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Abstract. Nested Monte-Carlo Search (NMC) and Nested Rollout Policy Adap-
tation (NRPA) are Monte-Carlo tree search algorithms that have proved their effi-
ciency at solving one-player game problems, such as morpionsolitaire or sudoku
16x16, showing that these heuristics could potentially be applied to constraint
problems. In the field of Ramsey theory, theweak Schur numberWS(k) is the
largest integern for which their exists a partition intok subsets of the integers
[1, n] such that there is nox < y < z all in the same subset withx+y = z. Sev-
eral studies have tackled the search for better lower boundsfor the Weak Schur
numbersWS(k), k ≥ 4. In this paper we investigate this problem using NMC
and NRPA, and obtain a new lower bound forWS(6), namelyWS(6) ≥ 582.

1 Introduction

Nested Monte-Carlo Search (NMC) [5] and the recent Nested Rollout Policy Adapta-
tion (NRPA) [17] are Monte-Carlo tree search algorithms that have proved their effi-
ciency at solving constrained problems, although mainly inthe AI field (e.g. sudoku
16x16, morpion solitaire game, Same Game). Within the field of Ramsey theory, chal-
lenging problems are the search for the Van der Waerden numbers [4] and for the Schur
numbers [10], or the search for better lower or higher boundsfor these numbers. Finding
new lower bounds can be tackled with computational tools, byconstructing a mathe-
matical object that exhibits the required properties. In general this construction implies
exploring a heavily constrained combinatorial space of huge dimension. In this paper
we investigate the search for better lower bounds for the so-called Weak Schur num-
bers, using NMC and NRPA. First, we present the definition of Weak Schur numbers,
next we recall the principles of the two Monte-Carlo search algorithms that we used,
then we compare the results obtained, notably the discoveryof a new lower bound
WS(6) ≥ 582, before concluding.



2 Weak Schur numbers

The Weak Schur numbers originate from two Ramsey theory theorems, dating back
to the first half of the20th century. We recall their definition and the current state of
knowledge on this topic, before presenting experimental data that motivate the choice
of Monte-Carlo search methods.

2.1 Mathematical description

First, we explain the concept of Schur numbers. A setP of integers containing no
elementsx, y, z with x + y = z is calledsum-free. A theorem of Schur [18] states
that, givenk ≥ 1, there is a largest integern for which the integer interval set[1, n]
(i.e.{1, 2, . . . , n}) admits a partition intok sum-free sets. The largest such integern is
called thek-th Schur number, and is denoted byS(k).

As a somewhat weaker notion than sum-free, a setP of integers containing no
pairwise distinctelementsx, y, z with x + y = z is calledweakly sum-free. A result
similar to that of Schur was shown by Rado [13] : givenk ≥ 1, there is a largest integer
n for which the interval set[1, n] admits a partition intok weakly sum-free sets. This
largest such integern is called thek-th Weak Schur number, and is denoted byWS(k).

For example, in the casek = 2, a weakly sum-free partition of the first8 integers is
provided by:

{1, 2, 3, 4, 5, 6, 7, 8}= {1, 2, 4, 8} ∪ {3, 5, 6, 7}.

It is straightforward to verify, with exhaustive search, that increasing the interval to
[1, 9] yields a set that does not admit any weakly sum-free partition into2 sets, thus we
haveWS(2) = 8.

2.2 State of the art

The exact values ofWS(k) (and ofS(k)) are only known up tok = 4:

– WS(1) = 2 andWS(2) = 8 are easily verified
– WS(3) = 23, WS(4) = 66 were shown by exhaustive computer search in [2].

For the general casek ≥ 5, known results are a lower bound from Abbott and Han-
son [1] and an upper bound by Bornsztein [3]:

c89k/4 ≤ S(k) ≤ WS(k) ≤ ⌊k!ke⌋

with c a small positive constant.
Some special cases are better known through experimental studies. In [2] it was

shown that:WS(5) ≥ 189, while a much older note by Walker [19] claimed, without
proof, thatWS(5) = 196. More recently, [8] provided a weakly sum-free partition of
the set[1, 196] in 5 sets, confirming Walker’s claim thatWS(5) is at least as large as
196, and also gave a weakly sum-free partition of[1, 572] in 6 sets, implyingWS(6) ≥
572. In [9] the lower bound forWS(6) was pushed toWS(6) ≥ 574 using meta-
heuristic search. This result was superseded by [12] establishing a current best bound
atWS(6) ≥ 581.



This result in [12] was obtained with a constraint solver. Extra constraints, nick-
namedstreamliners, were added to the problem in order to reduce the search space
size, with the (unproven) assumption that optimal solutions were preserved. Some of
these streamliners were taken either from the previous studies on this subject [8, 9] or
from the literature on the related (non weak) Schur problem [10].

2.3 Methodology and experimental data

In this paper, we consider using AI methods, namely variantsof Monte Carlo Tree
Search (MCTS) in order to tackle the search of better lower bounds forWS(5) and
WS(6). The motivation behind this method choice is supported by a study of weakly
sum-free3-partitions of[1,WS(3)] and4-partitions of[1,WS(4)]. We now explain this
last case.

A weakly sum-free4-partition (i.e. partition into4 subsets) of[1, n] can be coded
by a word,w = a1a2 . . . an, where the letters{ai} are in the symbol set{1, 2, 3, 4}
andai = j means that integeri is in the subsetj. For example, the word1, 1, 2, 1, 3, 4
encodes the partition{{1, 2, 4}, {3}, {5}, {6}}. Up to symmetry, we can systematically
enumerate in lexicographic order all words associated to partitions that areterminal, i.e.
such that it is not possible to extend the partition by placing the next successive integer
while keeping the weakly sum-free property. An example of such a word is given by
w = 112233444444442333332221, associated to the terminal partition below:

{
{1, 2, 24},
{3, 4, 15, 21, 22, 23},
{5, 6, 16, 17, 18, 19, 20},
{7, 8, 9, 10, 11, 12, 13, 14}

}

Clearly it is not possible to add 25 in any subset of this partition, thus it is termi-
nal, and we also callw a terminal word. An exhaustive computer enumeration shows
that there are exactly536 995 391 721 terminal words that correspond to terminal4-
partitions. To reduce the size of the data, we cluster them ingroups of1 billion consec-
utive words in lexicographic order, and then plot the mean and maximal word length
(including solutions of maximal lengthWS(4) = 66) from each group in Figure 1.
Mean and maximal length exhibit a covariance correlation of0.7, thus they are some-
what correlated, and the same behavior is also observed for3-partitions. This means
that good samples on average, can lead to better solutions3. Assuming that this good
property also holds for5-partitions and6-partitions, Monte Carlo sampling appears
as a promising method for searching lower bounds forWS(5) andWS(6). It is also
noticeable that optimal solutions are clustered in the beginning with respect to the lexi-
cographic ordering.

3 Note that, quite interestingly, this is not the case for standard Schur Numbers, at leastS(3)
andS(4).
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Fig. 1. Mean and maximal length of terminal word groups associated to 4-partitions, listed in
lexicographic order.

3 Methods

In this section we present the two Monte-Carlo heuristics that were used for our exper-
iments.

3.1 Nested Monte-Carlo Search

The Nested Monte-Carlo Search (NMC) algorithm [5] is a tree search algorithm. The
basic idea is to incrementally build a solution with the particularity that each decision
is based on the result of lower level calls of the algorithm. The lowest level, the level 0,
is a single Monte-Carlo playout. A Monte-Carlo playout is a sequence for which each
remaining decision is made randomly, until no more possibledecision can be made.
For higher levels> 0, all possible decisions are tried (i.e. recursively explored) and the
branch of the search tree associated to the best result is chosen as the new decision.



The pseudo-code of NMC is presented in Algorithm 1, where:

– a position describes the state of the solution which is being constructed (the root
position is empty, no decision having been chosen already).Here a solution is a
weakly sum-freek-partition. Notice thatposition is always passed as argument by
copy, and never by reference.

– play(position, d) is a function that returns the new position obtained after having
performed decisiond relatively toposition. In our Weak Schur numbers problem
implementation, a decision consists in choosing in which subset of the partition to
place the next integer. Notice that the selection of the nextinteger is deterministic
(see Sect. 4.1) and is not part of the decision.

– MonteCarlo(position) is a function that completes theposition by playing ran-
dom decisions, until thek-partition is terminal (see Sect. 2.3). It returns a 2-tuple:
the evaluation of the terminal partition, and the sequence of decisions that were
made to obtain it, called playout in Algorithm 1. As integersare not always played
in successive order, possibly leaving “holes” in the partition, its evaluation is the
greatest integerL such that the set of consecutive integers[1, L] is in the partition,
i.e. we stop counting at the first hole.

A level 1 maximization example is presented in Figure 2. The leftmosttree illus-
trates the start. A Monte-Carlo playout is performed for all3 possible decisions. At the
end of each playout a reward is given, and the decision with the best reward is chosen.
This new decision is performed leading to a new state, and will never be backtracked.
The process is repeated.

40 504040 50 5060 6040

Fig. 2.This figure illustrates three successive decision steps of alevel 1 search for a maximization
problem, rewards being given at the bottom of branches. Level 1 exploration is represented in
thin lines, level 0 Monte-Carlo playouts are shown with wavylines, decisions are represented
with bold lines.

NMC provides a good compromise between exploration and exploitation. It is par-
ticularly efficient for one-player games and gives good results even without domain
knowledge. However, the results can be improved by the addition of heuristics [15].



Algorithm 1 Nested Monte-Carlo [5]
function NMC(position, level) :

best score← −∞
best playout← {}
while not solution completeddo

if level = 1 then
// collapse level 1 and 0
// score max, p max: score and playout associated to best branch
(score max, p max)← argmax

d
(MonteCarlo(play(position, d)))

else
(score max, p max)← argmax

d
(NMC(play(position, d), level − 1))

end if
if score max > best score then

best score← score max
best playout← p max

end if
d best← first decision in best playout
position← play(position, d best)

end while
return (score(position), best playout)

3.2 Nested Rollout Policy Adaptation

The Nested Rollout Policy Adaptation (NRPA) algorithm [17]is inspired by NMC. As
in NMC, each level of the algorithm calls a lower level, and each level returns the best
score and best playout sequence found at this level. Two maindifferences are:

– The playout, or rollout, policy is no more a standard Monte-Carlo, but based on a
learned policy.

– There is no systematic evaluation of every possible decision associated to any given
position, a given number of recursive calls being made instead. So all decisions may
not be explored, depending on the policy-based sampling.

The NRPA algorithm is presented in Algorithm 2, where:

– policy is a vector of weights associated to decisions,policy[x] is used to compute
the probability of choosing decisionx. The initial policy corresponds to a classic
Monte-Carlo playout (i.e. equiprobability).

– code(p, di) returns a domain-specific integer associated to the decision di leading
from positionp to its ith child in the search tree. This integer serves as index in
the policy vector. As stated in [17], the functioncode(p, di) should preferably be
bijective.

– MonteCarloPolicy(position, policy) does a playout that differs from classic
Monte-Carlo, by choosing the decision not equiprobably butusingpolicy. During
the playout, a decision is chosen proportionally toexp(policy[code(position, i)]).
This function returns a 2-tuple: the evaluation of the terminal position, and the
sequence of decisions that were made to obtain it.



In the pseudo-code, the variablesdecision and position, and the function
play(position, decision) have the same meaning as for the NMC algorithm, see
Sect. 3.1.

Algorithm 2 Nested Rollout Policy Adaptation [17]
function NRPA (level,policy)

if level = 0 then
// complete position by choosing decisions with probability proportional
// to exp(policy[code(position, i)])
return MonteCarloPolicy(position, policy)

else
best score← -∞
for N iterationsdo

(score, playout)← NRPA (level− 1, policy)
if score ≥ best score then

best score← score
best playout← playout

end if
policy← Adapt(policy,best playout)

end for
end if
return (best score, best playout)

function Adapt (policy,playout)
position← root
policy′← policy
for each decisiond in playout do

// increase probability of best decision
policy′[code(position, d)]← policy′[code(position, d)] + α
// compute normalization factor
z←

∑
i
exp(policy[code(position, i)]) over all possible decisionsi atposition

for each decisioni atposition do
policy′[code(position, i)]← policy′[code(position, i)]−

α× exp(policy[code(position, i)])/z
end for
// prepare to iterate on next decision in best playout
position← play(position, d)

end for
return policy′

The NRPA learning is comparable in its motivations with thatdone in the Upper
Confidence Tree search algorithms [7, 14, 16] and consists inincreasing probabilities
of good decisions while decreasing those for bad decisions.As pointed out in [6], a
drawback of the learning is the convergence to local optima.



4 Experimental results

First, we detail the adaptation of the two Monte-Carlo heuristics to the problem at hand,
then we report the results obtained on theWS(5) andWS(6) problems.

4.1 Experimental settings

It has been shown in [11, 15] that it is often possible to improve the performance of
NMC by adding specific knowledge. A usual way is to bias the probability of decision
choice, based of expert knowledge. Having such a probability, rather than a determinis-
tic expert-based choice, may be important to keep diversity[14].

As seen in Section 3.2, the NRPA algorithm learns a policy. Weencountered dif-
ficulties with thecode(p, di) function. As stated in Sect. 2.3, the number of possible
positions (i.e. weakly sum-free partitions under construction) is already too huge for
WS(4) to allow the storage of a policy with a bijective code function. It is even more
huge when exploring partitions forWS(5) andWS(6). Thus we have chosen to use a
2-dimensional vector of sizeWS(k) × k, that stores for each integer and each subset
the weight associated to the probability of putting this integer in this subset. So the
functioncode(position, decision) considers, asposition argument, only the current
integer to be placed, rather than the whole partition information. Socode is not bijec-
tive. One could perhaps consider using a larger storage witha hashing function to take
into account more information from the partition.

We had disappointing results with the standard NRPA algorithm, thus we tried to
add expert knowledge. Intuitively, adding expert knowledge in the rollout is harder, as it
needs to coexist with the learning and not to interfere with it. To implement this, instead
of always making decisions according to the learned policy,we choose with probability
1

2
a decision according only to the expert knowledge. This allows to take into account

both learning and expert knowledge.
For both NMC and NRPA algorithms, a natural implementation is to put integers in

the ascending order (i.e. we look for placing integer 1 in a subset, then we want to place
integer 2 and so on). Another possibility, which comes from the constraint programming
field, is to choose the most constrained integer as the next integer to place. This has the
benefit of cutting dead branches of the search tree earlier, thus focusing the search on
more promising ones. This significantly improves the search.

Expert knowledge used in our experiments is based on the known optimal partitions
of WS(4) andWS(5): as pointed out in [8, 9], allWS(4) solutions are extensions of
2 of the3 optimal partitions forWS(3). Assuming that this property may hold, more
or less strictly, fork-partitions with a largerk, we fix the23 first integers, with an
exception for16 which can be placed either in subset1 or 3. From the same knowledge
we forbid integers lower thanWS(4)+ 1 = 67 from the last two subsets (subsets 5 and
6). In [12], the best known solution so far showingWS(6) ≥ 581 has integer196 as the
smallest member of the sixth subset, thus we also ban all integers lower than196 from
subset6. The lowest allowed integer in the last subset is then greater than or equal to
196. It is very noticeable, as pointed out by [12], that subsets of partitions often contain
intervals of consecutive numbers. Thus we add a90% probability that an integer is put



in the first subset (in increasing order) where its immediatepredecessor or successor
already stays.

Another knowledge from [8] is, for subsets5 and6, to try to build sequences of
shape{a} ∪ [a + 2, . . . , 2a + 1], with a the first (lowest) integer of the subset. It then
seems interesting to place integera+ 1 in the first subset. We add a90% probability to
play out each of these decisions (i.e. each integer placement).

4.2 Results

We ran30 independent executions of a level3 Nested Monte-Carlo search, with em-
bedded expert knowledge as explained above.

Table 1.A weakly sum-free 6-partition of[1, 582].

{
{ 1-2, 4, 8, 11, 22, 25, 31, 40, 50, 63, 68, 73, 82, 87, 92, 97, 116,121, 133, 139, 149,

154, 159, 177, 182, 187, 192, 197, 252, 304, 342, 370, 394, 407, 412, 417, 435,
440, 445, 450, 455, 464, 469, 474, 479, 488, 493, 502, 507, 521, 526, 531, 536,
541, 554, 564, 569, 582},
{ 3, 5-7, 19, 21, 23, 37, 51-53, 64-66, 79-81, 93-95, 109-111, 122-124, 136-138,

150-152, 167-168, 179-181, 193-195, 368, 395-397, 408-410, 424-425, 437-439,
451-453, 465-467, 480-482, 495-497, 512, 523-525, 537-539, 551-553, 566-568,
579-581},
{ 9-10, 12-18, 20, 54-62, 103-108, 140-148, 183-186, 188-191, 398-406, 441-444,

446-449, 486-487, 490, 492, 494, 527-530, 532-535, 570-578},
{ 24, 26-30, 32-36, 38-39, 41-49, 98-102, 153, 155-158, 160-166, 169-176, 178, 292,

411, 413-416, 418-423, 426-434, 436, 540, 542-550, 555-563, 565},
{ 67, 69-72, 74-78, 83-86, 88-91, 96, 112-115, 117-120, 125-132, 134-135, 454,

456-463, 468, 470-473, 475-478, 483-485, 489, 491, 498-501, 503-506, 508-511,
513-520, 522},
{ 196, 198-251, 253-291, 293-303, 305-341, 343-367, 369, 371-392}
}

A weakly sum-free6-partition of the integer set[1, 582] was found each time, after
an averaged number of624 600 Monte-Carlo sampling, taking on average less than a
minute per run on a standard PC. The6-partitions obtained were usually different on
each run. This result yields a new best lower bound forWS(6), namelyWS(6) ≥ 582,
and we were not able to obtain a weakly sum-free6-partition of a larger interval. An
example partition showingWS(6) ≥ 582 is given in Table 1. As forWS(5) we could
not increase the current bound of196, which is its conjectured exact value.

The best result obtained with our knowledge-aware NRPA was571, while the basic
algorithm, without expert knowledge, never attained300. It remains to experiment if
increasing the policy storage could improve on the results.



5 Conclusion

Being now very popular in the AI for games field, Monte-Carlo Tree Search techniques
have the ability to address a wider domain. As often, obtaining a successful application
relies on the introduction of expert knowledge to foster thepotential of the method.
It is to be noticed that it is rather easy to embed such knowledge in NMC by simply
biasing the sampling probability of solutions. In this study we obtained a new bound
for the6th Weak Schur number, using Cazenave’s NMC algorithm and several stream-
liners to further constrain the problem and reduce its statespace. We recall that using
these streamliners may constrain too much the search space,thus maybe preventing the
discovery of even better bounds.

This work also serves as a validation benchmark for NMC and NRPA. Both heuris-
tics are unable to solve the problem without the addition of expert knowledge. However,
it feels more awkward to bias the sampling probabilities in NRPA, since this should nor-
mally be done by the policy learning. In our experiments the largest partitions obtained
with NRPA have been slightly smaller than those given by NMC.This may be due to
the tendency of NRPA to converge to local optima. As possiblefuture works, it may
be interesting for the NRPA algorithm to find either a bettercode function, or another
way to incorporate expert knowledge. Hybridization of NMC/NRPA with a constraint
solver could also be a promising approach.
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