DAY, <5

Information
Processing
Letters

ELSEVIER

Information Processing Letters 62 (1997) 103-110

Transforming comparison model lower bounds
to the parallel-random-access-machine

Dany Breslauer *', Artur Czumaj ™', Devdatt P. Dubhashi ",
Friedhelm Meyer auf der Heide >'?

 BRICS ~ Basic Research in Computer Science, Centre of the Danish National Research Foundation, Department of Computer Science,
Universiry of Aarhus, DK-8000 Aarhus C, Denmark
® Heinz Nixdorf Institute, University of Paderborn. D-33095 Paderborn, Germany
¢ Department of Mathematics and Computer Science. University of Paderborn, D-33095 Paderborn, Germany

Received 19 July 1995
Communicated by F. Dehne

Abstract

We provide general transformations of lower bounds in Valiant’s parallel-comparison-decision-tree model to lower
bounds in the priority concurrent-read concurrent-write parallel-random-access-machine model. The proofs rely on standard
Ramsey-theoretic arguments that simplify the structure of the computation by restricting the input domain. The transforma-
tion of comparison model lower bounds, which are usually easier to obtain, to the parallel-random-access-machine, unifies

some known lower bounds and gives new lower bounds for several problems.

Keywords: Lower bounds; PRAM model; Comparison model; Ramsey theory

1. Introduction

Valiant’s parallel-comparison-decision-tree model
[26] is very attractive for studying parallel algorithms
and lower bounds for order invariant problems
whose solution depends on equality or order rela-
tions between the input variables. One of the major

" Corresponding author. Current address: SPIC Mathematical
Institute, 92 G.N. Chetty Road, T. Nagar, Chennai, 600 017,
India. E-mail: dubhashi@ssf.emet.in.

" Partially supported by the ESPRIT Basic Research Action
Program of the EC under contract #7141 (ALCOM II).

2 Partially supported by DFG-Graduiertenkolleg *'Parallele
Rechnemnetzwerke in der Produktionstechnik’, ME 872 /4-1, and
by DFG Grant DI 412 /2.

drawbacks of this model, however, is that the infor-
mation obtained by determining the relations be-
tween input variables becomes ‘‘common knowl-
edge’’ and the model fails to capture the difficulty in
communicating information between various pro-
cessing units that run in parallel. In this respect, the
parallel-random-access-machine model (PRAM) is
more realistic because it captures some issues of
communication between the different processing
units, that makes it a more natural model to describe
parallel algorithms.

The two models, however, are not comparable in
general. While some problems in the comparison
model, e.g. finding the maximum {26], have similar
algorithms in the PRAM model [25], for other prob-

0020-0190,/97 /S17.00 © 1997 Elsevier Science B.V. All rights reserved.

PII S0020-0190(97)00032-X

104 D. Breslauer et al. / Information Processing Letters 62 (1997) 103-110

lems, e.g. finding the median [1,5], only much slower

PRAM algorithms [7] are known for any polynomial

number of processors. On the other hand, there exist

problems, e.g. element distinctness, that have slow
comparison model algorithms [6] and constant-time

PRAM algorithms on integer input domains.

Since comparison model lower bounds are often
easier to obtain than PRAM lower bounds, it can
sometimes be useful to translate comparison model
lower bounds into PRAM lower bounds. Clearly, if a
PRAM algorithm can only access its input by deter-
mining the relations between the input variables,
then the comparison model lower bounds will hold
for the PRAM. However, this assumption prevents
PRAM algorithms from using their powerful capabil-
ities. Moreover, solutions to problems that are de-
fined in the equality-comparison model sometimes
benefit from the introduction of an arbitrary order on
the input domain so that order comparisons can be
used; e.g. element distinctness. Since the input vari-
ables on the PRAM are usually assumed to be
integers, the input domain is naturally ordered. This
makes lower bounds in the equality-comparison
model inapplicable to the PRAM model.

This note gives two general translations of lower
bounds in the order-comparison model to lower
bounds in the priority CRCW-PRAM model:

(1) Any comparison model lower bound can be con-
verted into a corresponding lower bound in the
priority CRCW-PRAM with bounded memory.
By bounded memory we mean that the memory
size is not permitted to grow as a function of the
input domain size.

(2) Any comparison model lower bound that holds if
the input variables are known to be all distinct
can be converted into a corresponding lower
bound in the priority CRCW-PRAM with infi-
nite memory.

The proof techniques used are standard multi-
variable Ramsey-theoretic arguments that were de-
veloped by several authors for studying specific
problems [9,19,21-24]. The main idea is that one
can restrict the original input domain in such a way
that the processors must communicate in a manner
that depends only on the relative order between the
input variables. This implies that the PRAM can only
determine the relations between input variables that
were communicated to a given processor and not by

the communication pattern itself. We then apply
comparison model lower bounds to obtain lower
bounds on the PRAM.

The transformation of the comparison model lower
bounds provides a unified way to obtain lower bounds
for the PRAM. It generalizes previous results and
provides PRAM lower bounds for problems that had
only comparison model lower bounds. Some of the
lower bounds obtainable by the transformation, for
input of size n on a p processor PRAM, are:

(1) Sorting requires

‘Q‘(n/p +10g[(p/n) log n+l]n)

time [9,21].
(2) Element distinctness requires

Q(”/P +]Og[(p/n) log n+ |1”)

time if the memory size is bounded [9,16].
(3) Finding the maximum and merging require

Q(n/p +log log;, .+ I]”)

time [19,24].
(4) String matching and some related problems on
strings require

Q(n/p+loglog,, .. 1)

time, if the memory size is bounded.

(5) Finding an approximate maximum, namely, an
element whose rank belongs in the top &n ranks,
requires

Q(n/p+log lOg[p/nH\(l/g)

+log*n—~log"(p/n))

time *, for 1/n<e<1/2.

The last two lower bounds are new. The paper is
organized as follows. Sections 2 and 3 review
Valiant’s parallel-comparison-decision-tree and the
parallel-random-access-machine models. Section 4
gives the general PRAM lower bounds and Section 5
shows how these lower bounds are applied to spe-
cific problems. Conclusions and open problems are
given in Section 6.

* Define log® n=n, log!” n=loglog!' " n and log*n=
min{i|log'” n< 1}. In this paper log n = max{0, log, n}.

D. Breslauer et al. / Information Processing Lenters 62 (1997) 103-110 105

2. Parallel comparison models

The input variables x,,..., x, are chosen from
some infinite totally ordered domain &. Denote by
P* the set of all k-tuples of elements of 2, by 2%
the set of all k-tuples of & with no two equal
elements and by 2* the set of all increasing k-tu-
ples of 9.

Following the notation of [22], two tuples
X,..., Xz and y,..., y, are said to be order equiv-
alent if x, <x;ey <y, foralli,j=1,...,k (And
hence x; =x, e y,=y,) The equivalence class con-
taining x,,..., x, is called the order type of

Xy,..., X,. A decision problem £ on the variables
x,,..., X, partitions the inputs from & " into classes
Pyeo. s P, P s said to be order invariant if order

equivalent tuples are always in the same class.

A comparison between two variables x;:: x; de-
termines if x; <x;, x; = x; or x;> x;. In some cases,
we will also consider the additional relations x; # x;,
without order information. These inequality rela-
tions, which may not be established by comparisons,
might instead be given a priori, as part of the
definition of a problem. Such a priori restrictions
are useful for problems that are defined on partial
domains; e.g. in the merging problem the two lists to
be merged are assumed to be sorted. Restricting the
input so that all variables are distinct, i.e. x; # x, for
i # j, will be of particular interest in this paper. We
refer to this restriction as the distinctness assump-
tion.

An order invariant problem &(x,,..., x,) can be
solved by comparing pairs of input variables until all
input tuples satisfying the relations that were estab-
lished are in the same class %;; e.g. in the problem
of finding the maximum it suffices to discover that
some x,>x;, for j=1,...,n, without caring about
the relative order between the other variables.
Clearly, sorting is the hardest problem is this sense
since it determines the exact relations between all
input variables and thus the order type of the input.

Valiant’s parallel-comparison-decision-tree model
[26] proceeds in rounds in which up to p pairwise
comparisons of input variables are made simultane-
ously. According to the outcome of the comparisons,
and the relations established in previous rounds, the
comparison model algorithm decides which variables
to compare in the next round, or it may decide to

terminate with an answer. We denote by %,(n, p)
the depth of the shallowest comparison decision tree
that solves the problem Z(x,,..., x,) using p com-
parisons in each round. Clearly, comparing all (3)
pairs of variables gives complete information about
their order type, and thus, for any problem 2,
gqu(n, (g)) < 1.

Boppana [9], following Meyer auf der Heide and
Wigderson [21], defines a similar comparison deci-
sion tree model that we call the merging-comparison
decision tree. In the p processor merging-compari-
son model, each processor knows a certain subset of
the input variables and their order type (initially
these sets are empty). In every round, according the
partial order that is formed by the order types of the
subsets of variables known by all processors, the
merging-comparison model decides whether to ter-
minate with an answer or to continue, letting each
processor merge its set of variables either with the
set of variables known by some other processor at
the end of the previous round or with a single input
variable. We denote by .#,(n, p) the depth of the
shallowest p processor merging-comparison deci-
sion tree for the problem #(x,,..., x,). The follow-
ing lemma relates lower bounds in the parallel com-
parison model to the merging-comparison model.

Lemma 2.1. Let
&,(n, p) =max{t|€,(n, 22" Vp) > 1}.

Then, 2- Z,(n, p) >#,(n, p)> Eu(n, p).

Proof. Clearly, every comparison model round with
p comparisons can be simulated by at most two
rounds of a p processor merging-comparison model,
establishing that 2-%,(n, p) >4#5(n, p). Induc-
tively, the number of variables known by each pro-
cessor after & rounds is at most 2*~'. The relations
established by merging two sets of at most 2*~!
variables can be determined by performing 2%*~"
comparisons. Hence, a p processor merging-com-
parison model can be simulated by a comparison
model that makes 2*"~"p comparisons in round
number 4 + 1. If there are at most ¢ rounds, this can
be overestimated by 2%'~Yp comparisons in each
round. If &,(n, 22"~ Vp) > 1, then even with this

106 D. Breslauer et al. / Information Processing Letters 62 (1997) 103-110

larger number of comparisons the solution of the
problem £ requires at least ¢ rounds. O

We say that a comparison model lower bound
%,(n, p) is resilient if a-%,(n, p)+ B>
#,(n, p) for some constants « and B and all
n,p>1. When this holds, we write &,(n, p)=
O(Z,(n, p)). Resilient comparison model lower
bounds translate to the same lower bounds in the
merging-comparison model (up to constants).

3. The parallel-random-access-machine

In this paper we consider a powerful version of
the priority concurrent-read concurrent-write paral-
lel-random-access-machine (CRCW-PRAM). The
model consists of p synchronous processors that
communicate via a shared memory with cells of
unlimited size. Processors are allowed to read and
write simultaneously at the same memory location;
write conflicts are resolved by accepting the value
that is written by the processor with the highest
preassigned priority.

We assume that the execution of a PRAM pro-
gram proceeds in rounds. Each round consists of a
computation phase in which every processor can
make any computation on the information it has
obtained before, followed by a write phase and then
by a read phase. Note that these assumptions result
in an extremely powerful model that can compute
any function in O(log n) steps using n/log n pro-
cessors. Hence, lower bounds in this model empha-
size the limits of the interprocessor communication.
We say that the PRAM solves an order invariant
problem 2, if for each pair of order types in differ-
ent Z-equivalence classes, there exists at least one
processor that is able to distinguish between them.

Let R,,, for i€[p], denote the read access
function of processor number i at round ¢; i.e. at
round ¢, processor i reads the memory cell whose
address is given by R, . Similarly, let W, for
i €[pl, denote the write access function of proces-
sor [at round r; i.e. at round ¢, processor i writes
the value X,, into the memory cell whose address is
W.,. R,,, W, and X, are functions of the state of
processor i at round t. The lower bound arguments
given next show that by restricting the input domain,

it is possible to simplify the interaction between
processors so that the state of each processor de-
pends only on the input variables it ‘‘knows’’.

4. Lower bounds

In this section we show that, under certain as-
sumptions, a PRAM algorithm for an order invariant
problem can be simulated by a merging-comparison
decision tree on some restricted input domain. This
allows us to transform lower bounds from the merg-
ing-comparison model to lower bounds in the PRAM
model. The arguments are essentially the same as
those used by Meyer auf der Heide and Wigderson
[21] and Boppana [9]; we observe that these argu-
ments are more generally applicable than to the
problems considered in those papers and even when
input variables are allowed to be equal. In Section
4.1 we summarize the Ramsey-theoretic components
of the proofs. In Section 4.2 we give the lower
bounds for PRAM aigorithms with bounded memory
and in Section 4.3 for PRAM algorithms with un-
bounded memory, under the distinctness assumption.

4.1. Ramsey theory

Let & be an infinite totally ordered set. We say
that a function f is a & fixed order type function if
f is defined on tuples from 2 * of a fixed order type,
for some k > 0. The standard form of f is obtained
by removing all but one representative of equal
variables (since the domain of f has a fixed order
type, equal variables are equal on all the domain);
removing all variables that f does not depend on;
and reordering the remaining variables in increasing
order according to their order type. Hence the stan-
dard form of f is defined on the domain @', for
some [< k.

Given a function f that is defined on some subset
of 2*, we denote by f | », for & CD, the restriction
of fto &*. Similarly, if # is a family of functions,
we use the notation & | :={f|¢ | f€5}. The fol-
lowing lemma can be derived from the *‘canonical’
Ramsey theorem due to Erdds and Rado [17]. (See
also Section 5.5 in [20].)

D. Breslauer et al. / Information Processing Letters 62 (1997) 103-110 107

Lemma 4.1. Let F be a finite collection of & fixed
order type functions. Then, there exists an infinite
subset & CI, such that the standard form of every
function in & |g is injective and every pair of
functions in F | g either have identical standard
forms or disjoint ranges. In particular, if the range
of the functions in & is finite, then the functions in
F | & are constant.

4.2. Bounded memory

In this section we assume that the memory size m
is fixed. Hence all read and write access functions
have the finite range [m]. We will construct a merg-
ing-comparison decision tree that will simulate the
computation of the PRAM.

The construction proceeds step by step. We will
maintain the set of variable indices V,, € [n] known
by processor i € [p] at round ¢ and an infinite set

C N, such that the input tuples will be restricted to
Sy. Initially V,,=@ and S,=N, and for r>1,
Vi, €V, and S,CS§,_,, for i€[p] Also, we
shall maintain that for inputs in §,, the state of the
processor i in the original PRAM, and therefore R, ,,
W,, and X, are functions of the variables whose
md1ces arein 'V, .

Suppose by induction that we have described the
behavior of the merging-comparison model up to
round z. Thus, at the beginning of round ¢, each
processor i € [p] knows the variables whose indices
are in V;, and their order type. Consider the collec-
tion of access functions & |s consisting of the
access functions R, , and W, ,, for i€[pland 0 < ¢

< t. Since we are at a specific node of the merging-
comparison decision tree in which the order types of
V,, are fixed, these access functions are S, fixed
order type functions. By Lemma 4.1, there exists an
infinite subset S, , CS,, such that the access func-
tions in # |, are constant. (If a processor does not
write, it does not write on all the restricted inputs.)

Let c:=R, |5, be aread access function and
let W, , |5, = c be the write access function (pro-
vided 1t exists), that corresponds to what R, actu-
ally reads (lexicographically maximal {7, i) corre-
sponding to the most recent write by the highest
priority processor). If such W, , exists, then proces-
sor i reads the value X, , which is also a function of
V; »» we can assume that it actually reads V, ,CV, |

!

and computes X, , by itself. Define V/, tobe V, | if
such W, , exists, otherwise V;/, := {c'} 1f memory cell
number ¢ initially contains the input variable x.. If
neither of these conditions hold, then V;,:=@. The
merging-comparison model merges in round ¢ the set
of variables V;, known by processor i €[p] with
V/,. This completely defines the behavior of the
merging-comparison model in round r. Since the
PRAM interprocessor communication pattern is
fixed, the state of the processors can depend only on
the variables they know.

Suppose the simulating merging-comparison algo-
rithm cannot solve the problem £ in T rounds.
Then there are two order types in different F-equiv-
alence classes that it cannot distinguish from each
other. Since the domain S; is large enough, for each
processor I, there are input tuples of these two order
types that agree on the variables in V, . But by the
invariant maintained, for inputs in S;, the state of
each processor in the original PRAM can only de-
pend on the variables it knows, namely V, .. Hence,
the original PRAM cannot distinguish between the
inputs either. We conclude:

Theorem 4.2. If a p processor merging-comparison
model requires #,(n, p) rounds to solve the prob-
lem P(x,,...,x,), then a bounded memory PRAM
must take #5(n, p) rime as well.

4.3. Unbounded memory, distinct inputs

In this section we assume that the input variables
are distinct. As in the previous section, we will
construct inductively a merging-comparison decision
tree that will simulate the computation of the PRAM.

Suppose by induction that we have described the
behavior of the merging-comparison model up to
round ¢ and let ¥ | s, be the collection of the access
functions R,, and W, ,, for i€[p] and 0<7 <.
Since the order types of V,, are fixed, these access
functions are S, fixed order type functions and by
Lemma 4.1, there exists an infinite subset S, , CS,,
such that the standard forms of the access functions
in ¥ |, are injective and that every pair of func-
tions in F |, either have identical standard forms
or disjoint ranges.

Since the input variables are distinct, identical
standard forms of access functions in F |, are

108 D. Breslauer et al. / Information Processing Lerters 62 (1997) 103-110

either functions of exactly the same variables, in
which case they are always equal, or have always
disjoint ranges. Hence, given the standard form of
each read access function R,, |5, one can deter-
mine precisely the unique write access function
W, |s, , that corresponds to what R,, actually
reads. As in the previous section, this defines V;,
and therefore, the complete behavior of the
merging-comparison decision tree. This leads to the
following theorem:

Theorem 4.3. If the p processor merging-compari-
son model requires #A5(n, p) rounds to solve the
problem P(x,,..., x,) under the distinctness as-
sumption, then a PRAM must take #,(n, p) time as
well.

5. Applications

We give some applications of the general lower
bounds from the previous section. Some of these
bounds were known previously, but we present them
in a unified fashion. We also give some new bounds.

In our discussion below we assume that the input
has size n and the number of processors p satisfies
1 < p < (%). Since all the problems we consider de-
pend on most of their input variables, any PRAM
algorithm for these problems must read ({n) vari-
ables and thus must takes at least Q(n/p) time.

5.1. Element distinctness and sorting

The Q(log;,,,,, n) comparison model lower
bound for sorting [6] gives only an {)(y/logn) lower
bound in the n processor merging-comparison model.
However, Boppana [9] gives better direct lower
bounds for sorting in the merging-comparison model,
from which he derives the PRAM lower bounds that
are stated next.

Lemma 5.1 (Boppana [9]). Sorting in the p proces-
sors merging-comparison model requires

Q(logy, /) log n+ 1 n)

rounds.

Since the merging-comparison model lower bound
holds also under the distinctness assumption, it trans-
lates to an Q(10g((, /) tog n+1) #) time lower bound
for sorting on the PRAM [9]. It is straightforward to
establish that sorting comparison model lower bounds
hold for the element distinctness problem. Hence, the
merging-comparison model lower bound translates to
an Q1og ,/»yiog »+ 1) 1) time lower bound for the
element distinctness problem in the PRAM with
bounded memory [9,16].

5.2. Finding the maximum and related problems

Several problems have ((log log;, .+ 7)
rounds lower bounds in the parallel comparison
model. The list includes:

o finding the maximum [26];

o merging two lists of equal length [10];
string-matching [12];

two-dimensional array-matching [12,14];

testing if a string is square-free [4] and

finding initial palindromes in a string [13].

The following lemma, whose proof is similar to
Lemma 5.3 below, shows that these lower bounds
can be transformed into ((log 108, /0411 n) lower
bounds for the PRAM model.

Lemma 5.2. The lower bounds listed above are
resilient.

The comparison model lower bounds for finding
the maximum and merging hold under the distinct-
ness assumption. Hence, these lower bounds can be
transformed into PRAM lower bounds [19,24]. The
comparison model lower bounds for string-matching
and the related problems mentioned above do not
hold under the distinctness assumption, and there-
fore, these lower bounds translate only to lower
bounds in the PRAM with bounded memory.

5.3. Finding an approximate maximum

Alon and Azar {2,3] give tight lower and upper
bounds on the comparison complexity of several
approximation problems. We consider as an example
the problem of finding an approximate maximum

D. Breslauer et al. / Information Processing Letters 62 (1997) 103-110 109

(AM); namely, an element whose rank belongs in the
top £n ranks, 1/n< &< 1/2. Alon and Azar prove
that under the distinctness assumption,

Eaw(n, p) = Q(loglogy, . (1/¢)

+log"n—log"(p/n)). (1)
We prove next that this lower bound is resilient.

Hence the same lower bound holds in the merging-
comparison and the PRAM models.

Lemma 5.3. The lower bound (1) for &,,,(n, p) is
resilient.
Proof. We prove that
log 10g, /n+ 11(1/8) +log"n~—log"(p/n)
is resilient (since constants do not matter). If
log]Og[p/n+|](]/8)
<log"n—1log™(p/n) <logn,
then
log* n — log* p/n)
= O(log"n—log" (2¢ "p/n)).

If log"n —log"(p/n) <log log;,, .\ (1/&) <
log log(1 /&), we proceed with two cases. If 1 < p <
n log(1/¢), then since log* n < 1 /&, we get that for
large enough n,

log log(1/¢) <2 log 10810021/ o9+ 11(1/€)
<2log logc, /m log(]/e)+|](1/£)'
If nlog(1/g)<p<(3), then
log lOg[(p/n)H)(l/“")
<108 108,/ my10gc1 /ey 1)(1/€) + 1.

Putting the inequalities above together, we establish
that

]Og log[p/n+)](]/€)
=®(]og log“p/”)iog(,/SH,](l/a)). O

6. Conclusions

By using a finite version of the Erdés—Rado
Theorem [18], it is possible to replace the infinite

Ramsey-theoretic arguments in Section 4.1 by finite
ones. However, the lower bounds obtained by the
general transformation would still require that the
input domain is huge. In some cases, direct lower
bounds that were given for specific problems require
an input domain that is much smaller [8,16,19]. It
would be of interest to extend the lower bounds
given here to smaller domains.

In another direction, one could hope to strengthen
some of the lower bounds for PRAMs with un-
bounded memory. However, on a PRAM with un-
bounded memory (and concurrent-read and concur-
rent-write with arbitrary write conflict resolution),
the following reduction transforms any problem
P(x,,..., x,), whose result depends on equality of
the variables but not on their order (e.g. element
distinctness and string-matching), from an un-
bounded input domain to a linear sized domain:
processors number i, i € [n], reads input x; and then
writes its index i into memory cell number x;; next,
processor i reads cell x; and sets y; to the value
read. Note that y, € [n] and because the solution to
problem £ depends only on the equality between
input variables, the solution for P(y,,...,y,) is
equivalent to the solution for the original input. This
observation indicates that the general Ramsey-theo-
retic techniques of this paper cannot help in obtain-
ing such extensions.

Some of the resuits reported in this note were
originally observed independently in [11] and [15].

Acknowledgement

We thank an anonymous referee for comments
that helped improve the presentation above.

References

(1] M. Ajtai, J. Komlés, W.L. Steiger and Szemerédi, Optimal
parallel selection has complexity O(log log n), J. Compur.
System Sci. 38 (1989) 125-133.

[2] N. Alon and Y. Azar, Finding an approximate maximum,
SIAM J. Comput. 18 (2) (1989) 258-267.

[3] N. Alon and Y. Azar, Parallel comparison algorithms for
approximation problems, Combinatorica 11 (2) (1991) 97—
122.

110 D. Breslauer et al. / Information Processing Letters 62 (1997) 103110

[4] A. Apostolico and D. Breslauer, An optimal O(log log n)
time parallel algorithm for detecting all squares in a string,
SIAM J. Comput., to appear.

[5] Y. Azar and N. Pippenger, Parallel selection, Discrete Appl.
Math. 27 (1990) 49-58.

[6] Y. Azar and U. Vishkin, Tight comparison bounds on the
complexity of parallel sorting, SIAM J. Compur. 16 (3)
(1987) 458-464.

[7] P. Beame and J. Hastad, Optimal bound for decision prob-
lems on the CRCW-PRAM, J. ACM 36 (3) (1989) 643-670.

{8] O. Berkman, Y. Matias and P. Ragde. Triply-logarithmic
upper and lower bounds for minimum, range minima, and
related problems with integer inputs, in: Proc. 3rd Workshop
on Algorithms and Data Structures, Lecture Notes in Com-
puter Science, Vol. 709 (Springer, Berlin, 1993).

{9] R. Boppana, Optimal separation between concurrent-write

parallel machines, in: Proc. 21st ACM Symp. on Theory of

Computing (1989) 320-326.

[10] A. Borodin and J.E. Hopcroft, Routing, merging and sorting
on parallel models of comparison, J. Comput. System Sci. 30
(1985) 130-145.

{11] D. Breslauer and D.P. Dubhashi, Tranforming comparison
model lower bounds to the parallel-random-access-machine,
Tech. Rept. RS-95-10, BRICS, Dept. of Computer Science,
University of Aarhus, DK-8000 Aarhus C, Denmark, 1995.

{12] D. Breslauer and Z. Galil, A lower bound for parallel string
matching, SIAM J. Comput. 21 (5) (1992) 856-862.

{13] D. Breslauer and Z. Galil, Finding all periods and initial
palindromes of a string in parallel, Algorithmica, to appear.

[14] R. Cole, Z. Galil, R. Hariharan, S. Muthukrishnan and K.
Park, Parallel two dimensional witness computation,
Manuscript, 1993.

[15] A. Czumaj and F. Meyer auf der Heide, A lower bound for

string matching on PRAM, Tech. Rept. tr-rf-95-011, Univer-
sity of Paderborn, 1995.

[16] J. Edmonds, Lower bounds with smaller domain size on
concurrent write parallel machines, in: Proc. 6th Ann. Conf.
on Structures in Complexity Theory (1991) 322-331.

[17] P. Erdds and R. Rado, A combinatorial theorem, J. London
Math. Soc. 25 (1950) 249-255.

[18] P. Erdos and R. Rado, Combinatorial theorems on classifica-
tions of subsets of a given set, Proc. London Math. Soc. 2
(1952) 417-439.

[19] FE. Fich, F. Meyer auf der Heide and A. Wigderson, Lower
bounds for parallel random-access machines with unbounded
shared memory, Adv. in Comput. Research 4 (1987) 1-15.

[20] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey
Theory (John Wiley & Sons, New York, 2nd ed., 1990).

[21] F. Meyer auf der Heide and A. Wigderson, The complexity
of parallel sorting, SIAM J. Comput. 16 (1) (1987) 100-107.

[22] S. Moran, M. Snir and U. Manber, Applications of Ramsey’s
theorem to decision tree complexity, J. ACM 32 (4) (1985)
938-949.

(23] P. Ragde, W. Steiger, E. Szemerédi and A. Wigderson, The
parallel complexity of element distinctness is ((y/log n),
SIAM J. Discrete Math. 1 (3) (1988) 399--410.

[24] B. Schieber and U. Vishkin, Finding all nearest neighbors for
convex polygons in parallel: a new lower bound technique
and a matching algorithm, Discrete Appl. Math. 29 (1990)
97-111.

{25) Y. Shiloach and U. Vishkin, Finding the maximum, merging
and sorting in a parallel computation model, J. Algorithms 2
(1981) 88-102.

[26] L.G. Valiant, Parallelism in comparison models, SIAM J.
Comput. 4 (1975) 348-355.

