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1 Introduction

In recent years, generalized quantifiers (see [H3]) have received quite a lot of novel
interest because of their applications to computer science and linguistics. Their
definability theory has made considerable progress during the last decade, which
will be the subject of the next section. The proofs of many of these results often
use results of Ramsey theory, such as theorems of van der Waerden and Folkman,
and yet, the answers to some of the definability problems seem obvious from the
outset. This raises the natural question whether Ramsey theory is really needed
in the proofs (cf. [vBW]) or whether easier ways of proof might be discovered.
The purpose of this paper is to argue in favour of the former and to convince
the reader of the cruciality of Ramsey theory for quantifier definability theory.

The task of showing the necessity of Ramsey theory for quantifier theory does
not translate easily to a rigorous mathematical problem, so the formulation of the
framework is itself a problem. Roughly, we want to find an undefinability result
P concerning quantifiers and a combinatorial theorem K and then show that
P ⇒ K. We may as well fix that K is van der Waerden’s theorem, whose variants
have occured frequently in the recent quantifier literature. However, since P
and K are both theorems of ZFC, the statement P ⇒ K holds trivially, which
is not really what we meant. This kind of difficulties are usually overcome in
reverse mathematics by the metamathematical change to weaker axiom systems.
However, I have abandoned this approach in order to preserve the clarity of the
exposition. The reason is that generalized quantifiers are complex objects and
the formulation of the basics of their theory in a weak axiom system would
require a lot of tedious technical work.

Instead, a more combinatorial way of arguing is used. At first, a simple proof
of P ⇒ K is presented (in Section 4), which should already convince a full-
fledged pragmatic. In essence, this proof shows that certain function related
to quantifiers grow faster than van der Waerden’s function W , which will be
elaborated in Section 5. What exactly is meant, becomes more apparent as we
proceed.
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We have not yet paid any attention to the choice of the undefinability result
P. Clearly it is not reasonable to allow P to be any quantifier result whatsoever,
since it may be possible to code extremely difficult mathematical problems as
quantifier problems; we should rather try to find a result P relevant for the
field. As a result, we are not ready for the choice of P until in Section 4. Before
that, we shall have a look at the problematics of quantifier definability theory
in Section 2. We shall find out that we may as well restrict our considerations
to monadic quantifiers, whose theory is sketched in the Section 3. The point is
that, in the case of monadic quantifiers, the definability questions can be reduced
to colouring problems about relations. These, in turn, give rise to certain fast-
growing functions which give an upper bound for the van der Waerden’s function.

2 Quantifier Definability Theory

Although 40 years has passed since Andrzej Mostowski presented his notion
of a generalized quantifier, systematic treatment of definability problems of
quantifiers is a fresh research subject. Up to the mid-1980’s, the emphasis of
the research in generalized quantifier theory was on finding logics with good
model-theoretic properties. Definability and undefinability results were merely
by-products of this study, e.g., Keisler’s proof [K] that Lωω(Q1) does not have
the ∆-interpolation property was based on the following hidden result:

Theorem 1. (Keisler) QE
1 is not definable in Lωω(Q1). 2

To explain the quantifiers involved, let us introduce some notation. For a
class of cardinals S, let CS be the quantifier with defining class

KCS
= { M ∈ Str({U}) | ∣∣UM

∣∣ ∈ S }

where U is a unary relation symbol. In other words, for every {U}-structure M
we have

M |= CSx U(x) ⇐⇒ ∣∣UM
∣∣ ∈ S.

Quantifiers of form CS are called cardinality quantifiers. Similarly, ES is the
quantifier whose vocabulary is {E} with E binary, and defining class KES

is the
class of all structures M ∈ Str({E}) such that EM is an equivalence relation
with the number of equivalence classes κ belonging to S. Clearly CS is definable
in Lωω(ES) by the sentence

ESxy (U(x) ∧ x = y).

Now Q1 = CS and QE
1 = ES where S is the class of all uncountable cardinals.

Hence, Keisler’s result shows that ES is not necessarily definable in Lωω(CS).
His counterexample to ∆-interpolation of Lωω(Q1) was later generalized by Xa-
vier Caicedo [Ca2]. This, in turn, inspired some quantifier definability theory in
finite model theory related to quantifiers similar to ES by Flum, Schielen and
Väänänen [FSV].
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As it has become clear, the simplest form of a definability problem is the
following:

(∗) Is Q definable in the logic Lωω(Q)?

where Q is a generalized quantifier and Q is a set of such. Most of the papers
on generalized quantifiers where this is the main motivation are less than fifteen
years old. One of the earliest is the paper by Luis Jaime Corredor [Co] solving
completely the definability problems amongst cardinality quantifiers. Denote by
⊕ the common extension of integer and cardinal addition such that κ ⊕ n =
n ⊕ κ = κ for every infinite cardinal κ and n ∈ Z. For S a class of cardinals and
n ∈ Z, let S ⊕ n = { κ ⊕ n | κ ∈ S }.

Theorem 2. (Corredor) Let S and Ti, i ∈ I, be classes of cardinals. Then the
following are equivalent:
1) CS is definable in Lωω({ CTi | i ∈ I }).
2) There is a (finite) Boolean combination T of classes Ti ⊕ n, i ∈ I and n ∈ Z,
such that |S∆T | < ω, i.e., the symmetric difference of S and T is finite. 2

Observing that ∃ = CE where E is the class of non-zero cardinals, case 2 can
actually be replaced by
2’) S is a Boolean combination of classes Ti ⊕ n and E ⊕ n where i ∈ I and
n ∈ Z.
In the hindsight we may say that the neat formulation of the preceding theorem is
possible because cardinality quantifiers enhance the expressive power of the first
order logic by expressing things about extremely simple structures: the defining
class of a cardinality quantifier consists of structures whose vocabulary contains
only one predicate that is unary. In the same vein, it is reasonable to ask if
theorem 1 is only an instance of a more general result, i.e., since the vocabulary
of QE

1 is {E} with E binary and that of Q1 is U with U unary, could it be
possible that QE

1 is not definable by any set Q of cardinality quantifiers. As it
happens, this is exactly the case, and this is not accidental. For Q a quantifier
with vocabulary τ , let the arity of Q be

ar(Q) = sup{ nR | R ∈ τ }
where nR is the arity of the relation symbol R ∈ τ . A quantifier Q is monadic, if
ar(Q) = 1, binary, if ar(Q) = 2, and ternary, if ar(Q) = 3. The collection of all
quantifiers Q with arity at most n is denoted by Qn. Then we have the following
result due to Hella [H1] and implicitly by Caicedo [Ca1].

Theorem 3. (Caicedo, Hella) QE
1 is not definable by monadic quantifiers, i.e.,

in the logic Lωω(Q1), nor even in L∞ω(Q1). 2

Even better, after the preliminary results of the other people (e.g., [G], [V1])
Hella was able to establish the following hierarchy result, among other results.

Theorem 4. (Hella) For every n ∈ ω and non-zero ordinal α, the Magidor-
Malitz quantifier Qn+1

α is not definable in the logic L∞ω(Qn). 2



Ramsey Theory and Generalized Quantifiers 127

The definition of Qn
α is omitted; an interested reader may consult the original

paper [H1] or the survey [HL].
At that time in the late 1980’s, the focus in the research of generalized quan-

tifiers was rapidly shifting towards finite structures. Hella’s methods, certain
model-theoretic games, were easily adaptable in the new context, as shown in
the paper [H2]. Kolaitis and Väänänen [KV] did some systematic study in the
realm of monadic simple quantifiers. A quantifier Q is simple, if its vocabulary
consists of a single relation symbol. The Härtig quantifier, or the equicardinality
quantifier, I, is an example of a monadic quantifier that is not simple; it is the
monadic quantifier binding two formulas with the defining class

KI = { M ∈ Str({U, V }) | ∣∣UM
∣∣ =

∣∣V M
∣∣ }.

The Rescher quantifier R has the same vocabulary as I, but its defining class is

KR = { M ∈ Str({U, V }) | ∣∣UM
∣∣ ≤ ∣∣V M

∣∣ }.

I is easily definable in Lωω(R) by the sentence

Rxy(U(x), V (y)) ∧ Rxy(V (x), U(y)).

Kolaitis and Väänänen proved the following:

Theorem 5. (Kolaitis and Väänänen) Let Q be a finite set of simple monadic
quantifiers. Then:
a) I is not definable in Lωω(Q).
b) R is not definable in Lωω(Q ∪ {I}).
c) E2N is not definable in Lωω(Q ∪ {I}) where 2N is the set of even natural
numbers.
These statements hold even if restricted to finite structures. 2

A notable feature in the proof is that it rests on the following results of
Ramsey theory:

van der Waerden’s Theorem. [vW] For every k, t ∈ N, there is w ∈ N such
that if the set {0, . . . , w − 1} is coloured with at most t colours, say, by the
colouring χ : {0, . . . , w − 1} → F with |F | ≤ t, then there is a monochromatic
arithmetic progression of length k, i.e., there are a, d ∈ N, d 6= 0, such that
a + (k − 1)d < w and χ(a) = χ(a + id), for every i = 0, . . . , k − 1. 2

Folkman’s Theorem. For every k, t ∈ N, there is n ∈ N such that for every
colouring χ : {0, . . . , w−1} → F with at most t colours (i.e., |F | ≤ t), there exist
K ⊂ N of size |K| = k such that

∑
i∈K i < n and for all non-empty I, J ⊂ K,

we have χ(
∑

i∈I i) = χ(
∑

j∈J j). 2

These theorems give rise to combinatorial functions, e.g., van der Waerden’s
function W : N × N → N where for every k, t ∈ N, W (k, t) is the least w ∈ N

satisfying the condition in the theorem. We also denote W2 : N → N, W2(n) =
W (n, 2).
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The reason why finite model theory pushed combinatorics in the front-line lies
in the nature of the model constructions. While infinite structures can be made
closed under different kinds of conditions and combinatorics remains hidden in
the structures, this is usually not possible when constructing finite structures.
This means that explicit use of combinatorial principles is required. In the se-
quel, Ramsey theory became a common tool in quantifier definability theory.
The hierarchy result 4 inspired search for refinements of the hierarchy. In par-
ticular, linguistic interest (see [W]) seems to have spurred research on monadic
quantifiers. The width of the quantifier Q is just the cardinality of its vocabu-
lary τ , in symbols, wd(Q) = |τ |. Various researchers ([Li],[NV],[Lu]) obtained
independently the following monadic hierarchy result:

Theorem 6. (Lindström, Nešetřil and Väänänen, Luosto) For every n ∈ N,
there is a monadic quantifier of width n + 1 which is not definable by means of
monadic quantifiers of width at most n, i.e., in any Lωω(Q) where Q is a set of
monadic quantifiers of width at most n. 2

The explained involvement in combinatorics caught the eye of Johan van
Benthem and Dag Westerst̊ahl. They end the section 3 of their paper [vBW] by
a short speculation of the need of the Ramsey theory. After a short description
of the results and the methods in [KV], they write:

”This leads to the question whether every proof of the definability result
requires Ramsey theory?”

And later:
”Given the very general nature of generalized quantifiers it may be worth-
while to do some ’reverse mathematics’ in the field of finite combinatorics
and definability questions, and thus to assess the combinatorial content
of certain results about generalized quantifiers.”

In order to be able to answer to these demands, we need to sketch the basics of
monadic quantifier definability theory from [Lu] in the next section.

3 Reduction to Combinatorics

In this section some basics of the monadic quantifier definability theory are
described, which is a prerequisite for the analysis of the combinatorial contents of
undefinability results. The technicalities are kept aside, so that the presentation
is necessarily sketchy and appeals a lot on the intuition of the reader. (The results
and exact definitions can be found in [Lu].) Something concrete is needed for
the further treatment, though, and this core of the theory is condensed in the
notion of the irreducibility of a relation in the end of the section.

To start with, we note that monadic structures are easily describable. A
structure with three unary predicates, say M ∈ Str({P, Q, R}), is drawn in the
Figure 1 below.
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Figure 1

The structure M is uniquely determined if we count the number of elements
in each part, i.e., by the tuple (κ0, . . . , κ7). In general, a monadic structure M
for a finite vocabulary τ , say |τ | = l, can be identified by a tuple κM of length
2l of cardinal invariants. In other words, if M,N ∈ Str(τ), then M and N are
isomorphic iff κ̄M = κ̄N.

Recall that for each cardinality quantifier Q there is a class S of cardinals such
that Q = CS . Analogously, each monadic quantifier Q with finite vocabulary can
be reduced to a relation

R(Q) = { κ̄M | M ∈ KQ }.

Example 1. The vocabulary of the Härtig quantifier is {U, V } and for M ∈
Str({U, V }), we have

M ∈ KI ⇐⇒ ∣∣UM
∣∣ =

∣∣V M
∣∣.

To describe M ∈ Str({U, V }) up to isomorphism, we count that there are κ0,M

elements in the intersection of the predicates, UM ∩V M, κ1,M elements in UM
r

V M, κ2,M elements in V M
r UM and κ3,M elements outside the predicates

UM and V M (note that we have to fix some order in which to enumerate the
invariants, but it is immaterial which particular order, as soon as it is the same
for all structures). Therefore,

κ̄M = (
∣∣UM ∩ V M

∣∣, ∣∣UM
r V M

∣∣, ∣∣V M
r UM

∣∣, ∣∣Dom(M) r UM ∪ V M
∣∣)

and
M ∈ KI ⇐⇒ κ0, M ⊕ κ1,M = κ0, M ⊕ κ2,M.

Hence,
R(I) = { (κ0, κ1, κ2, κ3) | κ0 ⊕ κ1 = κ0 ⊕ κ2 }.

Note that for finite M ∈ Str({U, V }) we have the simple relation

M ∈ KI ⇐⇒ κ1,M = κ2,M.
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Similarly, for the Rescher quantifier we get

R(R) = { (κ0, κ1, κ2, κ3) | κ0 ⊕ κ1 ≤ κ0 ⊕ κ2 }

and
R(R) ∩ N

4 = { (m0, m1, m2, m3) ∈ N
4 | m1 ≤ m2 }.

There is a result analogous to Theorem 2 for cardinality quantifiers that
characterizes the definability among monadic quantifiers. In order to explain the
notation, let us consider the structure A from Figure 1 and the sentence

ϕ = Ixy(P (x) ∨ Q(x), R(y)).

Then A |= ϕ iff
∣∣PA ∪ QA

∣∣ =
∣∣RA

∣∣ iff the interpreted structure M is in KI for
which UM = PA ∪ QA and V M = RA.

........
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......................
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............
...........
..........
.........
........
........
......

κ1

κ0 ⊕ κ2 ⊕ κ3

κ4 ⊕ κ6 ⊕ κ7

κ5


 U

V

Figure 2

It is easily seen that κ̄M = (κ4 ⊕ κ6 ⊕ κ7, κ0 ⊕ κ2 ⊕ κ3, κ5, κ1). Schematically
we get κ̄M from the components of κ̄A when we sum over the set of indices
{4, 6, 7}, {0, 2, 3}, {5} and {1}, each in turn. In symbols, we write

κ̄M = s̄(κ̄A, U)

where U = ({4, 6, 7}, {0, 2, 3}, {5}, {1}). Then we have A |= ϕ iff s̄(κ̄, U) ∈ R(I).
Similarly to Theorem 2 we have to take translates into account. Below Jn,l

stands roughly for the set of all meaningful pairs (U, n̄) when we reduce the
size of the tuple from n to l. Reformulating a result of Väänänen [V2] in our
notation, we get:

Theorem 7. (Väänänen) Let Q be a monadic quantifier and Q a set of monadic
quantifiers, all with finite vocabularies. Let n = 2wd(Q) and lq = 2wd(q), for each
q ∈ Q ∪ {∃}. Then the following are equivalent:
1) Q is definable in Lωω(Q).
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2) R(Q) is a Boolean combination of relations of form

{ κ̄ | s̄(κ̄, U) ⊕ n̄ ∈ R(q) }

where q ∈ Q ∪ {∃} and (U, n̄) ∈ Jn,lq . 2

It is noteworthy that if we replace R(Q) by R and R(Q)’s by some Si’s in
case 2, what is left is a totally combinatorial condition on relations. This kind
of consideration led to the notions of the rank r(R) of a relation R and the
relative rank r+(R) of a relation relative to a monoid 〈M, +〉 in [Lu]. The former
is simpler, but the latter corresponds better to the intended application.

A quantifier Q with vocabulary τ is called universe-independent, if we have
A ∈ KQ iff B ∈ KQ whenever A,B ∈ Str(τ) are such that for every R ∈ τ , it
holds that RA = RB. Then the following hold:

Theorem 8. Let l ∈ N and κ be an infinite cardinal and C be the set of cardinals
below κ. Let Q be a monadic quantifier such that n = 2wd(Q) ∈ N. Then the
following are equivalent:
1) Q is definable by monadic universe-independent quantifiers of width at most
l on structures of cardinality less than κ.
2) r⊕(R(Q) ∩ Cn) ≤ 2l − 1. 2

Proposition 1. Let R ⊂ Cn be a relation where C is a set of cardinals. Then
r⊕(R) ≤ r(R). If C is infinite, C ∩ N = {0} and r(R) > 3, then r⊕(R) = r(R).
2

Let me sketch one application of these combinatorial results. Every quantifier
has liftings which are called resumptions. For example, the second resumption
of the Härtig quantifier is the quantifier I(2) with the vocabulary {R, S} where
R and S are binary and such that for every M ∈ Str({R, S}),

M |= I(2)xy, tu(R(x, y), S(t, u))

iff ∣∣RM
∣∣ =

∣∣SM
∣∣,

i.e., if there are as many pairs in RM as there are pairs in SM. Note that even if
the definitions of I and I(2) have the same appearance, I(2) is a binary quantifier
rather than monadic, since it binds two variables in both formulas.

Westerst̊ahl posed, among other problems, the question if I(2) is definable in
terms of monadic quantifiers of finite width. The question was answered to the
negative in [Lu]. Indeed, suppose to the contrary that there is a finite set Q of
monadic quantifiers of finite width such that I(2) is definable in Lωω(Q). Without
loss of generality, these quantifiers are universe-independent. Pick m ∈ N such
that m ≥ wd(Q), for every Q ∈ Q. Let n = 2m. For q̄ ∈ Z

n, consider the relation

Rq̄ = { x̄ ∈ N
n | x̄ 6= 0̄, q̄ and x̄ orthogonal }.
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(Here, orthogonality is just the usual notion of linear algebra, i.e., q̄ and x̄ are
orthogonal iff q̄ · x̄ = 0.) Then it can be shown that if Qq̄ is the quantifier with
R(Qq̄) = Rq̄, then Q is definable in Lωω(I(2)) and therefore also in Lωω(Q). To
demonstrate this by an example, consider q̄ = (0, 3,−2, 0). Supposing that the
vocabulary of the quantifier is {U, V } and the indices as in Example 1, put

∃y0, y1, y2 ∃t0, t1

(
¬y0 = y1 ∧ ¬y0 = y2 ∧ ¬y1 = y2 ∧ ¬t0 = t1 ∧

I(2)xy, zt
(
U(x) ∧ ¬V (x) ∧ (x = x0 ∨ x = x1 ∨ x = x2),

V (x) ∧ ¬U(x) ∧ (t = t0 ∨ t = t1)
))

.

Then for every M ∈ Str({U, V }), M |= ϕ iff M ∈ KQq̄
provided that there are

at least three elements in M.
Now by the previous theorem, we have r⊕(Rq̄) ≤ 2m − 1 < n. On the other

hand, it may be shown that there are vectors q̄ such that r⊕(Rq̄) = n, which is
a contradiction.

The notion of irreducibility is derived from the concept of the rank, not of
that of relative rank. The preceding results show that the rank works well if we
consider infinite structures. Since the emphasis of today’s research is on finite
structures, though, we might have a problem. The explanation why irreducibility
is based on rank rather than the relative rank is postponed later.

Definition 1. Let k and n be positive integers. The relation R ⊂ An is k-
reducible, if there are colourings ξi : An−1 → Fi of An−1 with at most k colours
(|Fi| ≤ k), for i = 0, . . . , n − 1, such that the following holds: Let ξ : An →
F0 × · · ·Fn−1, ξ(a0, . . . , an−1) = (c0, . . . , cn−1) where

ci = ξi(a0, . . . , ai−1, ai+1, . . . , an−1).

(We call ξ the merge of ξi, i = 0, . . . , n − 1. We use this notion even if the
sequence ξi is not complete.) Then for ā, b̄ ∈ An, if ξ(ā) = ξ(b̄) and ā ∈ R, then
also b̄ ∈ R. R is reducible if it is k-reducible for some k ∈ N

∗, otherwise R is
irreducible.

Since understanding the definition of irreducibility is absolutely crucial for
the purpose of this paper, let me repeat the definition in a different form: A
relation R is reducible if there is a finite alphabet Σ and a language L of words
of length n such that, given ā ∈ An, you can decide if ā ∈ R by the following
kind of a procedure. You first write down the tuple

ā = (a0, . . . , ai, . . . , an−1)

on the paper. Then, for each i = 0, . . . , n − 1 consecutively, you first hide the
component ai, then take a look at the remaining tuple

ā′ = (a0, . . . , ai−1, ai+1, . . . , an−1),
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write down your notes about the tuple, or actually just one letter ci ∈ Σ, and
then forget about the whole thing. After the process, you have written a word

w = c0c1 · · · cn−1.

If w ∈ L, then ā ∈ R, otherwise ā 6∈ R.

Example 2. Let X be the set of all people and R the relation of all triples
(a, b, c) ∈ X3 such that a, b and c are sisters. Then R is reducible, even 2-
reducible (actually all finite relations are reducible, so k-reducible for some k,
but the parameter k there may vary). Indeed, first hide c and take a look at
the pair (a, b). If a and b are sisters, write down Y(es), otherwise N(o). Proceed
similarly, and if in the end you have the word YYY on the sheat, a and b and c
are sisters.

The notion of irreducibility of n-ary R has been tailored equivalent to the
statement r(R) = n. Let us then present a special case of Theorem 8. A mo-
nadic quantifier of finite width Q is called a set quantifier if R(Q) is a set, or
equivalently R(Q) ⊂ Cn for some set C of cardinals and n ∈ N

∗. A monadic set
quantifier Q of finite width is biassed towards infinite, if this C contains only
infinite cardinals and possibly 0. Another way to put this is to say that there is
an infinite κ such that for every M ∈ KQ, the cardinality of M is less than κ and
every element a of M has an infinite orbit under the automorhism group of M.
Theorem 8, with the aid of Proposition 1 and the fact that irreducible relations
are just those whose rank is the same as arity, implies the following theorem.

Theorem 9. Let Q be a monadic set quantifier biassed to infinite with wd(Q) ≥
2. Then the following are equivalent:
1) Q is not definable in terms of monadic universe-independent quantifiers of
width at most wd(Q).
2) R(Q) is irreducible. 2

In the sequel, we need some technical results on irreducibility.

Lemma 1. A non-unary relation R ⊂ N
n is irreducible iff for every k ∈ N

∗

there is l ∈ N such that R ⊂ {0, . . . , l − 1} ⊂ N
n is k-irreducible.

Proof. Let us prove the equivalence of negations. Suppose first R is reducible.
By definition, R is then k-reducible for some k ∈ N

∗ and for i = 0, . . . , n − 1,
there are colourings ξi : N

n−1 → Fi such that for every ā, b̄ ∈ N
n, if ā ∈ R and

ξ(a) = ξ(b), then b̄ ∈ R, where ξ is the merge of the colourings ξi, i = 0, . . . , n−1.
Let l ∈ N be arbitrary. Pick a new colour c∗ and put

ξ′
i : N

n−1 → Fi ∪ {c∗}, ξ′
i(ā) =

{
ξi(ā), for ā ∈ {0, . . . , l − 1}n

c∗, otherwise.

Then clearly colourings ξ′
i, i = 0, . . . , n − 1 show that R ⊂ {0, . . . , l − 1} ⊂ N

n

is k+1-reducible.
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To the other direction, suppose that there is k ∈ N
∗ such that for every

l ∈ N, the relation R ⊂ {0, . . . , l − 1}n is k-reducible. We apply techniques from
[LT]. Endowing the space P(Nn) with its natural topology it can be shown that
the set K (K = Kn

n − 1, k, N in the notation of [LT]) of k-reducible relations
of N is a closed subset of P(Nn). Now either for some l ∈ N it holds that
R = R ∩ {0, . . . , l − 1}n or R is an accumulation point of { R ∩ {0, . . . , l − 1}n |
l ∈ N } ⊂ K. In both of the cases, R ∈ K, i.e., R is k-irreducible. 2

Definition 2. Let R ⊂ N
n be a non-unary irreducible relation. Then the com-

plexity of irreducibility of R is iR : N
∗ → N,

iR(k) = min{ l ∈ N | R ∩ {0, . . . , l − 1}n ⊂ N
n is k-irreducible. }

4 Reverse Combinatorics: Proving van der Waerden’s
Theorem

We are finally in the position to choose the undefinability result P on which
to base our analysis. For any ordinal α, denote ind(ℵα) = α. For each l ∈ N

∗,
let n = 2l and let Sl be the monadic quantifier with the vocabulary τn =
{U0, . . . , Un−1} and with the defining class KSl

consisting of M ∈ Str(τn) such
that all UM

i , i = 0, . . . , n − 1 are disjoint and infinite, but
∣∣UM

i

∣∣ < ℵω, and

ind(
∣∣UM

n−1

∣∣) =
n−2∑
i=0

ind(
∣∣UM

i

∣∣).
Let Pl be the following undefinability result (cf. [Lu, Example 4.6]).

Pl : The quantifier Sl is not definable by means
of any universe-independent quantifiers of width l.

Moreover, let P be the statement: For every l ∈ N, Pl holds.
Let us analyze quantifiers Sl in the spirit of the previous section. Let M ∈

KSl
. If we enumerate the invariants in a suitable order, then

κ̄M = (ℵm0 , . . . ,ℵmn−1 , 0, . . . , 0, λ)

with

mn−1 =
n−2∑
i=0

mi

where for i = 0, . . . , n − 1, ℵmi < ℵω is the number of elements in UM
i , but

outside other predicates, zeros refer to the empty intersections, and λ is the
number of elements outside the predicates. Conversely, any M ∈ Str(τl) with an
invariant of this form is in KSn

, so that

R(Sn) = {(ℵm0 , . . . ,ℵmn−1 , 0, . . . , 0, λ) | m0, . . . , mn−1 ∈ N,

λ 6= 0 or mn−1 6= 0, and mn−1 =
∑n−2

i=0 mi}.
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Constant components and vacuous variables (such as λ) do not have any effect
on the ranks of relations (cf. [Lu]), nor does the replacement of ℵj by j. So for
every l ∈ N

∗ and n = 2l, Pn is equivalent to the following statement:
P ′

n: The relation

Tn = { (m0, . . . , mn−1) ∈ N
n | mn−1 =

n−2∑
i=0

mi }

is irreducible.
Where does the relevance of this result lie? Firstly, P gives an easy way to
prove the monadic hierarchy theorem, i.e., the fact that extending the width
has the capacity of enhancing the expressive power of monadic quantifiers.
Since this motive comes from inside the field rather than from applications,
let me point out that in the notation of the previous section, Tn = Rq̄ with
q̄ = (1, 1, , . . . , 1,−1) ∈ Z

n, for every n ∈ N, n ≥ 2, so that this problematics
is related to the proof that I(2) is not definable by monadic quantifiers. Unfor-
tunately, irreducibility does not mean that the simple relations Tn were useful
for that particular proof. As it happens, r⊕(Tn) = 2 albeit r(Tn) = n, which
illustrates well the difference between finite and infinite arithmetics. In spite of
this, we may view it as a mere pragmatic simplification that we use the result P
rather than undefinability of I(2) as the basis of our analysis. Indeed, we could
have introduced the notion of irreducibility for the relative rank, and then we
would have got functions i⊕R satisfying i⊕R(n) ≥ iR(n), for every n ∈ N

∗, and we
could have gone through an analysis in the similar vein for relations of form Rq̄.
The trade-off would have been bad in the sense that we ought to have dealt with
more complicated notions, with linear-algebraic technicalities (cf. [Lu, Section
5]) and in the end, the results would have been almost the same as we shall get
now.

Abandoning this side-track, we first prove a technical lemma concerning par-
tial functions. For tuples ā and b̄, let āˆb̄ be the concatenation of ā and b̄.

Lemma 2. Let k, n ∈ N
∗ and let f be an n-ary partial function on A which is

kn + 1-irreducible. Let ξi : An → Fi, i = 0, . . . , n − 1, be finite colourings with
at most k colours. Let ξ be the merge of ξi, i = 0, . . . , n − 1. Then there are
ā = (a0, . . . , an−1) ∈ dom(f) and c ∈ A such that c 6= f(ā) and ξ(āˆ(f(a))) =
ξ(āˆ(c)), i.e., ξ(a0, . . . , an−1, f(a)) = ξ(a0, . . . , an−1, c).

Proof. Pick a new colour c∗ and put Fn = (F0 × · · · × Fn−1) ∪ {c∗} and

ξn : An → Fn, ξn(ā) =
{

ξ(āˆ(f(ā))), for ā ∈ dom(f)
c∗, otherwise

Then |Fn| ≤ kn + 1. Let ξ∗ be the merge of ξi, i = 0, . . . , n. Since f is kn + 1-
irreducible, ξ∗ cannot carry all the information to determine if a tuple is in f , so
there are ā, b̄ ∈ An, c, d ∈ A such that 1) ξ∗(āˆ(c)) = ξ∗(b̄ˆ(d)) and 2) d = f(b̄)
and 3) either ā 6∈ dom(f) or c 6= f(ā). As b̄ ∈ dom(f), we have ξn(b̄) = ξn(ā),
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whence the former possibility in case 3 is outruled. But ξn(ā) = ξn(b̄) says even
more, namely that ξ(āˆ(f(ā))) = ξ(b̄ˆ(f(b̄))). On the other hand, ξ∗(āˆ(c)) =
ξ∗(b̄ˆ(d)) implies ξ(āˆ(c)) = ξ(b̄ˆ(d)). Hence, ξ(āˆ(c)) = ξ(āˆ(f(a))). 2

Proposition 2. Let n ∈ N with n ≥ 2 and % : N
n → F be a finite colouring.

Then the irreducibility of Tn+1 implies that there are ā ∈ N
n and d ∈ Z r {0}

such that %(ā) = %(ā + dēk), for k = 0, . . . , n − 1, where ēk is the unit vector
having kth component 1. 2

Proof. Pick a new colour c∗. For each i = 0, . . . , n − 1, colour

ā′
i = (a0, . . . , ai−1, ai+1, . . . , an)

by c∗ if b = an −
n−1∑

j=0, j 6=i

aj < 0, otherwise colour ā′
i by

%(a0, . . . , ai−1, b, ai+1, . . . , an−1).

Let the resulting colouring be ξi : N
n → F ∪{c∗}. We can think of this colouring

as an attempt to first recover the hole (ith component) in the tuple and then to
use colouring %. Now, by the previous lemma, the merge ξ of ξi, i = 0, . . . , n −
1, does not carry all the information about Tn. Consequently, there are ā =
(a0, . . . , an−1) ∈ N

n and d ∈ Z, d 6= 0, such that ξ(āˆ(s)) = ξ(āˆ(s + d)) where
s =

∑n−1
i=0 ai. Unfolding the definition of the colourings, we see that for every

i = 0, . . . , n − 1,

%(ā) = ξi(a0, . . . , ai−1, ai+1, . . . , an−1, s)
= ξi(a0, . . . , ai−1, ai+1, . . . , an−1, s + d) = %(ā + dēi). 2

Now the goal is at hand:

Theorem 10. (van der Waerden) Let χ : N → F be a finite colouring and k ∈
N. Then there are a, d ∈ N such that d 6= 0 and χ(a) = χ(a + id), for every
i = 0, . . . , k − 1.

Proof. We may assume that k ≥ 2. Let n = k−1 ∈ N
∗ and consider the coloring

% : N
n → F, %(x0, . . . , xn−1) = χ(

n−1∑
j=0

(j + 1)xj).

The previous proposition implies that there are ā = (a0, . . . , an−1) ∈ N
n and

d ∈ Zr{0} such that %(ā) = %(ā+dēi), for every i = 0, . . . , n−1. Consequently,
for a =

∑n−1
j=0 (j + 1)aj and i = 0, . . . , n − 1 we have

χ(a) = %(ā) = %(ā + dēi) = χ(a + (i + 1)d).

Equivalently, for every i = 0, . . . , k − 1, it holds that χ(a) = χ(a + id). If it
happens that d < 0, the numbers a′ = a + (k − 1)d and d′ = −d > 0 fulfil the
claim instead of a and d. 2
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5 Fast-Growing Functions

As it was mentioned in the introduction, the ideas of the previous section can
be converted to results on combinatorial functions. One of the most interesting
of such is the van der Waerden’s function W : N × N → N. For some time
there was speculation over whether W is even a primitive-recursive function
until Saharon Shelah [S] proved that W is actually quite low in the Grzegorczyk
(or Ackermann) hierarchy. Still, it is possible that W2 grows faster than the
exponential tower, i.e., for every n ∈ N,

W2(n) ≥ 22···
2
}

n times
.

The last step of the paper is to link complexities of irreducibilities to the di-
scussion by proving an upper bound for W . It is worth mentioning here that
a fast-growing complexity of irreducibility iR of R means intuitively that the
irreducibility of R is difficult to discover, R is nearly reducible.

Theorem 11. For every k, n ∈ N, k, n ≥ 2, we have that

W (n, k) ≤ (n − 1)iTn((k + 1)n−1 + 1).

Proof. Denote t = iTn
((k+1)n−1+1) and w = (n−1)t. Let χ : {0, . . . , w−1} →

F be an arbitrary colouring with |F | ≤ k. We need to show that {0, . . . , w − 1}
includes a monochromatic progression of length k. For that purpose, we do the
same tricks as in the previous section and consider the colouring % : {0, . . . , t −
1} → F ∪ {c∗},

%(a0, . . . , an−2) =
{

χ(
∑n−2

l=0 (l + 1)al), if defined
c∗, otherwise

where c∗ is a new colour. For each i = 0, . . . , n − 2 and

ā′ = (a0, . . . , ai+1, ai+1, . . . , an−1) ∈ N
n,

let b̄i(ā′) = (a0, . . . , ai−1, an−1 −
n−2∑

l=0, l 6=i

(l + 1)al, . . . , an−2) be the tuple we can

recover from ā, and let

ξi : {0, . . . , t − 1}n−1 → F ∪ {c∗}, ξi(ā′) =
{

%(b̄i(ā′)), if defined
c∗ otherwise

Note that T ′ = Tn ∩ {0, . . . , t − 1}n is a partial function from {0, . . . , t − 1}n−1

to {0, . . . , t− 1}. By the choice of t, T ′ is (k +1)n−1 +1-irreducible, so applying
lemma 2 to T ′ and the merge ξ of ξi, i = 0, . . . , n−2, we find ā = (a0, . . . , an−2) ∈
{0, . . . , t−1}n−1 and c ∈ {0, . . . , t−1} such that for s =

∑n−2
i=0 ai, we have that
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c 6= s < t and ξ(āˆ(s)) = ξ(āˆ(c)). Observe that u =
∑n−2

l=0 (l+1)al ≤ (n−1)s <
(n − 1)t = w. Hence, %(ā) = χ(u) and for every i = 0, . . . , n − 2,

ξi(a0, . . . , ai−1, ai+1, . . . , an−2, s)
= %(a0, . . . , ai−1, ai, ai+1, . . . , an−2)
= %(ā) = χ(u).

On the other hand, χ(āˆ(s)) = χ(āˆ(c)) implies that

ξi(a0, . . . , ai−1, ai+1, . . . , an−2, c)
= %(a0, . . . , ai−1, ai + d, ai+1, . . . , an−2)
= %(ā + dēi) = %(ā)

where d = c − s 6= 0. Hence χ(u) = χ(u + id), for every i = 0, . . . , n − 1, so
that {0, . . . , w − 1} includes a monochromatic aritmetic progression of length n.
Consequently, W (n, k) ≤ w. 2
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