"o 6/1872000 (1 Yes

, 6/18/2009 0, ;
: D ‘Conditional” "

T -

ILL: 54978171 Masxcost: 26.00@ }
Request Type: Source: ILLiad LenderString: *VTU3VTI:J,VTU,VTU?’“‘
OCLC Number: 7393788 Affiliation: R

Staff Email; docdel@umd.edu
Billing Notes: FEIN 526002033

1907,
Title: Theoretical ter science / ’“f?ocri THIS 1y
itle: eoretical computer science : ! W ($TED B?;TE
. * (g ;) Cop
Uniform 17
Title:
Author: GI-Conference.
Edition: Imprint: Berlin ; New York : Springer-Verlag,

Article: Babai, Pudlak,Rod,Szemeredi: Lower Bounds on the Complexity of Symmetric Boolean Functions

Vol: 74 No.: 3 Pages: 313- 2(7 Date: 1990

Dissertation:
Verified: <TN:409471><ODYSSEY:128.8.66.142/ILL><Ariel: 129.2.17.58> OCLC

Borrowing
Notes:

" ShipTo: ILL/MCKELDIN LIBRARY/UNIVERSITY OF MARYLAND/COLLEGE PARK MD 20742-701:1

E-delivery
Addr: 1-301-314-2487

: .2.17%.5¢€
Ship Via: Odyssey, Ariel or Library Rate 124- 2.1

ShipVia: Odyssey, Ariel 0 NeedBy: 7/18/2009
Borrower: UMC : E

ILL 70219-Bailey/Howe Library- VTU Req Date: 6/18/2009 OCLC #: 7393788
538 Main Street Patron:

University of Vermont

Burlington, VT 05405-0036 USA Author: GI-Conference.

Title: Theoretical computer science /

Ship To: Article: Babai, Pudlak,Rod,Szemeredi: Lower Bounds on
the Complexity of Symmetric Boolean Functions

ILL Vol.: 74 No.: 3
MCKELDIN LIBRARY Date: 1990 Pages: 313-
UNIVERSITY OF MARYLAND Verified: <TN:409471><ODYSSEY:128.8.66.142/IL
COLLEGE PARK MD 20742-7011 Maxcost: 26.00IFM Due Date:

Lending Notes:

Bor Notes:

313
Theoretical Computer Science 73 (1990) 313-317

North-Holland

NOTE

STRONG TIME BOUNDS: NON-COMPUTABLE BOUNDS AND
A HIERARCHY THEOREM *

JM. ROBSON

Computer Science Department, Australian National University, GPO Box 4,
Canberra, ACT 2601, Australia

Communicated by M. Nivat
Received June 1989

Abstract. A RAM program is said to run within a “strong” time bound T if on every sequence
of n inputs it terminates within T(n) instruction executions. There are some programs whose
execution time in this sense is a non-computable function of n. 1t is shown that such programs
are essential in the sense that some functions can be computed within a non-computable time
bound but not within any computable time bound. Nevertheless, strong time bounds are subject
to a powerful hierarchy theorem. The condition such as being time constructable which normally
applies to the “lower” function in such theorems is replaced by a condition of being the minimum
strong time bound for some program.

Introduction

Recent papers [1, 4] have stressed the utility of considering complexity in terms
of number of arithmetic operations rather than the classical process of counting bit
operations or Turing machine steps. Meyer auf der Heide [4] suggests the study of
“strong” time bounds (the paper uses the alternative term “genuine”) where the
time (i.e. the number of operations from some RAM instruction set) for a computa-
tion is bounded by a function of the number of inputs rather than the input length.
Naturally the existence of such a strong time bound depends on there being for
each n, a finite bound on the time taken to compute the function on n inputs.

Resuits

This paper answers two of the questions left open by [4]. Firstly it is proved that,
for one instruction set, there are functions which have strong time bounds but for
which every strong time bound is a non-computable function. This was known not

* The work described here was done while the author was visiting the Institut Blaise Pascal.

0304-3975/90/$03.50 © 1990—Elsevier Science Publishers B.V. (North-Holland)

314 J.M. Robson

to be true for the simple instruction set {+, —} but it becomes true when we add
the multiplication operation to the set. The only properties of this instruction set
used in the proof are (a) that any polynomial equality can be tested within a strong
time bound and (b) that the maximum number computed after n steps is at most
the square of the maximum after n—1 steps. Property (a) is crucial to the proof;
property (b) could be relaxed, for example to allow an exponentiation instruction,
necessitating only minor changes in the proof.

Secondly it will be shown that, even for non-computable strong time bounds, a
very tight hierarchy theorem exists for any instruction set containing {+, —}.

Preliminaries

We consider some enumeration of Turing machines with a binary input alphabet
and some convention that classifies computations as accepting or not. The ith
machine in this enumeration will be referred to as T; and its time to halt on a blank
input tape as T(i); T(i) can be taken as zero for machines which do not halt on
blank input. '

We take f, a boolean function of a single variable x which is computable but
such that any function computable in time 2** differs from f(x) on at least one
argument x of length I except for a finite number of values of I Note that the
existence of such functions f is shown by an argument very similar to the diagonaliz-
ation argument used in [2]. If f on an input x simulates T; on the same input, where
i is the integer obtained by deleting the most significant bit in the binary representa-
tion of x, and returns a different result if 7; terminates in time 2°%, then clearly f
differs from the function, if any, computed in 2°* by T; on every input consisting
of j plus a power of 2 greater than j.

Denote by D;(x,, ..., x;3) the Diophantine equations in thirteen variables guaran-
teed to exist by [3] which have a unique solution if T; halts on a blank input tape
and no solution otherwise. We note that if the Turing machine does halt in time ¢,
D; can be written within some computable time bound, say DT(i, t).

Let CONS, HD and TL be three linear time computable functions satisfying

HD(CONS(x,y))=x, TL(CONS(x,y))=y,
CONS(x, y)>x, CONS(x,y)>y.

Then let LIST be the function which packs an arbitrary number of integers into one:
LIST(x,) =x,,

LIST(x,, ..., x,) = CONS(x,, LIST(x;, ..., X,)).

Non-computable bounds and a hierarchy theorem 315
The necessity for non-recursive strong time bounds

Now consider the language L defined as {(x1,-.., x,)|\n=14,x,,..., % are the
4 L yoeesXig, T +1
solution of Dn, 2LlST(n,xl xl3,T(n))<x14<2 IST(1,X %13, T(1)) ,f(xm)}-

Theorem 1. L is recognizable within a strong time bound but not within a computable
strong time bound, for the instruction set {+, =, x}.

Proof. (1) L is recognizable within a strong time bound. For any given n, either the
equations D, have no solution (in which case the checking of membership in L
terminates in the time required to write down D, and evaluate these polynomials)
or they have a unique solution. If x;,..., x); are not this unique solution, then
again the checking terminates in the same time. Next, if they are the solution, we
know that Turing machine n does terminate on a black input tape; simulation of
this halting computation computes T(n) in a finite time and the value
QUIST(x %13, T) §s also computed in a finite time. Finally, if x,4 is found to be
within the bounds stated, the time to check f(x4) is certainly bounded because
there are only a finite number of values of x,, for which it will be done.

(2) L is not recognizable within a strong time bound ¢ for any computable
function ¢. Suppose that L is recognizable within a strong time bound ¢ by a
machine M. We will describe a Turing machine algorithm A computing f by using
M. Given an input x, A finds the value L such that 2k < x <21 finds HD(L),
HD(TL(L)), ..., HD(TL(L)), TL'*(L) and rejects if any of these are undefined
(call the values obtained N, X,,..., X3, 7); simulates the computation of M on
N inputs of which the first 13 are X, ..., Xi3, the fourteenth is x and the remainder
are zero; rejects if M does not halt within time 7 and otherwise returns the result
returned by M. A may often fail to find the correct value of f but it is certain to
find the correct value for those x which happen to lie in a range [2",2""") for an
L such that L=LIST(n, x,, ..., X135, T(n)) where T, halts on blank input and the
x; are the solution of D,, provided M has halted within time T(n), which must
happen if ¢(n)=< T(n); note that there are an infinite number of such L unless
é(n)> T(n) for all except a finite number of halting machines T,.. The time to carry
out this computation is dominated by the step of simulating M; the computation
of M has time bounded by 7 which is less than x and all inputs are also less than
x; thus the numbers computed are bounded by x” so that the normal logarithmic
cost RAM time of the computation is O(x2* log x); hence A can simulate the
computation in time O(x?2** log” x) = 0(2**). Hence, if there are an infinite number
of L for which A works, A runs in time o(2**) and computes f correctly in an infinite
number of ranges [2", 2**"). This contradicts the choice of f as a function which
differs from every 2°* computable function on some x in the range [2',2"") except
for finitely many L This contradiction implies that ¢(n)> T(n) except for finitely
many n but it is well known that no computable function can exceed T(n) for all

316 J.M. Robson

except finitely many n since that would imply the decidability of the blank tape
halting problem. O

A hierarchy theorem

Throughout this section all the machines referred to will have the same instruction
set of which we assume only that it includes addition and subtraction. We will need
to use a method of coding two non-negative integers and a single bit into two
non-negative integers such that both the coding and the decoding can be carried
out efficiently with such an instruction set. Such a function is:

code(n,, ny, b) =if n,> n, then (n,, n,+(n,+1)(if b then 1 else 2))

else(n, + (n,+1)(if b then 1 else 2), n,).

Theorem 2. Let T(n) be a function such that there exists a machine M with strong
time bound T where, for every n, there is a sequence of n inputs for which M takes
time exactly T(n). Then there is a function computable with strong time bound O(T{(n))
but not with strong time bound T(n).

Proof. We define the function f with strong time bound O(T(n)) by describing a
machine M’ which computes it. M’ with inputs x,,..., X,

(a) decodes the input into two sequences y,, ..., y, of integers and z,,
of bits by decoding x; and x4, to give yi, Viv1, Zi+1)/2 for odd i,

(b) constructs a description of a machine M” from the bit sequence z,

(c) simulates machine M on the inputs y and machine M” on the inputs x, in
parallel (one step of M and one step of M"), until M halts,

(d) if M" has halted its computation, returns a result different from the result of
M", else returns 0.

It should be clear that the decoding in (a) is carried out within a strong time
bound O(n) using only addition and subtraction, that the construction of M" in
(b) can be done in the same time bound for a reasonable interpretation of how a
bit sequence describes a machine and that the simulations in (c) can be done in
linear time using the same instruction set as the simulated machines. Hence the
function f computed by M’ is computable within the strong time bound O(T(n)+
n)=0(T(n)).

Finally consider any function f; computed within strong time bound T by some
machine M. If the bit sequence describing My is z,, ..., z;, the 21 inputs on which
M takes time T(2l) are y,,...,ys and x,..., X, is the sequence obtained by
coding the sequences y and z, then when M’ is run on inputs x,, ..., X, it will:

(a) decode the sequence x to obtain the sequences y and z,

(b) reconstruct the machine M,,

ey zl"/2J

Non-computable bounds and a hierarchy theorem 317

(c) simulate M on the sequence y (a computation taking time exactly T(21))
and M, on the sequence x (which by assumption takes time at most T(21)),

(d) return a value different from that returned by M,.

Thus f(x;, ..., X2) #Z fo(X15 .0 s x»,), proving, as required, that f is not the function
computed within strong time bound T by any machine. [

References

[1] L. Blum, M. Shub and S. Smale, On a theory of computation over the real numbers; NP-completeness,
recursive functions and universal machines, Bull. Amer. Math. Soc., to appear.

[2] S.A. Cook and R.A. Reckhow, Time bounded random access machines, J. Comput. System Sci. 7
(1973) 354-375.

[3] Y.V. Matijasevic, Enumerable sets are Diophantine, Dokl Akad. Nauk. U.S.S.R. 191 (1970) 279-282
(translation in Soviet Math. Dokl 11 (1970) 354-357).

{4] F. Meyer auf der Heide, On genuinely time bounded computations, in: B. Monien and R. Cori, eds.,
Proc. 6th Ann. Symp. on Theoretical Aspects of Computer Science (Springer, Berlin, 1989) 1-16.

