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SOME NONSTANDARD RAMSEY LIKE APPLICATIONS

Jaroslav NESETRIL
KKIOV MFF UK, Charles University, 11000 Praha 1, Czechoslovakia

Abstract. In this paper, a survey is given of some of the recent research which is related to a
particular combinatorial principle namely the Ramsey theorem.

One uses very often elementary and less elementary combinatorial facts and it is not important
whether one deserves the name ‘principle’ for them. As examples consider the principle of inclusion
and exclusion, the pigeonhole principle, counting in two ways, several basic properties of trees
etc. It is the author’s aim here to show a large variety of applications of the Ramsey theorem. It
should be stressed that none of the classical and ‘standard’ applications is mentioned. These can
be found in several books and survey articles examples of which are the works of Graham et al.
(1980) and Negetfil and Rodl (1979).

1. Bounds of the Ramsey argument

We should start with the statement of the finite version of Ramsey theorem [11]:

(FRT) For every choice of positive integers p, k, n there exists an integer N
with the following property: For every partition()) = Cou* * -u Ci_,
there exists an i € k and a set X < N such that (}) < C; and | X|= n.

(A natural number is identified with the set of its predecessors and (f) denotes
theset {Y < X:|Y|=p}.)

The most standard interpretation of (FRT) is indicated by some special ter-
minology; e.g., one usually refers to a partition as a colouring; the set Y is called
homogeneous, etc.

Also note that some (but few) special cases of the theorem are simple. Most
notably the case p =1 is the continental Dirichlet’s ‘schubfach’ principle and anglo-
american ‘pigeonhole’ principle.

To shorten the above statement one can adopt the Erdos-Rado partition arrow,
N> (n){, by means of which the finite Ramsey theorem gets the following concise
form:

(FRT) VpVkVn3IN (N-(n)}).
Also, this leads to the Ramsey number r( p, k, n) which may be defined as follows:
r(p, k, ny=min{N: N - (n)%}.
r(l,k,n)=k(n—=1)+1, r(p,1,n)=n and r(p, k, p) =p are the single classes of

known exact values (see [3] for details).

0304-3975/84/33.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)



4 J. Nesetril

It is a well known fact that the Ramsey theorem is an example of a combinatorially
complex and ‘ineffective’ statement. While this being a common feeling, not many
exact results are known in this direction. Let us mention two more recent examples
of this phenomenon by means of special games.

Consider the following game:

Two players I and 11 are playing on the board (%) = {{i, j}: i # j}. On each move,
player I—the constructor—selects a previously unselected pair {i, j}. Player Il—the
destructor—assigns the colour either red or blue to the pair {i, j}. The constructor
wins if he finds a monochromatic complete graph with n vertices. Otherwise, player
I1 wins.

(FRT) when applied for p=2 (i.e., the graph case) implies that the constructor
has a winning strategy. Moreover, as r(2, 2, n) < 4”72, the constructor has a winning
strategy which takes ‘only’ 4" moves. (Because what player I can do is to restrict
himself to the numbers 0, 1,...,4" 72— 1 and to keep asking there. The above bound
for the Ramsey number assures that he has to find a monochromatic complete
subgraph of size n.) In fact, there is a simple procedure to do so, the so-called
ramification procedure, which is a version of the ‘divide-and-take-the-largest-one’
heuristic.

Quite recently it has been shown by Beck [1] that the constructor cannot do much
better.

Theorem 1.1 ([1]). Destructor has a strategy such that the constructor is unable to win
within 2"* mouves.

This theorem nicely complements a classic of Erdds who proved r(2,2, n)>2"“.

Another flavour of non-effectiveness of (FRT) stems from the recursion theory.
By now it is well known that the functions related to Ramsey type questions grow
very fast and in fact they may fail to be provably recursive.

This is not the case with the Ramsey function r(p, k, n) which can be bounded
from above by the tower function

kCn
.

However, a small modification of (FRT) yields ‘nonrecursive Ramsey numbers'.
This was done first by Paris and Harrington [10]. Let us just briefly indicate their
approach:

Denote by N-+>(n)% the validity of the following statement:

For every partition () =Cou- U C,_, there exists an i€k and a set XcN
such that ()< C;, | X|=n and X = min X. (Here min X is the minimal element of

X ; the last condition is the only difference between ‘star-arrow’ and the Erdos-Rado
arrow introduced above.)
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Some nonstandard Ramsey like applications 5

Put also r*(p, k, n) =min{N: N*>(n)%}.

It follows by a standard (compactness) argument that the number r¥(p, k, n} is
well defined for everv choice of p. k. n. Moreover. as was shown in [10}, for every
p the function r*(p, -, - ) is provably recursive while the diagonal function r*(n, n,
n+1) fails to be so. In other words, the statement

(FRT)*YpVkVn AN (N2> (n)%)

while being true, is an example of an unprovable statement (in the theory of finite
sets).

By now there are many examples of combinatorial undecidable results (see [9]).
However, most examples are so far related to particular statements of Ramsey type.
Let us mention another recent example. As was mentioned above this will be a
particular game. The results reported here are due to Kirby and Paris [4] and to my
student M. Loebl. The game in question is a 2-person game—one person is Hercules,
the other is called Hydra. Hydra is any finite rooted tree, the endpoints of which
difierent from the root are called heads. A look at Fig. 1 may be helpful. (Hercules
is then Hercules.)

Fig. 1.

The game (one should better use the term battle) between Hercules and a given
Hydra proceeds as follows: At stage n (n=1) Hercules chops off one head from
the Hydra. As a revenge, Hydra grows at least n new heads in the following manner:



6 J. Neserfil

Consider the 2-predecessor (i.e., the grandfather) of a given head (which was just
removed), then from this point x sprout n replicas of the part of the Hydra which
form a branch at x originally containing the removed head.

If there is no grandfather, then nothing happens.

Similarly we may define a k-predecessor game (k=2) as the game where the '
replicas sprout from the k-predecessor of a given head; the above game is then the
2-predecessor game. Also, the co-predecessor game is the game where the replicas
sprout from the root. :

One can easily see that while Hercules certainly has to work a bit, he has a
winning strategy. For example, the strategy which is removing heads with the largest
distance from the root is a winning strategy.

Slightly surprisingly one has the following results which mean that these games
have a bad moral (unconvenient as a fairy tale for children).

i

Theorem 1.2 ({4]). Every strategy of Hercules is winning for the 2-predecessor game.
le., a 2-predecessor game is a finite game for every Hydra.

Theorem 1.3 ([4]). The statement *‘every recursive strategy is winning” is unprovable
in the theory of finite sets (or in PA).

Loeblextended the Kirby-Paris results for k > 2 and proved the following theorems.

Theorem 1.4 (PA). An co-predecessor game is a finite game (in the theory of finite sefs).
{
Moreover, the finiteness of all k-predecessor games is equivalent (in the theory of
finite sets).

Given a Hydra H, denote by b(H) the number of steps in the longest battle
between Hercules and Hydra H (in the 2-predecessor game). Theorem 1.3 is
equivalent to saying that b(H) is not a provable recursive function. Yet these
numbers may be investigated by finite means. We have the following theorem.

Theorem 1.5 (PA). If H has n points, then

b(H)Sb(Pn):b(\o——o———o cs e,

"

Theorem 1.6 (PA). The following strategy gives the longest battle for P,:

“always chop off the head with the largest number™.

Here the numbering of heads of a hydra is a simple process which may be
described by induction as follows:
The unique head of P, gets number 1.



Some nonstandard Ramsey like applications 7

Suppose that the heads of a Hydra H are numbered. If the chopping of a head
h leads to a new head, then this head gets the number of h. Moreover, all replicas
which sprout are numbered successively by larger numbers in the same way as the
original branch. . ,

The diagram of Fig. 2(a) shows an initial segment of a battle of Hercules versus
P

(b)

Fig. 2.

Finally let us note that the same strategy is valid for a k-predecessor game (see
Fig. 2(b).

2. Structural applications

There are two main directions in Ramsey applications.

The above two examples are related to the negative part of the Ramsey theorem.
A (good) lower bound for the Ramsey theorem establishes the existence of large
complex graphs and set systems which may be in turn used to produce large and
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complex examples (counterexamples). In other words, these applications use the
fact that Ramsey like functions grow fast.

There are other results which use the positive part of the theorem namely the fact
that a Ramsey function exists and also an upper bounds for it. These structural
applications have often one common patter: In order to establish a bound for an
invariant related to a large object one first proves that every large object contains
a regular (‘homogeneous’) sub-object of a given size. If the invariant related to this
regular sub-object is easier to determine, then we obtain a lower bound on the
invariant of every large object.

An example of this technique may be found in [14]: Yao proves there that if we
consider storing of n distinct keys from a set (the key space) of N keys by means
of tables, then for large N the storing by means of sorted tables is optimal. This
follows from the Ramsey theorem. If N =r(n,2n—1, n!), then for every table
structure (i.e., a map (}) > X") there exists a Y < X, | Y| =2n—1, such that the table
structure on Y is a sorted table (with respect to a convenient ordering of Y). It
follows that any search strategy when applied to () uses at least [log n+1] probes
(see [14] for details).

A similar application yields a simple (and combinatorial) proof of the following
number-theoretical result of Erdos.

Theorem 2.1 ([2]). Let A be a set of integers with the following property: for every n
there are a,be A such that n=a- b. Then for every k there exists an n such that
n=a- b has at least k distinct solutions in A.

Proof ([7]). Considersquare-free integers only. Every such integer x may be regarded
as a set M(x) of primes (pe M(x) iff p|x). By the assumption, for every finite set
M of primes (i.e., for the number [| M) there exists a partition M'u M" such that
[I M’ and [ M" belong to A. By the Ramsey theorem there exists a set X of natural
numbers, | X|=2k>, such that for every M € () the partition M'U M" is of the same
‘type’. This in turn means that there exists a Y < X, | Y| = 2k, such that ()< A for
an m=3. Thus, for every M € (,),) the number [| M = n has (™) solutions n=a-b
in A, O

From this group of ‘structural’ applications two more (recent) examples should
be mentioned: one is related to the complexity of Boolean functions and the other
to the ‘natural orderings’ of power sets and cubes.

An n-dimensional Boolean function is a mapping f:{0, 1}" ~1{0, 1}. f is called
symmetric if f(a,,..., a,) depends on }|_, a; only.

Every Boolean function may be viewed as a partition of the set {0, 1}" into two
parts or, alternatively, as a partition of the power set ?(n). This suggests to apply
the Ramsey theorem. One can prove, e.g., the following theorem.

Theorem 2.2. For every n there exists an N such that for every N-dimensional Boolean

i

I
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Some nonstandard Ramsey like applications 9

function f there exists an interval I = [0, @] of length n such that f restricted to I is a
symmetric Boolean function.

Also several other Ramsey type results such as the Hales-Jewett theorem on the
Finite Union Theorem (see, e.g., [3]) may be applied in this way to Boolean functions.
However, it is intereasting that the Ramsey theorem was applied to get results which
are useful from the point of view of complexity of Boolean functions. This was
done by several researchers and this article covers the part done by P. Pudlik on
the formula size of Boolean functions. He proceeds as follows:

Let 22 be any complete base of connectives (e.g., v, A, 71). Denote by Lo(f) the
formula size of f; i.e., the smallest size of a formula which realizes f. (Here size

means the total number of occurrences of variables.)

Theorem 2.3 ([11]). For every complete base (2 there exists an eq such that if f is an
n-dimensional Boolean function and if

Lo(f)<&q- n(loglogn—logr),
then there exist indexes 1< i, <i,<-- - <Ii,<n such that

flx, oo, %, =b(x, @ - - ®x;, x; v vx)

for a Boolean function b. (& denotes mod 2 addition.)

~

Explicitly, this means that f restricted to the interval [0, d] (where d is given by
indexes iy, ..., i,) is symmetric and, moreover, on all odd levels has the same value
and on all even levels with the possible exclusion of 0 has the same value. Schemati-
cally, this is shown in Fig. 3.

o {d 'l‘luuun, .

Fig. 3.

Theorem 2.3 is a sharpening of the Hodes-Specker theorem that gives a much
slower growing bound (instead of the factor log log n a function slower than log* n).



10 J. Nesetril

Moreover, Theorem 2.3 gives asymptotically the best possible growth rate so the
use of the Ramsey theorem is fitting the pattern (see [11]).

The idea of the proof of Theorem 2.3 [11] is simple but the details are more

technical. Therefore, we give a sketch here only.

Sketch of Proof of Theorem 2.3. Suppose L(f)= N, f is n-dimensional. Then there
exists a formula a equivalent to f such that the total number of occurrences of
variables in a is N. It follows that at least 3n variables occur at most 2N/n times.
Put k=2N/n and let B be the formula « restricted to those m =1n variables which
occur at most k times. Now define subformulas 8{x;, x;} in a suitable way—8{x;, x}
is the subformula of 8 induced by x; and x;. As the number of occurrences of x,
x; is k, the number [ of all possible non-isomorphic subformulas of 8 induced by
2 variables is small and bounded from above by 2%, with ¢ a constant. In this

situation color a pair {x;, x;} by the shape of the induced formula B{x;, x;}. Now if
m=1%"=r(2, I R), ie., if

2N/n,
gn =220k,

then using the Ramsey theorem there exists a set X of R variables such that all the
subformulas of B which are induced by pairs of variables from X are isomorphic
(i.e., the set X is homogeneous). The most technical part of the proof consists of

proving that this homogeneous set of variables gives a subformula of the desired
type. O

Theorem 2.3 has several corollaries. Particularly, the following holds.

Corollary 2.4. L,(f) = mon log log n for every symmetric n-dimensional Boolean func-
tion with the exception of 16 functions.

Let us briefly mention the last application of the Ramsey theorem which is most

freely related, yet it is somehow typical. It is motivated by the following problems.

(P1) Consider a totally ordered set X with n elements, p « n. What are the natural
orderings of (}) ?

(P2) Consider the set {0,1,..., p—1}" of all words of length n with entries from

the set {0,1,..., p—1}. What are the natural orderings of this set?

Below we shall define what we mean by a natural ordering and we shall characterize
them in both problems.

Roughly speaking, what makes the lexicographic ordering natural is the fact that
it is computed locally which means that it is invariant on sub-objects. Specifying
the notions of a sub-object and the invariance we shall formulate the above problems
in an exact way. This is more easy for subsets and let.me treat this case first.

Let (X, <) be a totally ordered set. An ordering < of (}) is said to be canonical
if for every pair A, B of subsets of X, A={a,,...,ax}-, B={b,,..., b} the
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following holds:
ey 0}y r @b T (B B} By b

All canonical orderings of (%) may be characterized as follows.

Theorem 2.5. Let (X, <) be a totally ordered set. All canonical orderings of (f) are
described in the following way: First we fix a permutation PELE T ) &2 § P r}
and @ mapping s:{1,... ,p}~{+,—}. Then we define {x,... Xt <{y1s.-- , Vo<
iff there exists an iy such that X,y = Yy JOr 1 <lo, Xa(io)™ Yu(io) if s(io) =", Xu(in =
Yatio 1f 5Ci0) = —

The canonical ordering < determined by the pair (m, s) may be visualized by
means of the following diagram:

7
)11

1 2 3

a=(136452)

(w.hich should be read from the top). For example, the lexicographic ordering of
pairs corresponds to the following diagram: ‘

Le

The situation is not so easy for words over a (finite) alphabet, i.e., for set-valued
cubes. Only the main ideas will be indicated here.

Let A be a finite set, 7 a positive integer. The set A" will be called n-dimensional
cube ove?r A. We can identify the elements of A" either with words of length n (over
A) or with functions f:{0,1,...,n—1}> A.

; An m-dimensional subcube S of A" is determined by an f,€ A" and nonempty

fl:];l:xt :;e.tshwo, ..., 0n of {0,1,...,n—1}. S is then the set of all functions
which are constant on every set «;, i =0,...,m—1 and whi inci i

frtside o Lt - which coincide with

Clearly |S|=|A™|. Moreover, assumi in i

. . ) ming min wy<min w; <- -+ <mi
mapping ®: A™ - A" defined by 1 i Ot 0

(A forjeUrd w
(p = Q Y
N0 { R forieUi o
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is an isomorphism of A™ and S. This mapping is called the standard isomorphism
of S and A™,

Similarly, we can define the standard isomorphism of m-dimensional subcubes

S and S of A"
Using these concepts we define canonical ordering of a cube as follows.

Definition 2.6. An ordering < of A" is said to be canonical if for every m<n and
for each m-dimensional subcubes S and S’ the following holds:

x<y iff ¢(x)<®(y) foreachx,yeS

(here @: S-S’ is the standard isomorphism).

The description of canonical orderings of A" is slightly involved but it has an
interesting structure:
Every canonical ordering of A" is determined by three conditions:
(i) an ordering < of A; ‘
(ii) an interval tree T on (A, <);
(iif) a quasi-order =, which extends T.
Here the undefined notions have the following meaning:

- Aninterval on A={a,,..., a}- is a set of the form {a;, ai11, ..., a;}, i<j.

- An interval tree T on (A, <) is a (directed) tree whose vertices are subintervals
on (A, <), the immediate successors of each vertex (i.e., an interval) I forma
partition of I and all leaves are singletons.

- A quasi-order < is a reflexive, transitive relation. We assume that T (considered
as a relation) is a subset of <.

Given a triple (<, T, <) we may define the order <==<(<, T, <) as follows:

Let T(0), T(1),..., T(r) be the enumeration of the equivalence classes givenby '

<4, T(0) =, T(1) <, - - <, T(r). Given two words x, yc A" we put
x <y iff there exists an ioé {0, 1, ..., r} such that
xr T(i)‘lSucc TiH = y[ T(i)‘ISucc T(1) for all [< iO’
while

xt T( iO)‘lSucc T(iy) <'y! T(io)‘ISucc T(ig) -

Here x| B is the subword of x formed by all entries from B < A; the factorized
_____ ar=(x),...,x},) i1s defined by x;=min B;, where x,€ B;; <’ is the
lexicographic ordering induced by A™ (for each m < n); and ISucc T(i) is the set
of all immediate successors of T(i).

Instead of giving a less formalized definition let us consider an illustrative example.
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‘, Example 2.7. Given A= {0,1,2,3,4,5},0<1<2<3< 4 <5, we have the following
‘ interval tree T

|

0,1,2, 3 4, 5}
1}/ {2,3} {45)
A N

{0 iy {2 I {5}

with quasi-order <, on T as follows:
{0,1,2,3,4,5} <q{2,3} <4 {0, 1} =4 {4, 5}

In this case T(0)= A, T(1)={2,3}, T(2)= {{0,\1}, {4, 5}}.
Consider words x=(0,1,0,2,3,5,5), y=(1,0,0,3,3, 4, 5). Then

x<y as X[isuce 70 = Yisuce Ty = =(0,0,0,2,2,4,4),
—x] T(1)=(2,3), y'=yl T(1)=(3,3) and

! — ! ’ R}
xIlSucc TH=X, Y IISucc =Y.

Other examples are the following ones:

(0,1,3,5,5,5)<(0,0,4,0,0,0),
(0’ 1, 2, 55 5’ 5) > (0’ 0’ 3’ O, 0’ O)'

Fig. 4 depicts the covering diagram of the ordering < for n=2. Compare also
the interval tree which corresponds to the lexicographic ordering:

The above description of canonical orderings nicely fits in the general framework
of Ramsey type statements. We have the following results (which in fact provided
the original motivation for this research).

Theorem 2.8. For every positive integer p, n there exists an N such that for every
ordering < of (1)) there exists a subset X < N, |X|=n such that < restricted to )
is @ canonical ordering.

Theorem 2.9. For every positive integer p, n there exists an N such that for every
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5 '
4
3
!
2
1
!
]
o) 1 2 3 4 5
Fig. 4.

ordering < of p™ there exists an n-dimensional subcube Q < p" such that < restricted
to Q is a canonical ordering. l

These last results were obtained by Leeb and Prommel [5] (for sets) and by
Prommel, Rodl, Voigt and the present author [8] (for cubes).
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