorem 6. For all s > 0,p > 0,
BE{®” N Reg = BX{*P[Reg].

For the case of (1,1)-quantification, this answers the question raised above
about the boolean combinations of ordinary X-sentences; this case was proved
independently by Maciel, Péladeau and Thérien [17] using quite different tech-
niques. A theorem very close to the s = 0 case of Theorem 6 appears in [4], using
an argument that has some points in common with the proof we give here. Our
proof relies on a combination of semigroup theory and Ramsey-style combina-
torics. The important connection to semigroup theory is discussed in the next
subsection.

1.4 Connections to algebra

We remarked above that if we had a direct proof of the equality

FO N Reg = FO[Reg]

then we could prove the circuit lower bounds of [1] and [10] directly. This is
because we can give a precise characterization of the languages in FO[Reg]
in terms of semigroup-theoretic invariants of regular languages. Similarly, we
can precisely characterize the classes Mod(s,q)[Reg] in semigroup-theoretic
terms, and thus we possess an effective means for determining whether a given
regular language belongs to any of these classes. (See Barrington, Compton,
Straubing and Thérien [2] and Straubing [22]). In particular, we can show that
MOD, ¢ MOD(s,q)[Reg] if p is a prime that does not divide ¢, and that
AND ¢ MOD(0, q)[Reg].

The use of finite semigroups in circuit complexity originates in the work
of Barrington [3] and Barrington and Thérien [6], who introduced a model of
computation called a program over a finite monoid. For purposes of the present
paper we will give a somewhat different definition of these programs, due to
Péladeau, Straubing and Thérien [18] and indicate their connection with the
Barrington-Thérien model.

Let A be a finite alphabet, and let k,n > 0. If w = a1---a, € A™ and
I={(i1,...,ir) € {1,...,n}*, then w(I) denotes the k-tuple (a;,,...,a;) € AF.

A k-program over a finite monoid M associates to each I € {1,...,n}*

fr : Ak — M. The value of the program on w € A" is

I fw)enm,

Ie{l,...,n}*

a map

where the k-tuples are ordered lexicographically. (In our application in this pa-
per, M will be commutative, so the ordering is irrelevant.) Ordinarily, we con-
sider families of k-programs over M, consisting of one program over M for each
input length n. The family of programs thus computes a map F : A* — M. (For
n = 0 we always take the program’s value to be the identity of M.)

We can also view k-programs as language recognizers. Let X C M. A family
of programs over M, with X as the set of accepting values, accepts a string
w € A* if and only if F(w) € X. Barrington and Thérien give the following
definition: Let M be a finite monoid, A a finite alphabet, and n > 0. A program
over M consists of a sequence of instructions

(ilafl)a R (ir:fr):

where each 4; is in {1,...,n} and each f; is a map from A to M. The value of
the program on w =ay ---a, € A" is
T
I #i(as;)-
i=1

In the present paper, we shall call such a program a BT-program. Barrington and
Thérien characterized various circuit complexity classes in terms of polynomial-
length families of BT-programs. While k-programs are not precisely the same
thing, any polynomial-length family of BT-programs over M can be simulated by
a family of k-programs over M, for some k. Conversely, any family of k-programs
over M can be simulated by a polynomial-length family of BT-programs over
M', where M’ is strucutrally very close to M. (See [18].) This enables us to
reformulate the algebraic characterizations of circuit complexity classes in terms
of the k-program model. We state these in the next theorem, without proof, as
they are not required for the proof of Theorem 6.

In the statement of the theorem below, we use the following terminology: A
finite monoid M is aperiodic if it contains no nontrivial groups, and solvable if all
the groups it contains are solvable groups. NC! denotes the family of languages
recognized by families of circuits built of two-input AN D and OR gates, whose
depth is bounded by O(logn).

Theorem 7. Let L C {0,1}*.

(a) L € AC° if and only if L is recognized by a family of k-programs over a finite
aperiodic monoid.

(b) L € CC°4q) if and only if L is recognized by a family of k-programs over a
finite solvable group whose cardinality divides a power of q.

(¢) L € ACC(q) if and only if L is recognized by a family of k-programs over a
finite solvable monoid in which the cardinality of every group divides a power of
q.

(d) L € NC' if and only if L is recognized by a family of k-programs over a
finite monoid.

We prove our main theorem by first establishing a rather technical lemma
about the computational power of k-programs over finite commutative monoids.
This will be carried out in the next section. In Section 3 we will translate this
lemma into our model-theoretic Theorem 6. Section 4 presents some other con-
sequences of the lemma and discusses the prospects for an eventual resolution
of the Conjectures 1, 2 and 3.

2 Programs over Finite Commutative Monoids

2.1 A congruence on A*.

A congruence on an algebraic structure is an equivalence relation that is com-
patible with the operations on the structure. The set N of nonnegative integers
with the operations of addition and multiplication forms a commutative semir-
ing (i.e., a system with operations of addition and multiplication that satisfy
the commutative, associative and distributive laws), and the relation of congru-
ence modulo (s,p) defined above is a congruence on this semiring. In fact, all
congruences of finite index on the semiring N have this form. We write N ,
to denote the quotient of N by this congruence. N, , is itself a commutative
semiring, and any commutative monoid M (a monoid is an algebraic structure
with an associative operation and an identity element for the operation), with
its operation written additively, that satisfies the identity

(s+p)-z=s-2

for all x € M is a semimodule over this semiring. (s - £ means the sum of s
copies of x.) As usual, if A is a finite alphabet, then we denote by A* the set
of all strings over A, and by AT the set of all nonempty strings over A. A* is a
monoid, and AT a semigroup, with concatenation of strings as the operation.

Let w € A*, and v = a3 - - - ag, with each a; € A. We say v is a subword of w
if

w e A*a A% - apA*.

(This somewhat unusual terminology is from Eilenberg [8]. When the letters of
v occur consecutively in w, so that w € A*vA*, we say v is a factor of w.) An
occurrence of v as a subword of w is a factorization

W = woa1W1q * - AWk,
with each w; € A*. The signature of this occurrence is the bit string

g = b01b1 s 1bk,

where b; is the empty string whenever w; is the empty string, and b; = 0 whenever
|U),'| > 0.

Example. Consider the boldfaced occurrence of the subword aba in the word
aaabbba. The signature is 01101. In aaabbaaaaa, the signature is 0101010.

Let w € AT, v € AT, Ju| < k, and let o be a bit string with |v| 1’s and
without two consecutive occurrences of 0. We denote by ¢(w, v, o) the number
of occurrences of v as a subword of w with signature o.

We define wlﬁg,pwg if for all v with |v| < k, and all signatures o,

c(wr,v,0) = c(wa,v,0) (mod (s,p)).

This is obviously an equivalence relation on A of finite index. It is also a congru-
ence; to see this, let a € A, w € A*. If v occurs as a subword of aw with signature
o, and o = 17, then v = av’, for some v', and c¢(aw,v,0) = c(w,v’, 7). If, on the
other hand, ¢ = 017, then ¢(aw,v,0) = c(w,v,17) + ¢(w,v,0). In either case,
we have w10% w, implies aw,0¥ jaw,. Similarly, w,6% jw, implies w1a6% jwa.
Thus if w1 6% ;wy and v16% jva, then wyv10% jwyvs, so % is a congruence.

We will use the symbol 0’;’1) to denote not only the congruence, but the
homomorphism from A+ onto the quotient semigroup by this congruence.

2.2 The computing power of k-programs over commutative monoids

In this subsection we state a technical lemma about the computing power of
k-programs over finite commutative monoids. This is, in effect, an algebraic
formulation of our main theorem. Let S be a finite semigroup, and let ¢ : At — S
be a surjective homomorphism. We say that a family of k-programs over a finite
monoid M simulates ¢ if whenever wy,wy; € A* have the same length, and
the program for inputs of this length has the same value on w; and ws, then
d(w1) = ¢(ws). In effect, we can use the program to determine the product of a
sequence of elements of S.

Let M be a finite commutative monoid. We will write the operation in M
additively. Since M is finite, there exist s > 0,p > 0 such that for all x € M,
(s+p)-x=s-z. As noted in Subsection 2.1, this makes M a semimodule over
Ns p.

It is easy to see that we can simulate the natural homomorphism from A+
onto AT /0’;1, by a family of k-programs over such an M : We take one copy of
N, p for each pair (v,0) where v is a string of length no more than &, and o is
a signature with |v| 1’s, and we set M to be the direct sum of these copies. For
each subsequence of {1,...,n} of length no more than k¥ we arbitrarily choose
a single k-tuple from {1,...,n} whose elements are exactly the elements of the
subsequence. Given a k-tuple I of positions in a word of length n, the program
map fr gives the identity of M if I is not one of the chosen representatives. If T
is one of the chosen representatives, then it represents a subsequence with some
signature o. If v is the subword occupying this sequence of positions, then the

program map fr emits 1 in the component corresponding to (v, o), and 0 in the
other components.

Let t > 0,¢ > 0. Define a homomorphism A;, : A* — N;, by mapping
each word w to |w| mod (¢,q). Observe that for any finite monoid M with at
least t + ¢ elments, a family of k-programs over M can trivially simulate the
homomorphism A 4.

We claim that, subject to certain conditions, the only homomorphisms that
M can simulate with k-programs are, in effect, combinations of the two homo-
morphisms above.

Here is a precise statement of this claim: Suppose that the homomorphism
¢ : AT — S maps the alphabet A itself onto S (i.e., $(A) = S) and let us
also suppose that S = S? = {st : s,t € S}. Suppose that M, as above, is
a commutative monoid satisfying the identity (s + p) - = s-x. Let T, =
(¢ x 6%)(A") (so that T, is a subset of S x A*/6%). There exist t > 0,¢ > 0
such that Ty = Ti4,, because of the finiteness of S x At/ Ofip. It follows that
whenever 11 =72 (mod (t,q)), then T}, = T,,.

Theorem 8. Let S be a finite semigroup and let ¢ : AT — S be a homomorphism
simulated by a family of k-programs over a commutative monoid M that satisfies
the identity (s +p) -x = s - z. Suppose p(A) = S and S? = S, and let r,q be as
above. Then ¢ is refined by 6%) x Ay .

We will give the proof of this theorem in the next three subsections.

2.3 Step 1: Setting the stage

To prove Theorem 8, we need to show that if

(eg,p X)\t,q)(v) = (ag,p X)‘t,q)(w)7

then

$(v) = p(w).
Since |w| = |v| (mod (t,q)), we have T},| = T},, and thus there exists v’ such
that |v| = |v'|, and

(6 x 65,)(v") = (¢ x 65 ,) (w).
In particular, v§% v'. We need to show ¢(v) = ¢(v'), from which it will follow
that ¢(v) = ¢(w).
Let us write
V=ay- - Gy,

and
! ! !

v'=ay---a,,.
Our hypothesis about ¢ and S implies that for each @ € A and each ¢ > 0 there
exists a string o, of length ¢ such that ¢(a) = ¢(ag,.). We will show how to
construct strings

V= Qay,ky " Aa,,k

m?

and

V= o k- Qar s
such that the program for words of length |[V| = |V’| has the same value on V
and V'. This implies ¢(V) = ¢(V'), by hypothesis, and thus ¢(v) = ¢(v').

2.4 Step 2: Families of intervals, signatures, and colorings

Let m = |v| = |v'| as in the preceding subsection. We will choose n much larger
than m (exactly how large will be specified later). An interval in {1,...,n} is a
subset K of {1,...n} such that whenever z < y < z are integers with =,z € K,
then y € K. We will use the usual notation of open and half-open intervals to
denote these—for example [a,b) = {z : a < < b}—but with the understanding
that we mean the set of integers x such that a < x < b.

A subset U = {p; < --- < p.} of {2,...,n} partitions {1,...,n} into a set
of r + 1 disjoint non-empty intervals

[Po = l,pl); [pl,pz), ceey [pr,pT_H =n+ 1).

We denote a subset F of of this set of intervals by its signature o(F); this is a
string of 0’s and 1’s of length r + 1 that has 1 in the i*" position if and only
if [pi, pi+1) is in F. We are only interested in subsets F in which every one of
the elements of U is included as an endpoint of at least one of the intervals in
F—this is equivalent to requiring that o(F) not contain two consecutive 0’s,
exactly like the signatures of occurrences of subwords introduced in 2.1. We call
such a family F an admissible set of intervals.

Thus each set U C {2,...,n} with |U| = r gives rise to a bijection Zy
between bit strings of length r + 1 without two consecutive 0’s and admissible
(with respect to U) families of disjoint intervals of {1,...,n}. Note that if we
are given a family F of intervals in {1, ...,n}, and the value of n, we can deduce
the unique set U that makes 7 admissible, and we can then compute o(F). Note
also that for a given signature 7, o(Iyy (7)) = 7.

Example. Let U = {2,4,7}, n = 8. Then Zy(0101) = {[2,4),[7,9)} and
IU(]-]-O]-) = {[172)3 [2a4)7 [77 9)}

Example. Again with n =8, let F = {[2,3),[3,4),[5,7)}. For this to be admis-
sible, we must have U = {2, 3,4, 5,7}, and thus o(F) = 011010.

A k-tuple I € {1,...,n}* is said to be compatible with a family F of intervals
if every component of I belongs to an interval in F, and every interval in F
contains a component of I.

Example. If 7 = {[1,4),[4,7)} and k = 5, then (2,4,2,6) is compatible with
F, but (1,2,3,2) and (2,4,2,7) are not.

Let z be the number of intervals of . We will define a map xx from A*
into M, or from A*~! into M. Which of the two domains we choose depends
upon a(}') For families with certain signatures, we will also define a second
map x'r: A* = M.

Case 1. Suppose o(F) begins with 11. This means that for some p > ¢t > 1,
F contains both the intervals [1,¢) and [t,p). In this case the domain of yx is
A*71 Given by ---b,_; € A*71, we define a string w of length n as follows: We
place ay, p—1 in the first p — 1 positions of w. For ¢ > 1, we place ay,,q in the
positions corresponding to the (i + 1)** interval of F, where d is the length of
the interval. The positions of w that do not belong to the intervals of F can be
filled arbitrarily. We then set

XF(b1y- - ban) =D fr(w(

where the f; are the program maps for inputs of length n, and where the sum-
mation is over all intervals I that are compatible with F. Because of the com-
patibility, the arbitrarily filled positions of w do not enter into this summation,
and so xr is well-defined in this case.

Case 2. Suppose o(F) begins with 10. This means that F contains an inter-
val [1,t), but no interval whose left-hand endpoint is ¢. Let p be the left-hand
endpoint of the second interval of F. Now the domain of xr is A*. Given
b1---b, € A%, we define a word w of length n by filling the first ¢ — 1 posi-
tions with the prefix of length ¢t — 1 of a3, p—1. For ¢ > 1 we place ay, 4 in the
positions corresponding to the i** interval of F. The remaining positions of w
are filled arbitrarily. We then set

bl: '7 fo

where again the summation ranges over all k-tuples compatible with xr.

Case 3. The remaining case is where o(F) begins with 01, since a signature
cannot begin with 00. This means that F contains no interval whose left endpoint
is 1. Let t be the smallest endpoint in F, so that ¢ > 1 and F contains the
interval [t,p). Let by ---b, € A*. We now define two words w and w' of length n.
To construct w we fill the positions corresponding to the i** interval of F with
@, .4, where d is the length of this interval. To construct w', we do the same
thing, except we treat the first interval [t,p) differently—we fill these positions
with the suffix of length p—t of a3, p—1. In both words we fill the other positions
arbitrarily, and we set
F(b1,...,b Z fr(w

(b1, ., fo

where the summations range over all k-tuples compatible with F.

Thus our partition set U has given rise to a map Ay on signatures of length
|U|+1. If o begins with 1, then Ay maps o to xx, where F = Iy (0); if o begins
with 0, then Ay maps o to the pair (xr,x's), where again F = Iy (o). Ay is
called the color of the set U. Let |U| = r. Then the number of maps from A*
into M is no more than v(r) = |M ||A|T+1, and so the number of posible colors is
bounded above by 6(r) = y(r)?4l".

2.5 Step 3: Application of Ramsey’s Theorem

Let us recall Ramsey’s Theorem (see [11]): Let m, k,¢ > 0, with £ < m. Then
there exists n = n(m, k,c) such that if all the k-element subsets of {1,...,n}
are colored from a set of ¢ colors, then there exists an m-element subset T' of
{1,...,n} such that all the k-element subsets of T' have the same color.

Here is an extension of Ramsey’s Theorem: Let m, k,c¢1,...,¢x > 0, with
k < m. Then there exists n = n(m,k,ci,...,cx) with the following property: If
all the i-element subsets of {1,...,n}, with 1 < i < k, are colored from a set
of ¢; colors, then there exists an m-element subset T" of {1,...,n} such that for
each 1 < i < k there exists a color k; such that all the i-element subsets of T'
are colored k;. This extension follows from the original Ramsey theorem by an
easy induction on k.

We now apply this extended Ramsey theorem to the coloring defined at the
end of the last subsection. We are given m, the length of the words v and v'.
For any given n,r we have a coloring of the r-subsets of {2,...,n} from a set
of §(r) colors. We now choose n so large that there exists an m-element subset
J of {2,...,n} such that for 1 < j < k, all the j-element subsets of J have the
same color A;.

The set J = {i1,...,im} thus partitions {1,...,n} into the set of intervals

J ={[1,41),--,[tm,n + 1)}.

We now construct the words V, V' described at the end of 2.3. Recall

and

V is formed by placing a4, ,i,—1 in the first 45 — 1 positions, and, for 2 < j < m,

Qa;i;41—i; iD positions ij,...,4;41 — 1. (We make the convention that i,,41 =

n + 1.) V' is constructed in the identical fashion, using g ¢ in place of ag; ;.
The value of the program on V is

> f1v(I),

where the summation is over all k-tuples I from {1,...,n}. As each k-tuple is
compatible with exactly one subset of the set of intervals 7, we can rewrite this

SN AV,
F I

where the outer summation is over all the subfamilies F of J having k or fewer
members, and where the inner summation is over all k-tuples I compatible with
F. Now, given a family F of these intervals, let Tx = {i;, < --- < 4;, } be the
set of left endpoints of F, if F does not contain the interval [1,41). If F contains
the interval [1,71) then we define T'r to contain i; as well as the left endpoints
of the other intervals of F. We set Jr = (j1,...,Jr), that is, the sequence of
subscripts of T'x. Observe that r < k.

Now look at x #(v(Jx)). If Jx does not contain 1, so that F contains neither
[1,41) nor [i1,i2), then this is just the sum of the fr(V(I)) over all I compatible
with F. The same is true if F contains [1,41). The anomalous case is when F
contains [i1,42) but not [1,41) : In this case, the sum of the fr(V (I)) over the I
compatible with F only involves the suffix of a,, ;,—1 of length 45 —i;, whereas to
evaluate xr(v(Jr)) we would place o, ;,—i, in the interval [i1,42). Here is where
we need the alternative function x'r. Let & denote the set of all subfamilies of
J having k or fewer members, and that contain [1,41) or do not contain [i1,%2),
and let U’ denote the remaining subfamilies of J with k or fewer members. We
conclude that the value of the program on V is

D> xFrlI) + D Xr(w(Jx)).
f

Feu eu’

Each term in this sum represents an occurrence of v(Jx) as a subword of v. Let
o be the signature of this occurrence. If o does not begin with 1, then there is
only one family F that gives rise to this occurrence, but if ¢ begins with 1, then
there are three such families.

First, if o begins with 0, then 1 ¢ Jx, so F contains neither [1,4,) nor [i1,i2),
and o(F) = o. Thus the underlying partition set has cardinality |o| — 1, and so,
by the monochromaticity, this occurrence contributes

[A61-1 ()] (v(J5))

to the sum; the superscript (1) indicates that we are applying the first component
of Aj,—1(0), since in this case Aj;—1(0) is a pair of maps. The families F of
this form thus contribute

Y ev,u,0) - [Ajp1(0)]P ()

lul<k

to the sum. (Observe that if u has no occurrences with the signature o, then
c(v,u,0) =0, so we can include this term in the sum.)

If o begins with 1, then F contains either [1,41), [i1,42), or both. Suppose first
that F contains [1,41) but not [i1,42). Then o(F) is obtained from ¢ by changing

the initial 1 to 10, and then coalescing adjacent 0’s, if there are any. (For example,
if F = {[1,i1),[i2,i3),[i4,i5)} with m > 5, then Jr = {1,2,4}, o = 11010,
and o(F) = 101010. On the other hand, if F = {[1,41),[é3,%4), [i4,%5)}, then
Jr=1{1,3,4},0 = 10110, and o(F) = 10110.) Let us denote by [o] the signature
obtained from ¢ in this way. The families F of this form contribute

D e(w,u,0) - Ajg—1([0)]) ()

lul<k

to the sum.
Suppose now that o begins with 1, and that F contains [¢1,43) but not [1,4y).
Then o(F) = 0o. The families F of this form contribute

Y elv,u,0) - [A)4(00)]®) (u)

lu|<k

to the sum.
Finally, if F contains both [1,4;) and [i1,42), then o(F) = 1o, and so these
families contribute
3 e(v,u,0) - A,(10))(u)
lu|<k
The result of this analysis is that the value of the program on V is the sum
over all words u of length no more than &k of

Z C(v7u70) . [A|a|—1(a)](1) (u)7

a€0(0+1)*

and
Z C(v,u,a) 'Po,ua
o€1(0+1)*
where
Py = Ajo] =1 ([0)]) (@) +[451(00)]) (u) + Ay (1)) (w).
Now, the value of the program on V' is precisely the same expression, except
that v is replaced everywhere by v'. But by assumption, ¢(v,u,0) = ¢(v',u, o)
(mod (s,p)) for all u of length no more than k, and all signatures o, and thus
the two values are identical. This completes the proof.

3 Proof of Theorem 6

To prove Theorem 6, we will first show that if a language is defined by a boolean
combination of generalized X;-sentences, then it is recognized by a family of
k-programs over a finite commutative monoid. We then show that if a regular
language L is recognized by a family of k-programs over a finite commutative
monoid M, then we can simulate multiplication in the syntactic monoid of L
by a family of k-programs over a direct product of copies of M. We then apply
Theorem 8 to a subsemigroup of the syntactic monoid of L—this will enable us
to define the classes of the syntactic congruence, and hence L itself, as boolean
combinations of generalized X;-sentences with regular numerical predicates.

Lemma9. Let s > 0,p > 0. L C A* is defined by a boolean combination of
generalized X1 -sentences of modulus (s,p) if and only if L is recognized by a
family of k-programs over a finite commutative monoid M (written additively)
that satisfies the identity (s +p) -z = s - .

Proof. We first prove the ‘only if’ direction; in fact this is the only direction
we need for the proof of Theorem 6. Suppose first that L is defined by a single
generalized X-sentence of modulus (s,p). If a = (a1,...,a;) € A¥, then we
abbreviate the formula /\f:1 Qq;x; by Qax. We can rewrite the quantifier-free
part of the sentence in such a manner that the sentence has the form

J(isp)x \/ (Qax A Rax),

ac Ak

where each R.x is a numerical predicate. Let M be the additive monoid of N, .
If I € {1,...,n}* then we define fr(a) to be 1 if Ra(I) holds in strings of
length n, and 0 otherwise. (Recall that R, depends only on the components of
I and the length of the string.) We take {i} to be the set of accepting values.
Obviously this family of k-programs recognizes L. If L is a boolean combination
of generalized X;-sentences, then it is recognized by a family of k-programs over
a direct product of copies of Ny .

For the converse, suppose L is recognized by a family of k-programs over a
finite commutative monoid M that satisfies the identity (s + p) -z = s - z. As
usual, we denote the program maps by fr. Given a string w € A*, and m € M,
let ¢ (w) € Ny, denote the number, modulo (s,p), of k-tuples I such that
fr(w) = m. L is then a finite union of finite intersections of languages of the
form

Lem ={w € A" : ¢y (w) = ¢},

where ¢ € N, . (The union is over all N ,-linear combinations of the elements
of M whose values lie in the accepting set of the family of k-programs, and
each intersection is over all the elements m of M.) Thus it suffices to find a
generalized X-sentence for each L, ,,. For each a € A* and I € {1,...,n}*, let
Sa(I) be true if and only if fr(a) =m. S depends only on the components of T
and the length of the input string, and is hence a numerical predicate. L. p, is
then defined by the sentence

J(isp) \/ (Qax A SaXx),
acAk
and thus L is defined by a boolean combination of such sentences. This completes

the proof.

If L C A* and w € A*, then the quotient languages w!L and Lw~! are
defined by

w 'L ={veA*:wveL}

and
Lw™ ={ve A*:vw e L}.

Lemma10. Let L C A*, w € A*. If L is recognized by a family of k-programs
over a finite commutative monoid M, then w™'L and Lw™' are recognized by
families of k-programs over M.

Proof. If a language K is recognized by a family of k-programs over a monoid
M, then the language K” obtained by reversing all the strings in K is also
recognized by a family of k-programs over M —we obtain the new program maps
by re-indexing the old program maps. Thus we need only prove the lemma for
Lw™, because w 'L = ((LP)w~')?. Further, we may assume that w consists
of a single letter a, since if |w| > 1, we obtain the quotient Lw~! by repeated
application of this operator. Let {gr} denote the collection of program maps
recognizing elements of L of length n + 1. To each I € {1,...,n + 1}F*! we
associate a k-tuple r(I) € {1,...,n}* as follows: If n + 1 is not a component
of I, then r(I) = I. If n + 1 is a component of I, then we choose for r(I) an
arbitrary element of {1,...,n}* whose set of components is identical to the set
of components of I that are less than n + 1. For each J € {1,...,n}*, we set
fr(w(J)) to be the sum, over all I such that r(I) = J, of g;((va)(J)). Clearly,
f7(w(J)) depends only on the sequence v(J) and not on the other letters of v,
so this is well-defined. The f;, together with the same set of accepting values
used for the gy, give a family of k-programs over M that recognize La™!.

Note that the proof of the preceding lemma used the commutativity of M
in a crucial way. The lemma is true for noncommutative monoids if we increase
the size of the tuples used in the new program from k to k + |w].

We now proceed to the proof of Theorem 6. Let L C A* be a regular language
defined by a boolean combination of generalized X -sentences of modulus (s, p).
By Lemma 9, L is recognized by a family of k-programs over a finite commutative
monoid M that satisfies an identity of the form (s +p) -z =s-z.

Let us recall here the definition of the syntactic monoid of L, denoted M (L).
(See Pin [19] or Eilenberg [8].) Two words w; and wy in A*are said to be con-
gruent with respect to L if and only if for all u,v € A*, wwyv € L if and only
if wwov € L. It is easy to see that this is a congruence on A*, and that the
index of the congruence is finite if and only if L is regular. M (L) is the monoid
of congruence classes, and the map that takes a word to its congruence class is
called the syntactic morphism of L, denoted py. Observe that each congruence
class is a boolean combination of sets of the form w~'Lv~!, and that if L is
regular, there are only finitely many sets of this form. It follows from Lemma 10
that each congruence class, i.e., each set of the form

Ly, ={we A" : pr(w) =m}

is recognized by a family of k-programs over a direct product of copies of M.
Now consider the sets P, = u(A?), for t > 0. These form a finite semigroup
of subsets of ur(A?), and thus there is an idempotent element P, = Py, = P2
That is, S = P, is a subsemigroup of M (L) such that S2 = S. Let B = A",
considered as a finite alphabet. We obtain a homomorphism v : B¥ — S simply

by restricting py, to the strings over A whose lengths are divisible by r. Each of
the sets
K, ={w e B : v(w) = s},

where s € S, is recognized by a family of k-programs (with B as the input
alphabet) over a direct product of copies of M: This is because each k-tuple
of positions in a word over B corresponds to rF k-tuples of positions in the
corresponding word over A, thus we can set each map in the new k-program to
be the sum, over all these r* k-tuples, of the original program maps. If we now
form the direct product of these |S| programs, we obtain a family of programs
that simulates v. We are thus in a position to apply Theorem 8: v is refined by
0’;’1) X At,q- (Keep in mind that the underlying alphabet for this congruence is B,
not A.)

What we have to show now is that each K, is defined by a boolean com-
bination of generalized X;-sentences of modulus (s,p) with regular numerical
predicates, and then argue that the same is true for each class L,, of ur. Since
L is a union of up-classes, this will complete the proof.

Each set of the form

{w € B* : A q(w) =i}

is defined by a 0-ary regular numerical predicate
AzVy(y <z Az =i (mod t,q)).

Let us see why this is a regular numerical predicate: If ¢ < ¢, then z =
(mod (t,q)) is equivalent to z = i. We define z = i by a formula that says,
‘there exist ¢ — 1 distinct positions to the left of x, but there do not exist 4
distinct positions to the left of x’; for example, x = 3 is equivalent to

Fy1Ty2(y1 <y2 Ay2 <2) A=JyrTyaTys(yr <y2 Ay2 <ysAys <).
If, on the other hand, i > ¢, then £ =i (mod (¢, ¢)) is equivalent to
(x2t)A(z =i (mod g)),

and z > t is expressed by a formula that says that there are ¢ distinct positions
to the left of . Thus each set in question is defined by a first-order sentence
whose atoms are of the form z < y and z =4 (mod ¢), which is, by definition,
a O-ary regular numerical predicate.

Each of the sets

{w € B* : ¢(w,u,0) =pmod(s,p)},

where u € B* and o is a signature, is defined by a generalized X;-sentence
of modulus (s,p) with regular numerical predicates. This sentence asserts that
there are i mod (s,p) |u|-tuples of positions that contain the letters of u and
that have gaps in the appropriate places. For example, the set

{w € B* : ¢(w,aba,01101) =i (mod (s,p))}

is defined by the sentence
EIZ’S’p(xl » L2, .%'3)(,25,

where ¢ is
Qaz1 A Qpza A Qozs A (1 > 1) A (22 = 21 + 1) A (3 > 22 + 1) A (23 = length).

Each of the numerical predicates appearing in the above formula can be expressed
in terms of <, and thus is a regular numerical predicate. (For example, 1 > 1
is expressed by a formula that says there exists a position to the left of z,
and 2 = x1 + 1 is expressed by a formula that says 1 < z2 and there exists
no position to the right of z1 and to the left of x5.) Each congruence class of
6% , X A4 is a boolean combination of sets of the form

{w € B* : My q(w) =i}
and
{w € B* : ¢(w,u,0) =i (mod (s,p))},

and is thus defined by a boolean combination of generalized X;-sentences of
modulus (s,p) with regular numerical predicates, and each K is a finite union
of these languages.

We now translate this back into the alphabet A. Consider first the languages

L) = {w e (A")* : pr(w) = s}.

We write a sentence for LgT) by taking each subsentence of the defining sentence
for K, of the form
H(i’s”’)(xl, ey L)

and replacing it by
a(i,s,p) (.’1}171, BN /5 RIS 7 '35 ,:z:km)(b',

where ¢' is obtained from ¢ in the following steps. First, we replace each atomic
formula Qpx; by

r

A Qu’.’f -Z'Lj,

i=1
where b € B is the element a; - --a, of A". Second, we replace each occurrence
of ; < z; by z;, < zj,, each occurrence of z; = j (mod g) by z;, = jr
(mod ¢r), and every quantifier Iz; by

E'.’L'i’l s Ha:i,r.

Third, we take the conjunction of this transformed formula with

k r—1
N\ ((zir =0 (mod r)) A A\ (zij +1=1ij41)) Alength =0 (mod r).

i=1 j=1

This gives us a defining sentence of the required type for Lgr).

Finally, we show how to write a sentence of the required type for L,,. Each
L,, is the union, over all w € A* of length less than r, of the languages Lgr)w,
where s - pr(w) = m. We already know that each L{" is defined by a sentence
of the required type, so it remains to show that if a language N is so defined,
then so is Nw. It is sufficient to prove this in the case w = a € A. To do this,
we take the defining sentence for N, and, working from the innermost quantifers
outward, replace each subformula 3z by

Jz(Fy(z < y) Ay)

and each .
00P) (gy,LL m)

by

60 (g, L) Fy(<y A Azp <y) AY).
We take the conjunction of the resulting sentence with a sentence that says that
the last letter of the word is a. This is

El(l’s’p)m(Vy(y <z)AQLx).

(Observe that the last sentence says that the number of final letters equal to a
is congruent to 1 modulo (s, p), but there is only one final letter, so the number
of final letters equal to a is always 0 or 1.) This gives the required sentence, and
completes the proof of Theorem 6.

4 Consequences of the Main Theorem

4.1 Elementary results on expressibility

An immediate consequence of our main theorem is the result of Maciel, Péladeau
and Thérien [17], for ordinary X;-sentences:

Theorem 11. If a regular language L is defined by a boolean combination of
X -sentences, then it is defined by a boolean combination of X-sentences that
use only regular numerical predicates.

Proof. This is just the case s = p = 1 of Theorem 6.

Theorem 12. The language 1* C {0,1}* cannot be defined by a boolean combi-
nation of generalized X -sentences of modulus (0, p).

Proof. Suppose otherwise. This language is regular, so by Theorem 6, it is de-
fined by a boolean combination of sentences with regular numerical predicates
and quantifiers of the form 3(:0:9) where ¢ is the least common multiple of
the moduli in the original sentences. Let U; denote the monoid {0,1} with the
usual multiplication. By Theorem VIL4.2 of [22], the image of {0,1}* under
the syntactic morphism of the language does not contain a copy of U;. But the
syntactic morphism of 1* maps {0,1} onto Uy, a contradiction.

As we shall see in the next subsection, the foregoing theorem is equivalent to
a result of Barrington, Straubing and Thérien [4] on the power of BT-programs
over finite nilpotent groups. Observe, by the way, that if s > 0, then we can
define 1* by the sentence 3(®5P) xQqzx.

Theorem 13. Let g be prime. The language MOD, cannot be defined by a
boolean combination of generalized X1 -sentences of modulus (s,p) unless p is
divisible by q.

Proof. Suppose otherwise. Since M OD, is regular, Theorem 6 implies that it is
defined by a boolean combination of sentences with regular numerical predicates
of modulus (s, p), with p not divisible by ¢. The syntactic morphism p of MOD,
maps 0 to the identity and 1 to the generator of the cyclic group of order g,
and thus maps the set of strings of length ¢ onto the group of order ¢. But
by Theorem VII.4.1 of [22], any group in p({0,1}?) has cardinality dividing a
product of the moduli occurring in a defining sentence, a contradiction.

4.2 J-trivial monoids

Let M be a finite monoid, and let x € M. The two-sided ideal of M generated
by z is the set {mzm' : m,m’' € M}. Two elements x and y of M are said
to be J-equivalent if they generate the same two-sided ideal. M is said to be
J-trivial if distinct elements always generate distinct two-sided ideals. (As a
simple example, every monoid that is both idempotent—i.e., every element is
idempotent—and commutative is J-trivial, since if z = mym' and y = nazn/,
then = mnzn'm’ and y = nmnan'm/n' = mn’z(n')?>m' = mnazn'm’ = z.)

Let A be a finite alphabet, and let » > 0. If wy, w2 € A*, then we define
wia,ws if and only if the set of subwords of wy of length no more than r is the
same as the set of subwords of ws of length no more than r. It is easy to verify
that a, is a congruence on A* of finite index. It follows that the quotient A*/a,
is a finite monoid. Observe that we can identify each element of this monoid
with a set of words over A of length no more than r, and that if m,z, m' are
elements of this monoid, then C mam/'. It follows readily that A*/a, is J-
trivial. The following theorem, due to I. Simon [20], says, in effect, that every
J-trivial monoid is obtained in this way.

Theorem 14. Let M be a finite J-trivial monoid, and let ¢ : A* — M be
a homomnorphism. Then there exists r > 0 such that ¢ factors through the
projection from A* onto A*/a,.

We will use Simon’s theorem to prove the following lemma.
Lemma 15. If a language L is recognized by a family of k-programs over a finite

J -trivial monoid M, then there exists k' such that L is recognized by a family of
k'-programs over a finite idempotent and commutative monoid.

Proof. Let L C A* be recognized by a family of k-programs over a finite J-
trivial monoid M. It follows from Theorem 14 that there exists » > 0 such that
L is recognized by a family of k-programs over M*/a,., where we consider M
as a finite alpahbet. In fact, the program maps are the same; we just interpret
fr(w(I)) € M as an element of the larger monoid M*/a,. The value of the
program on w € A* is thus determined by the set of sequences of the form

(fr(w(h)), - -, f1,(w(I,))),

where s < r and I; < --- < I, in lexicographic order.

Let M) denote the Cartesian product of j copies of M, and let N be the
set of subsets of M UM® U--- M), with union as the operation. This makes
N into a finite idempotent and commutative monoid. We define (kr)-program
maps over M as follows: If the (kr)-tuple I is formed by concatenating r k-tuples
I,...,I,. in lexicographic order, then we define g(ay,...,a,;) to be the set of
all subsequences of

(fIl (a17 . '7ak)7f12(ak+17 . '7a2k)7 . '7fIr(a(T—1)k+17 .. '7a7'k)'

Otherwise, we set gr((ai,---,ar;) to be the empty set (which is the identity of
the monoid N). The resulting family of (rk)-programs recognizes N.

We now ask, when can one finite monoid be simulated by a family of k-
programs over another finite monoid? That is, let M and N be finite monoids,
and consider a family of k-programs over N, where the input alphabet Ay =
{am : m € M} is in one-to-one correspondence with M. We say that the family
of k-programs simulates M if whenever the program gives the same value for
two input sequences

aml .. .am"

and

O
At - - Gy,

of the same length, then

My Mg =ml - oml.
Our results above imply that any finite [J-trivial monoid can be simulated by
a family of k-programs over a finite idempotent and commutative monoid. The
results of Furst, Saxe and Sipser cited earlier, along with Theorem 7(a), imply
that if a finite monoid M is simulated by a family of k-programs over a finite
aperiodic monoid, then M itself must be aperiodic. Similarly, Conjectures 2 and
3 are equivalent (via Theorem 7(b,c)) to asserting that if M is simulated by a
family of k-programs over a finite solvable group (resp. solvable monoid), then
M is itself a solvable group (solvable monoid).

A family of finite monoids that is closed under finite direct products, sub-
monoids and quotient monoids is called a pseudovariety of finite monoids. We
call a pseudovariety Vof finite monoids a program variety if whenever M is sim-
ulated by a family of k-programs over a monoid N € V, then M € V. Thus the

discussion above shows that the pseudovariety of finite aperiodic monoids is a
program variety. The question of whether the pseudovarieties of solvable groups
and solvable monoids are program varieties is, of course, our central open ques-
tion. Here we show:

Theorem 16. The psuedovariety J of finite J -trivial monoids is a program va-
riety.

Proof. Suppose M is simulated by a family of k-programs over a finite J-trivial
monoid N. Let Ay = {a,, : m € M} be a finite alphabet in one-to-one corre-
spondence with M, and let ¢ : A}, — M be the homomorphism that maps each
am to m. By Lemma 15, each of the sets {w : ¢(w) = m}, where m € M, is
recognized by a family of k-programs over a finite idempotent and commutative
monoid, so M itself is simulated by a family of k-programs over a direct product
N' of these monoids; note that N' is itself idempotent and commutative. Since
#(Ap) = M = M?, Theorem 8 implies that ¢ is refined by 6{“’1 X Ag,q for some
t>0,qg>0.

Now let wy,ws € A%, with wjarws. We form new words wj and wh as
follows: If

wy = by ---bs,

where each b; € Ay, then we set

wl = a?*bia?* - bya?*,
and we define w4 analogously. We pad both of these words with enough copies
of a1 at the right-hand end to obtain words w{ and wj with wj\; ,wh. It is now
easy to see that if a word v of length no more than k occurs as a subword of wj
with signature o, then it occurs in w) with the same signature. Thus wﬁflwg,
so ¢p(w]) = ¢(wh), hence ¢(w1) = ¢(ws) (because ¢p(a;) = 1). We have proved
that ¢ factors through A%, /a,, and hence M is J-trivial.

Our definition of program varieties differs from the definition of p-varieties
given by Péladeau, Straubing and Thérien [18]. Their definition is in terms of
polynomial-size BT-programs rather than k-programs. Maciel, Péladeau and
Thérien [17] prove that the pseudovariety of dot-depth one semigroups forms
a p-variety, which in fact implies our theorem above.

4.3 Nilpotent Groups

We can define finite nilpotent groups either in terms of the lower and upper
central series, or as direct products of p-groups. We refer the reader to any
textbook on group theory. Here we shall need the following characterization of
nilpotent groups, due to Thérien [24], building on work of Eilenberg [8] on p-
groups. Let us define equivalence relations a]* on A* by setting wqa [w,, if for
each word v of length no more than r, the number of occurrences of v as a
subword of w; is congruent, modulo m, to the number of its occurrences as a
subword of wsy. It is obvious that each o] has finite index, and easy to verify
that each of these equivalences is a congruence. Thérien proved:

Theorem 17. Each of the quotient monoids A* /o™ is a nilpotent group. Fur-
thermore, if ¢ : A* — G is a homomorphism into a nilpotent group, then there
exist m,r > 0 such that ¢ factors through the projection from A* onto A*/a™™.

We use this to prove the analogue of Lemma 15:

Lemma 18. If o language L is recognized by a family of k programs over a
finite nilpotent group, then there exists k' such that L is recognized by a family
of k'-programs over a finite abelian group.

Proof. The proof exactly parallels that of Lemma 18. Observe that the congru-
ence o, counts occurrences of subwords modulo m, rather than simply testing
for the presence of subwords. Thus we redefine the monoid N to be the set
of maps from M UM® U...U M® into Z,,, with pointwise addition as the
operation. This makes N an abelian group, and we argue as before that L is
recognized by a family of (rk)-programs over N.

It is well known that the family of finite nilpotent groups forms a pseudova-
riety of finite monoids, which we denote Gy;;.

Theorem 19. Gy is a program variety.

Proof. Suppose a finite monoid M is simulated by a family of k-programs over
a nilpotent group G. As in the proof of Theorem 16, it follows from Lemma 18
that M is simulated by a family of k'-programs over a finite abelian group H,
which we write additively. Suppose, contrary to the statement of the theorem,
that M is not a nilpotent group. If M is a non-nilpotent group, then, by a result
of Barrington, Straubing and Thérien, there is a family of BT-programs over M
that recognizes 1*; if M is not a group, then M contains a copy of the monoid
U;. In either case, 1* is recognized by a family of BT-programs over M. We
now compose the BT-programs with the k' programs: The BT-program takes an
input sequence

ay - --0Qnp,

and transforms it into a sequence

v = (fl(ail)a"'afs(ais)

of elements of M. The k'-program queries k'-tuples of this sequence from M;
thus, the output of each program map depends on a k'-tuple of positions in the
original input sequence aj - - -a,. Observe that each k'-tuple from {1,...,n} is
queried many times, but we can use the commutativity of H to add up all the
resulting values in H for each k'-tuple, and thus obtain a family of k’-programs
over H that recognizes 1*. It now follows from Lemma 9 that 1* is definable by
a boolean combination of generalized X;-sentences of modulus (0,p) for some
p > 0, contradicting Theorem 12.

Much the same argument shows that 1* cannot be recognized by a family of
BT-programs (regardless of size) over a finite nilpotent group, a result due to
Barrington, Straubing and Thérien [4].

(m

We can further generalize the congruences « and a, to allow subword
(5,p)

counting modulo (s, p). We define the congruences a, *’ accordingly. The quo-
tient monoids A*/a;””) generate the join pseudovariety J V Guj, which is the
smallest pseudovariety that contains both J and Gyj. We believe that our main
theorem implies the following statement, however we have not yet been able to
prove it:

Conjecture 20. JV Gy is a program variety.

5 Conclusion

Our outstanding open problems concern k-programs over solvable groups and
monoids, and our techniques apply to k-programs over commutative monoids.
But solvable monoids are built from commutative monoids: Indeed, every solv-
able monoid divides an iterated wreath product of commutative monoids. One

can also capture the solvable monoids in terms of congruences: Thérien [24] con-

structs a sequence of congruences a'™") (k), k > 0, with a{*? (1) = o/*?, such

that every solvable monoid divides the quotient of A* by some a!*" (k), and
every solvable group divides the quotient of A* by some aﬁo’p) (k). It may be
possible to approach the conjectures by induction on the length of the wreath
product, or by the level k of the congruence, applying techniques like the ones
we have used here at each step. As the group case seems to be simpler, the first
case to study would be k-programs over A*/ aloP)(2).

We have not discussed decidablity issues, so we conclude by mentioning an
open problem that we believe can be resolved using the main results of the
present paper.

Conjecture 21. It is decidable whether a given reqular language is in Bx, (P,

6 Bibliography
References

1. M. Ajtai, “X} formulae on finite structures”, Annals of Pure and Applied Logic 24
(1983) 1-48.

2. D. Mix Barrington, K. Compton, H. Straubing, and D. Thérien, “Regular Lan-
guages in NC*”, J. Comp. Syst. Sci. 44 (1992) 478-499.

3. D. Mix Barrington, “Bounded-Width Polynomial-Size Branching Programs Rec-
ognize Exactly Those Languages in NC'”, J. Comp. Syst. Sci. 38 (1989) 150-164.

4. D. Mix Barrington, H. Straubing, and D. Thérien, “Nonuniform Automata over
Groups”, Information and Computation 89 (1990) 109-132.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

D. Mix Barrington and H. Straubing, “Superlinear Lower Bounds for Bounded-
width Branching Programs”,J. Comp. Syst. Sci. 50 (1995) 374-381.

D. Mix Barrington and D. Thérien, “Finite Monoids and the Fine Structure of
NCY, JACM 35 (1988) 941-952.

J. R. Biichi, “Weak Second-order Arithmetic and Finite Automata”, Zeit. Math.
Logik. Grund. Math. 6 (1960) 66-92.

S. Eilenberg, Automata, Languages and Machines, vol. B,Academic Press, New
York, 1976.

R. Fagin, M. Klawe, N. Pippenger, and L. Stockmeyer, ”Bounded-depth,
Polynomial-size Circuits for Symmetric Functions”, Theoret. Comput. Sci 36 (1985)
239-250.

M. Furst, J. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial Time
Hierarchy”, J. Math Systems Theory 17 (1984) 13-27.

R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, John Wiley and Sons, New
York, 1990.

V. Grolmusz and G. Tardos, “Lower Bounds for (MOD p-MOD m) Circuits”, Proc.
39th IEEE FOCS, 1998.

Y. Gurevich and H. Lewis, “A Logic for Constant-Depth Circuits”, Information
and Control, 61 (1984) 65-74.

N. Immerman, “Languages That Capture Complexity Classes”, SIAM J. Comput-
ing 16 (1987) 760-778.

M. Krause and P. Pudlak, “On the Computational Power of Depth 2 Circuits with
Threshold and Modular Gates”, Proc. 26th ACM STOC, 1994.

R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge,
Massachusetts, 1971.

A. Maciel, P. Péladeau and D. Thérien, “Programs over Semigroups of Dot-depth
One”, preprint (1996).

P. Péladeau, H. Straubing and D. Thérien, “Finite Semigroup Varieties Defined by
Programs”, Theor. Comp. Sci. 180 (1997) 325-339.

J. E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

I. Simon, ” Piecewise Testable Events” in Proc. 2nd GI Conference, Lecture Notes
in Computer Science 33 (1975) 214-222.

R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity”, Proc. 19th ACM STOC (1987) 77-82.

H. Straubing, Finite Automata, Formal Languages, and Circuit Complezity,
Birkhaiiser, Boston, 1994.

H. Straubing, D. Thérien, and W. Thomas, “Regular Languages Defined with
Generalized Quantifiers”, Information and Computation 118 (1995) 289-301.

D. Thérien, “Classification of finite monoids: the language approach”, Theoret.
Comput. Sci. 14 (1981) 195-208.

