
OPTIMAL SEPARATIONS BETWEEN
CONCURRENT-WRITE PARALLEL MACHINES

Ravi B. Boppana *
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

ABSTRACT

We obtain tight bounds on the relative powers of
the Priority and Common models of parallel random-
access machines (PRAMS). Specifica.lly we prove that:

(1) The Element Distinctness function of n integers,
though solvable in constant time on a Priority
PRAM with n processors, requires !il(A(n,p)) time
to solve on a Common PRAM with p 2 n proces-
sors I where

4~~1 =
nlogn

p log(5 log 72 + 1) *

(2) One step of a Priority PRAM with n processors can
be simulated on a Common PRAM with p proces-
sors in O(A(n,p)) steps.

As an example, the results show that the time sep-
aration between Priority and Common PRAMS each
with n processors is @(log n/ log log n).

1. INTRODUCTION

A parallel random-access machine (PRAM) is a
model of parallel comput;ttion consisting of a set of
processors that communicate via shared memory. In
this paper, multiple processors are allowed to simul-
taneously read from or write to the same memory cell,
with two different rules for handling write conflicts. The
Priority rule chooses the value of the lowest-indexed
processor writing to a given cell. The Common rule
compels all processors writing to the same memory
cell to write the same value. A Priorityrnl machine

* Supported by an NSF Mathematical Sciences Postdoctoral

Fellowship and a Henry Rutgers Research Fellowship.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is be permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1989 ACM O-89791 -307-8/89/0005/0320 $1 SO

(Common[n] machine) is a PRAM with n processors
following the Priority rule (Common rule). For more
information about the PRAM model, see for example
Grolmusz and Ra.gde (1987).

The problem studied in this paper is the relative
power of the Priority and Common rules. Priority is
at least v strong as Common, but how much stronger
is it? Our main results are a tight upper and Iower
bound on the cost of simulating a Priority machine by
a Common machine. The lower bound applies to the
Element Distinctness[n] function: given n integers de-
cide whether or not they are all distinct. Though El-
ement Distinctness[n] is solvable in constant time on
a Priority[n] machine, our lower bound shows that it
requires Ct(A(n, p)) t ime to solve on a Common[p] ma-
chine for p 2 n, where

A(n,p) =
nlogn

plog(; logn + 1)’

Our upper bound matches the lower bound by
showing that each step of a Priority[n] machine can be
simulated by a Cornmonk] machine in O(A(n,p)) steps.
As an example, the results show that the time separa-
tion between Priority[n] machines and Common[n] ma-
chines is 0 (log n/ log log n).

We also prove a lower bound for computing El-
ement Distinctness[n] on a Priorityb] machine with
bounded memory. “Bounded memory” means that the
number of memory cells may not grow with the size of
the integers, though it may be an arbitrary function of
n. We show that solving Element Distinctness[n] on
a Priority[n] machine with bounded memory requires
0(log n/ log log n) time.

The motivation for studying the above problems
is to understand the relationship between ideal models
of parallel computation and more feasible models. On
one hand, algorithm designers prefer the power of the
Priority model. On the other hand, computer archi-
tects would find the Common model more feasible to
implement in hardware. If there were efficient simula-
tions of Priority machines by Common machines, then

320

both the algorithm designer and the computer architect
would be happy. Our results show that attempting to
preserve the number of processors will result in a time-
costly simulation.

The proofs of the lower bounds use some interest-
ing methods from information theory. In particular,
the progress of an algorithm will be measured by the
entropies of associated random variables.

The remainder of this paper is organized as follows.
Section 2 compares the new results to previous work.
Section 3 sketches the proof of the lower bound for El-
ement Distinctness on Priority machines with bounded
memory. Section 4 sketches the proof of the tight lower
bound for Element Distinctness on Common machines.
Finally Section 5 gives the simulation of Priority by
Common.

2. RELATION TO PREVIOUS WORK

Two lower bounds on the Common PRAM com-
plexity of the Element Distinctness function were pre-
viously known. Fich, Meyer auf der Heide, and Wigder-
son (1986) showed that a Common[n] machine solv-
ing Element Distinctness[n] requires Q(log log log n)
time. Ragde, Steiger, Szemeredi, and Wigderson (1988)
improved the lower bound to St(m. Our re-
sults strengthen the previous results in two ways:
the lower bound is improved to the best possible
O(logn/loglog n), and it is generalized to the case
when the number of processors is greater than n.

Three simulations of Priority machines by Com-
mon machines were previously known. KuEera (1982)
showed that one step of a Priority[n] machine can be
simulated on a Common[n2] machine in constant time.
Chlebus, Diks, Hagerup, and Radzik (1988) improved
the simulation to only require a Common[n log n] ma-
chine. Fich, Ragde, and Wigderson (1988) showed that
one step of a Priority[n] machine can be simulated on
a Common[n] ‘machine in O(log n/ log log n) time. Our
simulation generalizes to the case when p, the number
of Common processors, is an arbitrary function of n.
Notice that our simulation bound matches the previous
bounds in the special cases p = n and p = n log n.

Grolmusz and Ragde (1987) obtained separations
of fl(logloglogn) time between other PRAM models,
such as between the Priority[n] model and the socalled
Collision[n] model. Our methods should be able to im-
prove their bounds, but we have not yet verified this
belief.

Beame and Hastad (1987) showed that computing
the Parity function of n bits on a Priority[n”(‘)] ma-
chine requires @(log n/ log log n) time. Cook, Dwork,
and Reischuk (1986) showed that computing the OR of
n bits on a PRAM without concurrent writes requires
O(logn) time. Neither of their methods appears to be
useful for the separation problems considered here.

3. PRIORITY WITH BOUNDED MEMORY

This section will show that a Priority[n] machine
with bounded memory requires R(log n/ log log n) time
to solve Element. Distinctness[n]. Besides being of
independent interest, this result will be useful for
proving the main lower bound of the next section.
The best upper bound known seems to be the trivial
O(log n) time bound. Ajtai, Karabeg, Komlos, and Sze-
merkdi (1988) presented a randomized Priority[n] ma-
chine with bounded memory for sorting n numbers (and
hence solving Element Distinctness [n]) which runs in
expected time O(log n/ log log n).

We will show the following general time-processor
tradeoff.

Theorem 3.1: Every Priority[pJ machine with bounded
memory that solves Element Distinctness[n] requires
Q(B(n,p)) time, where

B(n,p) = (
log n

log(5 log n + 1) > f

This theorem is proved by first simulating a PRAM
on a structured machine called a merging machine
(lemma 3.3), and then showing a lower bound for merg-
ing machines (lemma 3.5). A merging machine consists
of a set of processors {Pi) operating on a set of vari-
ables V. At a given time, each processor Pi will know a
particular variable set K C V. (Initially these sets are
empty.) Each processor will also know the partial or-
der I’ on V that is the union of the total orders of each
K. A given processor at a given time decides, based
on the partial order I, to union its variable set either
with another processor’s variable set or with a single
variable. The merging machine is said to soti V if at
the end of each computation path the partial order F
has become a total order of V.

The proof of the simulation result uses a Ramsey-
theoretic argument similar to one given by Meyer auf
der Heide and Wigderson (1985). First we require some
definitions. Let D be a totally-ordered set. A D-
function is a function f whose domain is of the form D”
for some finite set V = vur(f) called the variable set of
f. The dimension off, written dim(f), is the cardinal-
ity of its variable set. Let F be a finite collection of D-
functions. The dimension of F, written dim(F), is the
maximum dimension of all functions in F. The range of
.T, written range(f), is the union of the ranges of the
functions in F. For C E D, let F]c be the collection of
C-functions obtained by restricting every function f in
3 to the domain C”“‘(f).

Say that two elements x and y of D” are equiuaIenl
if for every i and j in V, we have xi < xi if and only
if yi < yj. The equivalence classes induced are called

321

the order classes of Dv. Say that 3 is invariant if for
every f in 3 and every order class 0 of D”“(f), the
function f is constant on 0.. The fohowing result is an
easy consequence of Ramsey’s theorem (see Graham,
Rothschild, and Spencer (1980), theorem 1.9).

Lemma 3.2: There is a funcl!ion fi such that the fol-
lowing holds: If 3 is a collection of D-functions such
that IDI 2 fi((3),dim(3), Irange(3~)l,c), then there is
a subset C 2 D of cardinality at least c such that 31~
is invariant.

With this Ramsey-theoretic bac.kground, the sim-
ulation will now be given.

k!mIW 3.3: If there is a .?‘riotit:y[p~ machine with
bounded memory that solves Element Distinctnessfn] in
time t, then there is a merging machine with p proces-
sors that sorts n variables in time t.

Proof: Consider a particular PRAM satisfying the hy-
pothesis with variable set V and an infinite domain D
of integers. By adding an extra memory cell m + 1, we
may assume that every processor reads and writes at
every time step. Define the write-index function IVi,j
with domain D” and range {1,2,. . . , m, m + ‘I} such
that Wi,j(z) gives the index of the memory cell that
processor Pi writes to at time j on input z. Let Ri,j be
the analogous read-index function. Consider the collec-
tion of D-functions 3 = {Wi,j} U {Ri,j} for 1 5 i 2 p
and 1 5 j < t. The cardinality of 3 is 2pt, its range
has cardinality at most m + 1, and its dimension is R.
We can apply lemma 3.2 to obtain a subset C C_ D of
cardinality n such that 31~: is invariant on C”.

We will now construct the merging machine. Sup-
pose by induction we have described its behaviour for
all times preceding j; we will describe what a proces-
sor Pi should do at time j. There is a partial order I’
on V representing the global order information learned
so far. Let z be some vector in Cv whose coordinates
are distinct and consistent with I. Let c = fi,j(z) be
the memory cell it reads. Let Pk be the last proces-
sor before time j to have its value written into cell c
on input I (provided there is such a processor.) In the
merging machine we will make the new variable set of
Pi be the union of the old variable sets of Pi and Pk. (If
there was no such processor & , then we adjoin the vari-
able originally in cell c provided there was one.) This
completes the description of the merging machine.

Why is this merging machine guaranteed to sort?
Suppose that some path of its computation ends with
the variables i and i incomparable. Consider any vec-
tor 2 in C’ whose coordinates are distinct, consistent
with I?, and such that no coordinate lies between xi
and xj in value. Let 2’ be the same vector except that
z: = ~5 = zi. Prom the simulation above, it follows that
our original PRAM does not distinguish between these
two inputs (i.e., it either accepts or rejects both). But

this contradicts the hypothesis that the PRAM solves
the Element Distinctness problem. q

The proof of the lower bound for merging machines
will use some concepts from Shannon’s information the-
ory. Given a random variable X with countable range,
its entropy is

II(X) = C - Pr[X = z] log2 Pr[X = 21.

z

By convention, the entropy of a function f with finite
domain is H(f) = H(f(v)), where v is a random vari-
able with uniform distribution on dam(f) (the domain
of f). The most useful property of entropy is subaddi-
tivity: the entropy of (X,Y) is at most the sum of the
entropies of X and Y.

Entropy will be used to measure the complexity of
graphs and partial orders. Recall that a coloring of a
graph is a function on its vertex set assigning distinct
values to adjacent vertices. A layering of a partial order
is an order-preserving mapping of the partially-ordered
set into some totally-ordered set. Since colorings and
layerings are functions, it makes sense to speak of their
entropies. The following lemma shows that every graph
with few edges has a coloring with low entropy.

Lemma 3.4: Every graph with n vertices and m edges
has a coloring with entropy at most L(z), where

L(Z) = (2 + 1) log,(z + 1) - 2: logz(z) _< log,((z: + l)e).

Proof: Given such a graph, consider the following
greedy coloring of it. Taking the vertices one at a time,
set the color X(V) of a vertex TJ to be the minimum non-
negative integer not used by any of the previous neigh-
bors of V. Set d(v) to be the number of previous neigh-
bors of V. By definition X(V) 5 d(v). Consequently if V

is a random vertex with uniform distribution, then

qxw1 I wv)l = ;.

Since X(V) is concentrated on the nonnegative integers,
it follows from a result in Csiszdr and Kiirner (1982,
corollary 3.12) that

H(x(v)) 5 L(E[x(v)]) 5 L(;),

which completes the proof. q

With this information-theoretic background, the
lower bound will finally be proved.

Lemma 3.5: Every merging machine with p processors
that sorts n variables requires O(B(n,p)) time.

322

Proof: For p >_ n2, the lower bound is a trivial a(l).

FO~P 2 &, the lower bound is n(F), which is also
trivial since it takes that long just to access all the vari-
ables. Thus from now on assume & I P 5 n2.

Suppose we have a merging machine with p pro-
cessors that sorts a variable set V of cardinality n. To
prove the lower bound we will follow a particular path
of its computation. We will maintain a layering f? of
the current partial order I? and variable sets {Vi} for
each processor. Define the comparison graph Cl(K, Vj)
on V consisting of those variable pairs {a, b} such that
u E vi, b E Vj , a # 6, and e(a) = e(b). Since J$ and Vj
are totally ordered in P, this graph is a matching.

We will strive to maintain the above objects so that
the following invariants hold after time t for m = 9 logp:

(A) The entropy of 1 is at most (L(y) + 3)t, and

(B) For every 1 5 i < j 5 p, the graph Cl(Vi,Vj) has
at most m edges.

Let us see why these invariants would yield the
asserted lower bound. At the end of the computation
path, when F should be a total order, the entropy of &
must be log, n. Thus by invariant (A) the time taken
is at least log, n/(L(F) + 3) which gives the desired
bound.

We will establish the invariants (A) and (B) by
induction on the time t. The case 2 = 0 is trivial. As-
suming the invariants at time t, we will maintain them
for time 1-t 1. Let {V;‘} be the new variable sets formed
by the merges at time t + 1, where yf is the union of the
old variable sets vl: and Vi, (we ignore the case of ad-
joining only a single variable to Vi, which is even easier
to handle.)

Step 1: (Refine I’ and e to resolve the new compar-
isons.) Consider the graph G that is the union of the
graphs Cc(K,Vj,) for 1 5 i 5 p. By invariant (B), the
graph G has at most pm edges. Thus by lemma 3.4,
there is a coloring x of G with entropy at most L(y).
Assign an arbitrary total order to the colors of x. De-
fine the function !? = (e, x), ordering its range in lexical
order. Define the partial order I” on V to be the refine-
ment of F that decides the comparison of a in Vi and
b in 5, according to the comparison of e’(u) and f?(b).
Notice that e’ is a layering of I”.

Step 2: (Refine e’ further to maintain invari-
ant (B).) Since every new variable set is the union of two
previous ones, by invariant (B) the graph Cc~(&‘,l$‘)
has at most 4m edges for every 1 5 i < j < p. We
will reduce the bound from 4m to m. Choose a ran-
dom function f from V to {1,2, . . . ,8} (all 8” pos-
sibilities being equally likely), and consider the func-
tion err = (e’, f), again ordering its range in lexical
order. Since the graph C~~(V~, Vi) is a matching, the
events “f(u) = f(b)” over all of its edges {a, b} are mu-
tually independent events each having probability $ of

occurring. By Chernoff’s bound (1952) and the choice
m = 9 log p, we have

Taking the disjunction over all 1 5 i < j 5 p gives

PrPi < j s.t. JC&(q’!,vjl)l > m] 5
0

; . -$ < 1.

Hence there is a fixed function f and corresponding
function 1” such that the graph Cl,,(V;‘, 4’) has fewer
than m edges for every 1 <_ i < j 5 p.

Step 9: (Complete the induction.) We will show
that the layering !” of the partial order I” and the
new variable sets satisfy the invariants (A) and (B) for
time t + 1. The construction of .t?” in Step 2 guaran-
tees that it satisfies invariant (B). By the subadditivity
property of entropy, it follows that

H(l”) 5 H(l) + H(X) + H(f) 5 (t + 1) * (L(P$) + 3)

which establishes invariant (A). This completes the in-
ductive proof. q

4. THE COMMON MODEL

This section will show the following lower bound
for Common machines solving the Element Distinctness
function.

Theorem 4.1: Every Common[p] machine that solves
Element Distinctness[n] requires O(A(n, p)) time for

PL n.

This theorem is again proved by first simulating
such a PRAM on a structured machine called a merg-
ing and distinctness-checking machine (lemma 4.3),
and then showing a lower bound for such structured
machines (lemma 4.6). A merging and distinctness-
checking machine consists of a set of processors {Pi}
operating on a set of variables V with all the capa-
bilities of a merging machine plus one additional fea-
ture called distinctness-checking. The machine has a
set of rows, each row r having an associated coordinate
set c(r). A processor Pi at a given time will, depending
on the current partial order, choose a pair (~,a”) called
its access pair, where r is a row and a’ in Victr) is a
vector of different variables. (Once an access pair is
chosen, it may never be chosen at a later time.) The
processor will then merge-its variable set as in merg-
ing machines. A pair (2, b} of vectors in I/“(“) is said
to cover a pair {a, b} of variables if a’ and b” agree on
all coordinates but one, and on that coordinate they
take the values a and b. The distinctness graph DG on

323

V consists of those variable pairs {a,b} for which the
following holds: There are two access pairs (T, Z) and
(r,$) chosen at different times in the computation such
that the pair {a,;} covers {:a,b}. The machine is said
to solve Element Distinctness on V if every pair {a, b}
of variables is either comparable in the partial order F
or is an edge in the distinctness graph DG.

The simulation uses a Ramsey-theoretic argument
similar to one given by Ragde, Steiger, Szemeredi, and
Wigderson (1988). Let F and G be two collections of
D-functions for some totally-ordered set D. Say that
7 is reducible to B if for every function f in F and
every order class 0 of D var(f), there is a function g in
6 and a one-to-one mapping p:var(g) -+ var(f) such
that f agrees with gp on the class 0. (Here gP refers
to the function with domain D*“‘(f) obtained in the
natural way from g and p.) Say that $ is one-to-one
if (1) every function in G is one-to-one, and (2) every
two distinct functions in G have disjoint ranges. Finally
say that 3 is canotlical if it is reducible to some one-
to-one collection of D-functions. The following result is
a finite version of a result due to Meyer auf der Heide
and Wigderson (1985), which in turn is based on the
canonical Ramsey theorem due to Erd& and Rado (see
Graham, Rothschild, and Spencer (1980), lemma 5.5.3).

Lemma 4.2: There is a function f2 such that the follow-
ing holds: If 3 is a collection of D-functions such that
IDI 2 f2(13l,dim(.T),c), then there is a subset C c D
of cardinality at least c such that 31~ is canonical.

With this Ramsey-theoretic background, the sim-
ulation will now be given.

Lemma 4.3: If there is a Common[p] machine that
solves Element Distinctness[rl] in time t, then there is a
merging and distinctness-checking machine with p pro-
cessors that solves Element Distinctness of n variables
in time 2t.

Proof: Consider a particular PRAM that satisfies the
hypothesis with variable set V and infinite domain D
of integers. By doubling the amount of time, we can
assume that the write-index function Wi,j and the read-
index function &,j are identical for every i and j. Let
F = {Wi,j} for 1 5 i 5 p and 1 < j 5 t. Applying
lemma 4.2 it follows that there is a subset C C D of
cardinality n such that Fit: is canonical, i.e., reducible
to some one-to-one collection G of C-functions.

We now construct the merging and distinctness-
checking machine. Each row of memory will be in-
dexed by a different function in G; the coordinate set
of the row will be the variable set of the associated
function. Suppose that we have constructed the ma-
chine for all times preceding j, and are trying to de-
cide what a processor Pi should do at time j. Let z
be some vector in C” with distinct coordina,tes con-
sistent with the current partial order I’, and let 0 be

the order class of C” containing x. By the definition
of “reducible”, there is a function g in &Y and a one-
to-one mapping p: var(g) ---f mr(f) such that the func-
tion Wi,j agrees with gP on the class 0. Identify the
mapping p with a vector 5 of distinct variables from
V”“‘(g). If the pair (g, c) has never been used before,
call it a distinctness-checking case; otherwise call it a
merging case. The construction divides into these two
cases.

Merging case: As in lemma.+3.3, consider the last
processor PI to use the pair (g, k) before time j on in-
put x (if there is more than one, choose one arbitrarily).
In the merge step of the simulation, the new variable
set of processor Pi will be the union of the old variable
sets of processors Pi and Pl.

Distinctness-ch_ecking case: Processor Pi chooses
the access pair (g, Jz) in its distinctness-checking step
and skips its merging step.

Why does the above merging and distinctness-
checking machine solve Element Distinctness? Suppose
that some path in its computation ends with the vari-
able pair {i, j} incomparable in the partial order l? and
not an edge in the distinctness graph DG. Let x be
some vector in C” whose coordinates are distinct, con-
sistent with I, and such that no coordinate lies between
xi and xj in value. Let x’ be the same vector except
that z: = xi = xi. From the simulation above, it follows
that the original PRAM does not distinguish between
these two inputs, which contradicts the hypothesis that
the original PRAM solves Element Distinctness. q

The proof of the lower bound for merging and
distinctness-checking machines uses the notion of cover-
ing a graph with multipartite graphs. A partial function
on a set V is a function f whose domain is a subset of
V. The graph of f on V, written K(f), consists of
those pairs {a, b} for which a and b are in the domain
of f and f(u) # f(b); notice that Ii(f) is a complete
multipartite graph on dam(f). The cost of f is

cost(f) = ‘do;;;lf)l . H(f).

Given a collection 3 of partial functions on V, define its
graph (cost) to be the union (sum) of the graphs (costs)
of the functions in 3. Finally given a graph G on V,
define its content to be

content(G) = ,f:‘;,, cast(3).

A useful result due to Fredman and Komlos (1984) says
that the content of the complete graph on rz vertices is
log, n. (For another proof, see Kijrner (1986).)

The above notions will be generalized to multivari-
ate functions. A partial multivariate function on V is a

324

function f whose domain is a subset of V’(f) for some
set c(f) called the coordinale set of f. A set of vec-
tors in V’(f) is said to be i-adjacenZ (or just adjaceni)
if the vectors agree on all coordinates but the ith one.
The mzlltivariaie graph of f on V”(f), written 1?(f),
consists of those adjacent pairs {Z, a’) in the domain of
f for which f(Z) # f(g). The graph of f on V, writ-
ten K(f), consists of those pairs {a, b) that are covered
(see the definition of merging and distinctness-checking
machines) by some edge {Z, g} in I?(p). The cost and
profit off are

cost(f) = y$‘f) * H(f),

profit(f) = ‘don;t:)‘3’2 . JW[.

Given a collection F of partial multivariate functions
on V, define its graph (cost, profit) to be the union
(sum, sum) of the graphs (costs, profits) of the func-
tions in J=‘. The following auxiliary lemma is used to
prove lemma 4.5.

Lemma 4.4: For every subset S of a set V’, there is-a
function h pith domain S such that (i) if h(Zl = h(b)
then a’ and b are adjacent, and (ii) the graph K(h) has
at most (,~?(~/‘m edges.

Proof: For each positive integer k, define iteratively
the set Sk to be the largest adjacent set in S - Ujck Sj
(breaking ties arbitrarily). Given a vector a’ in S, define
h(Z) to be the value of k for which a’ E Sk. As the sets Sk
are adjacent, part (i) is trivially satisfied.

To establish part (ii), orient each edge {Z,;} of
d(h) from a’ to b’ provided h(Z) < h(c). It suffices
to show that each vector a’ in S has indegree at most

dm. G iven a vector a’ in S and i in c, let ni be the
number of i-adjacent in-neighbors of a’. By the Cauchy-
Schwarz inequality, it suffices to show that CiEc nf 5

2lSI-
To establish t&s assertion, label the i-adjacent-in-

neighbors of a’by bi,j for 1 5 j 5 ni. Abbreviate h(bi,j)
by g(i,j). Notice that the g(i,j) are distinct for every
choice of i and j (or else a’ would have been included
in Sg,i,j)). Without 10s~ of generality, assume the bti,j
were ordered so that g(i, ni) < aa. < g(i, 1). Since

{&,j Y . . . , &,I, 2) is an adjacent set, the maximum prop-
erty of Sk implies that ISg(i,j,l 2 j + 1. Taking the sum
over all i in c and 1 5 j 5 ni gives

ISI 1 C Isg(i,j)l 2 Cj + 1 i,j i,i
= c ni(ni + 3)

i
2 ’

which establishes the assertion of the last paragraph
and hence completes the proof. cl

The following lemma, a multipartite extension of
a result in Ragde, Steiger, Szemerkdi, and Wigder-
son (1988), h s ows how to reduce with small penalty
a collection of multivariate functions to a collection of
univariate functions.

Lemma 4.5: If3 is a collection of partial multivariate
functions on a set V, then

content(K(3)) 2 cad(3) + L(profit(3)).

Proof: By lemma 3.4, it suffices to show there is a
collection G of partial univariate functions on V such
that cost(G) 5 cast(3) and the graph K(F)-K(G) has
at most profit (ZF). IV1 edges. Furthermore, it suffices to
show this assertion for a singleton collection 3 = {f}.

To establish this assertion, apply lemma 4.4 to
S = dam(f) to obtain the promised function h. Let
G = {gk} be the collection of partial multivariate func-
tions obtained by setting the function gk, for each k in
the range of h, to be the restriction of the function f
to the domain h-l(k). Since h-‘(k) is an adjacent set,
the collection S is isomorphic to a collection of partial
univariate functions. Since G is a partition of f, it fol-
lows that cost(G) 5 cost(f). Since l?(h) has at most
[dom(f)13/‘,/m[edges, the graph K(f) - I{(G) 5
K(h) has at most profit(f). IV1 edges, which completes
the proof. q

With the above background on multipartite cov-
ering, the lower bound for merging and distinctness-
checking machines will finally be proved.

Lemma 4.6: Every merging and distinctness-checking
machine with p processors that solves the Element
Distinctness[n] f uncZion requires at least O(A(n,p))
time for p > n.

Proof: For p 2 nlogn the lower bound is trivial, so
assume that p 5 n log n. Given a machine satisfying
the hypothesis with variable set V running in time t, we
will follow one path of its computation. The merging
steps will be handled as in the proof of lemma 3.5. That
proof gave a layering e of the partial order I’ obeying
invariant (A). Let CG be the comparability graph of I?.
Since d is a coloring of CG, it follows that

content 5 H(e) 5 L(F) + 31 t.

To handle the distinctness-checking steps, we will
assign a collection of partial multivariate functions to
the computation. Each row r of the machine will have
its own partial multivariate function fr with coordinate

325

set c(p). The function f,. will map a vector a’ in I/‘(‘)
to the time when the pair (r, Z) was chosen as an ac-
cess pair (if it ever was chosen). Setting 3- = {fr},
it follows from the definition of distinctness graph that
I{(F) = DG. Since a processor accesses only one cell
per time step, the cost of F is at most $ *log, t. Since a
processor’s variable set can at most double at each step,
the coordinate sets c(r) will have cardinality at most 21.

It follows that the profit of X is at m’ost e . (pt)“j2.
Applying lemma 4.5 gives

content 5
x/5=

$. logz t + L(--
n

* (pt)3’2).

We can now complete the lower bound. Since
the union of the graphs CC> and DG is the complete
graph, the result of Fredman and Komlos (1984) implies
that either content > i log2 n or content 2
4 log, n. The first case gives pt log, t = R(nlog n),
which is equivalent to t = R(A(n,p)). The second case
gives t = Q(B(n,p)), which implies t = n(A(n,p)) for

P2 n. q

5. SIMULATIONS

This section will show how to simulate a Priority
machine on a Common machine.

Theorem 5.1: One step of a Priority[n] machine can
be simulated with O(A(n,p)) steps of a Common[p] ma-
chine.

Proof: The simulation first performs some precomputa-
tion. Choose t to be the least positive integer satistfying
dry1 5 p for d = [log, nl; this choice oft is O(A(n,p)).
Choose a mapping f from { 1,. . . , n} x {l, . . . , d} to

u,...$1 such that (a) if 1 < i < j 5 n then the
string f(i, 1) . . . f(i, d) strictly precedes f(j, I) . . . f(j, d)
in lexical order, and (b) if 1 5 s 2 d then If-‘(,s)I 5 p;
such a mapping is easy to construct.

The nontrivial part of the simulation is to elim-
inate the Priority writes. Suppose that at a given
time the Priority processor Pi attempts to write into a
cell c; E N. In the Common machine, there will be a set
of ordinary memory cells indexed by iV x { 1,. . . , t}<d,

and a set of special memory cells indexed by { 1,. . . , n};
for convenience assume these cells are initialized to
0 although this assumption can be eliminated. For
1 < Ic 5 d, define cell c;,k to be (ci, f(i, 1). . . f(i, k-1)).
Again for convenience, assume there are nd Common
processors Qi,k where 1 < i < n and 1 5 Ic 5 d;
later the number of processors will be reduced to p. At
time s, say that processor Qi,k is active if f(i, k) = s.
An active processor Qi,k will first read ordinary cell ci,k-
If it read a ‘l’, then it will write a ‘1’ to special cell i;
otherwise it will write a ‘1’ to ordinary cell ci,k. At the
end of this computation, the special cell i has a ‘0’ in it

iff processor Pi is a lexically-first writer. Thus it is easy
to determine which Priority processors’ values should
be written.

Although the above simulation used nd processors,
notice that at most p processors are active at any partic-
ular time. Consequently only p processors are needed,
each imitating one of the active processors Qi,k. q

6. REFERENCES

M. Ajtai, D. Karabeg, J. Koml&, and E. Szemeredi
(1988), “S or in in average time o(logn),” preprint. t g

P. Beame and J. Hastad (1987), “Optimal bounds
for decision problems on the CRCW PRAM,” 19th
STOC, 83-93.

H. Chernoff (1952), “A measure of asymptotic ef-
ficiency for tests of a hypothesis based on the sum of
observations,” Ann. Math. Stat. 23, 493-509.

B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik
(1988), “Efficient simulations between concurrent-read
concurrent-write PRAM models,” 13th Symp. Math.
Found. Comp. Sci., Lecture Notes in Comp. Sci. 324,
Springer-Verlag, 231-239.

S. A. Cook, C. Dwork, and R. Reischuk (1986),
“Upper and lower bounds for parallel random ac-
cess machines without simultaneous writes,” SIAM J.
Comp. 15, 87-97.

I. Csiszdr and J. K&ner (1982), Information The-
ory: Coding Theorems for Discrete Memoyless Sys-
tems, Academic Press.

F. E. Fich, F. Meyer auf der Heide, and A. Wigder-
son (1986), “Lower bounds for parallel random-access
machines with unbounded shared memory,” Advances
in Computing Research.

F. E. Fich, P. L. Ragde, and A. Wigderson (1988),
“Simulations among concurrent-write PRAMS,” Algo-
rithmica 3, 43-52.

M. Fredman and J. Komlos (1984), “On the size
of separating systems and families of perfect hash func-
tions,” SIAM J. Alg. Disc. Meth. 5, 61-68.

R. L. Graham, B. L. Rothschild, and J. H. Spencer
(1980), Ramsey Theory, John Wiley and Sons.

V. Grolmusz and P. Ragde (1987), “Incomparabil-
ity in parallel computation,” 28th FOCS, 89-98.

J. Kijrner (1986), “Fredman-KomMs bounds and
information theory,” SIAM J. Alg. Disc. Meth. 7, 560-
570.

L. KuEera (1982), “Parallel computation and con-
flicts in memory access,” If. Proc. Letters 14, 93-96.

F. Meyer auf der Heide and A. Wigderson (1985),
“The complexity of parallel sorting,” 25th FOCS, 532-
540.

P. Ragde, W. L. Steiger, E. Szemeredi, and A.
Wigderson (1988), “The parallel complexity of element
distinctness is fi((logn)lj2),” SIAM J. Disc. Math. 1,
399-410.

326

