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 An order type decomposition theorem

 By RICHARD LAYER

 Introduction

 The work which has been done on countable linear order types (more

 generally, the class O'R of countable unions of scattered types) has shown

 that these order types, both individually and as a class, have properties

 which are reminiscent of the ordinals and which imply the known facts about

 ordinals as a special case. For example, consider the following properties of

 ordinals:

 (a) the class of nonzero ordinals is obtained by closing the set {1} under

 sums indexed by regular nonzero ordinals,

 (b) the class of ordinals is well ordered under embeddability,

 (c) every ordinal is a finite sum of additively indecomposable ordinals

 (an order type q- is said to be AI if 9 = (91 + 92) -9 ?91 or 9 < 92), and
 (d) the AI ordinals are those of the form co.

 The ordinals may be viewed as being generated in a one-dimensional manner;

 the generalization to order types comes when we allow other generating

 operations (such as, in the case of scattered types, the operations of taking

 converse well ordered sums). The theory needed to handle this wider situa-

 tion depends on Nash-Williams' theory of better-quasi-orderings, as developed

 in his paper [10] on infinite trees. The results' which correspond to the above

 properties of ordinals are:

 (a) the class of nonzero members of O'D is obtained by closing the set {1}
 under sums indexed by regular nonzero members of 'DR,

 (b) 'DR is better-quasi-ordered under embeddability,

 (c) every type in 'DR is a finite sum of AI types, and

 (d) the AI members of ODR are those types generated from {O, 1} by closure
 under "regular unbounded" sums.

 The additively indecomposable ordinals coincide of course with the ordi-

 nals which are strongly indecomposable (an order type 9 is said to be SI if

 9 (9, 9)', i.e., whenever tp(L) = 9, L = L, U L2, then 9 < tp(L,) or

 9 ? tp(L2)). In this paper we will prove a decomposition theorem for the AI

 members of OIL which can be viewed as the fact which corresponds to this

 I See [9]. Terminology is in Sections 2 and 3 below.
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 AN ORDER TYPE DECOMPOSITION 97

 property of AI ordinals. The theorem involves a representation of the AI

 types in 'DR by finite labelled trees. This tree representation gives each such

 type, up to equivalence under embeddability, as a certain kind of shuffle of

 a finite number of SI types.

 Various properties of the order types in 'DR are obtained as a corollary,

 in particular the theorem has the following combinatorial consequence:

 for each q- e 'DR there exists an n < co such that

 '9 - ('+)<./n 9

 that is, for any partition of an ordered set of type 9 into finitely many sub-

 sets, the union of some ? n of the subsets contains a set of type 9.

 This answers affirmatively a question of A. Hajnal as to whether for

 every countable 9, 9 [-]1W1
 A characterization, for each n, of the types 9 e OR such that 9 (p)<-/n

 can be read off of the tree representation of AI types; in particular the case

 n = 1 is where q is strongly indecomposable, and the SI types are charac-

 terized by the theorem as the types which are equivalent under embeddability

 to "hereditarily increasing" types, where, e.g., the class of hereditarily in-

 creasing scattered types is the least class containing 0, 1, and closed under

 sums

 za<r 9a 9 Ea<K*9a 9

 where r is an infinite regular cardinal and a < f8 9d < by.. This charac-
 terization answers affirmatively R. FraYsse's Conjecture IV of [4].

 In Section 1, a notion of many-one embedding is considered which is

 weaker than the usual notion of homeomorphic embedding for trees, and a

 combinatorial theorem is proved which shows that if Q is a well-quasi-ordered

 set, then every set of finite Q-labelled trees has a "bounded cover" under

 this notion of embeddability.

 In Sections 2 and 3, a class of order types having certain tree representa-

 tions is defined. It is shown that these types are well behaved, and, using

 the results in [9] and the tree theorem of Section 1, it is proved that every

 AI type in 'DR is equivalent to one of these types. The part of the theorem

 which deals with the scattered types is singled out and proved in Section 2,

 and in Section 3 it is indicated how to obtain the analogous results for types

 in 'DR and for Q-labelled types, Q better-quasi-ordered.

 In Section 4 some combinatorial consequences of the results in Sections 2

 and 3 will be proved. The idea is that in classical combinatorial theorems

 I I would like to express thanks to F. Galvin for bringing Hajnal's question to my attention.

This content downloaded from 
�����������128.8.127.150 on Mon, 23 Oct 2023 21:24:00 +00:00������������ 

All use subject to https://about.jstor.org/terms



 98 RICHARD LAVER

 about ordinals, the strong one-dimensional properties of ordinals are seldom

 used; rather, weaker properties such as the Ad (p)<(1/n relation above are
 often seen to be what are really needed in the proofs'. This leads to the ex-

 pectation that any partition, decomposition, or mapping theorem about ordi-

 nals, suitably stated, will also be provable for the class OR with the aid of

 results in Sections 2 and 3. Section 4 has been written in the spirit of giving

 a nonexhaustive set of examples of this. Included are a mapping property,

 some partition relations which for ordinals are due to Erd6s, Hajnal, and

 Milner, and a method for piecing together order types using a notion of

 reduced complement.

 In Section 5 it is shown that for any infinite cardinal K, the partial order

 of scattered types of power < r has dimension ir+.

 Standard set theoretic notation is used. For Section 1 familiarity is

 assumed with the basic methods and results of wqo theory (see [7], [8], [12]).

 The results on bqo's and order types which are used in the remaining sections

 can be found in [6], [9], and [10].

 1. Finite wqo-labelled trees

 Q is always assumed to be an arbitrary set on which a quasi-order (transi-

 tive, reflexive relation) < is defined. If q,, q2 e Q, define q, < q2 4 q1 < q2

 and q2 i; q1, and q1 q2 * q, < q2 and q2 < q1. Recall that Q is well-quasi-
 ordered (wqo) just in case Q satisfies any of the following equivalent

 conditions:

 (i) for every f: co Q there are i < j < co such that f(i) < f(j),

 (ii) for every f: (I Q there is an infinite X c co such that i, j C X and
 i,< j t)< fj

 (iii) Q is well founded under < and every set of mutually incomparable

 elements of Q is finite,

 (iv) every extension of the partial order Q/= to a linear order is a well

 order.

 Our aim in this section is to prove that any set of finite Q-trees, Q wqo, has

 a certain kind of "bounded cover". We first give some definitions and lemmas.

 If X, Yc Q, recall that X <1 Y (X <m Y) means that there is a 1-1
 (many-one) f: X-) Y such that for all x e X, x < f(x). For a set A, let C(A)

 be the power set of A, and let [A] <' be the set of finite subsets of A.

 1 In this regard A. Tarski has mentioned some theorems on Boolean algebras with well
 ordered bases, due to him and A. Mostowski, which involve the a --)(a)'1/ principle for
 ordinals a. For a summary of these results and related results on countable BA's and BA's
 with scattered bases, see [14], pp. 364-369.
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 AN ORDER TYPE DECOMPOSITION 99

 THEOREM 1.1. [7]. If Q is wqo then [Q] 'l is wqo under <1, <m.

 THEOREM 1.2. ([10], [12]). If Q is wqo then 9P(Q) is well founded under

 <19 <my

 A pair (T, 1) is a Q-tree if T is a tree (considered here to be a partially

 ordered, rooted set such that for each x e T, {y: y <T x} is well ordered) and
 1: T -V Q. Let (T5F)Q be the collection of finite Q-trees. Define quasi-orders
 on (2T)Q by:

 (T1, 1l) <m (T2, 12) df there is an f: T1 T2

 such that x <T, y -f(x) <T2 f(y), and 11(x) < 12(f(x))9

 (T1, 1l) <1 (T2, 12) >df in addition to the above,

 f(x A Y) = f(x) A f(Y) for all x, y C T1,

 where x A Y is the greatest lower bound of x and y.

 THEOREM 1.3. [8]. If Q is wqo then (2T)Q is wqo under <1, <m.

 Note: We have added on the <m version of Theorem 1.3 (it follows from

 the <, version in [8]) because Theorem 1.6 below only goes through using
 the weaker <m relation. The reader is reminded that the case of infinite

 trees having no paths of length > co was settled in [10] (see also [9], Theorem

 2.2, for the extension to bqo labelled trees).

 For q C Q, let Qq {r e Q: q S; r}. We will use the following form of
 wqo induction principle: a statement S(Q) is true for all wqo sets Q provided

 that

 (1) S(0) , and

 (2) V wqo Q(V q E Q S(Qq) S(Q)).

 X c Q is called a chain if X is linearly ordered under <, an antichain if the

 members of X are pairwise incomparable. q1, q2 e Q are said to be compatible

 if 3 qeQ q1, q2 <q.

 LEMMA 1.4. If Q is countable and has no infinite antichain then there is

 an n < w and chains Xi _ Q. i < n such that Uign Xi-m Q.

 Proof. Q has a well founded (and hence wqo) cofinal subset, so it suffices

 to prove the theorem for countable wqo sets Q. Assume, by the wqo induction

 hypothesis, that the lemma holds for Qq, all q e Q. Let Q = {qj: i < ad.

 Case 1. V i, j 3 kqi, qj < qk. Then build up in co stages a chain Xc Q.
 X _M Q.

 Case 2. 3 i, j v kqi f q, or qj A qk. Then Q Qq, U Qqj. By the in-
 duction hypothesis Qqi, Qqj are--m finite unions of chains, and thus Q is.
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 100 RICHARD LAVER

 We state without proof a more general proposition (observed by the

 author for regular K, by Hajnal for singular K): if ir is an infinite cardinal,

 Card Q = ic, and Q has no infinite antichains (if K = co this may be weakened

 to: there is no infinite set of mutually incompatible members of Q) then there

 is a collection of fewer than r chains in Q whose union is--m Q.

 Convention. If R is a quasi-ordered space built up from Q by means of

 the operations listed above (for instance, R = 9([Q]w'), R = 9(J')Q), then
 the <?m quasi-order on R is understood to be the ordering inherited from the

 ordering on Q and the < orderings associated with the operations.

 If X, Yc [Q]<,w Vye 3 xeX y:x, and Y -=- mX, then call Y a
 cover for X. For n < w, say that X is n-coverable if there is a cover Y for

 X such that y C Y Y Card (y) < n.

 LEMMA 1.5. If Q is wqo and Xc [Q]<" then for some n < co, X is n-

 coverable.

 Proof. Assume the lemma holds for Q, all q e Q. If Xc [Q]<w is a
 counterexample to the lemma then there is, for each i < co, an xi e X such
 that

 VxeX Vycx (Cardyy < i xi my);

 we may as well assume then that

 X = {X: i < o4 .

 By Theorem 1.1 and Lemma 1.4, X is a finite union of chains Xr c X; if

 the lemma holds for each Xr then it holds for X, so we may assume X itself

 is a chain and that i < j xi <m Xj.
 Case 1. vi 3j 3 q ex xi <m {q}. Then, since X is a chain, X is 1-

 coverable.

 Case 2. 3 ivj V q ex x;i ?ml, {q}. Let xi {q1, q2, *.* *, qk}. By the as-
 sumption, for each j < a) we can write

 Xj = Xj1 U Xj2 U ... U Xjk9 where {qr} m Xjr all r<k.

 Apply version (ii) in the definition of wqo k times to obtain an infinite A _ c

 such that

 jl9 j2G A and j ?< j2 >for all r < k X.r <m Xj2r 9

 where note {xj: j e A}-m X. Let

 X(r) = {Xjr j e A}l

 We have that X(r) C [QqrJ <a so, by applying the wqo induction hypothesis
 to each X(r), an nT < o can be chosen so that for all r < k, X(r) is n,-
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 AN ORDER TYPE DECOMPOSITION 101

 coverable. But now, using the fact that each X(r) is a chain, it can be seen

 that X is rlk nr-coverable, which gives the lemma.
 A subtree of a tree T is a rooted subset of T. If t C T, then br(t) =

 {t' C T: t <? t'} is the branch of T with root t. A branch br(t) of T is called

 proper if t # the root of T. These definitions apply also to Q-trees, taking

 the restricted labelling function. A treetop of T is a maximal node of T.

 If W c (Y-T)Q, n < c, a cover for W is a W' c ('FT)Q such that (T', 1) G
 W- (T', 1) is a subtree of some (T, 1) C W, and W -m W'. W is n-cover-
 able if there is a cover W' for W such that (T', 1) C W' T' has < n treetops.

 THEOREM 1.6. If Q is wqo and W c (U'T)Q then for some n < co, W is

 n-coverable.

 Proof. By Theorems 1.2 and 1.3, P((GYFT)Q) is well founded, so we may

 suppose the theorem holds for all W' <m W. Suppose the theorem is false

 for W; then, as in the proof of Lemma 1.5, we may assume that W = {(Tj, 1i):
 i < o}, where if j < co and (Tj, 1j) is a subtree of (Tj, lj) which has < i

 treetops then (Ti, li) Am (T;, 1j). Using Lemma 1.4 we may reduce as in
 Lemma 1.5 to the case where W is a chain and assume that

 i < j ) (Ti, 1i) <m (Tj, 1j) , and each Card (Ti) > 1 .

 Since now every infinite W' C W is W, we may assume by Ramsey's
 theorem that either

 (a) V i, j (i < - (Ti, 1i) is not ?m embeddable into any proper branch
 of (Tj, 1j)) or

 (b) V i, j (i < - (Ti, 1i) is <m embeddable into some proper branch

 of (Tql)).
 First, suppose (a) is true. Let Si be the set of branches (br(x), 1i) of

 (Ti, li) such that x is an immediate successor of the root of Ti. Applying
 Lemma 1.5 to the wqo space (U-F)Q we may find an S! _ Si, all i, and a k < cO
 such that

 (1) each CardSI < k and V i 3j Si <?mS

 Setting SI {(Ti1, i) ... (Tik, 1j)}, we may cut down k times using the wqo
 property (ii) and assume that:

 (2) V i < j (Tir, li) <m (Tjr, 1j) for each r < k and
 (3) V i < j li(root Ti) < 1j(root Tj).

 From (a) and the fact that W is a chain, it follows that for each r < k the

 set Wr {(Tir, 1i): i < 04 is <m W. We may apply the theorem, then, to

 each Wr, giving numbers nr < (O such that Wr is nr-coverable. Using this

 and (1), (2), and (3), the reader may now check that W is ErSk nr-coverable

This content downloaded from 
�����������128.8.127.150 on Mon, 23 Oct 2023 21:24:00 +00:00������������ 

All use subject to https://about.jstor.org/terms



 102 RICHARD LAVER

 (recall that the <m embedding for members of (iFT)Q need not be 1-1), as
 desired.

 Suppose then that (b) is true. For each finite a : Q and (Ti, l) e W

 split (Ti, Q7) into an upper and lower part determined by a, by

 U(a, To) = {(br(x), li): x e Ti, l(x) 2 q for some q e a,

 and V Y <TiX l7(y) > q for all q ea},

 L(a, T)=(x T:v < Xli(y) Z2 q for all q C al. 1j).

 Let

 U(a, W) = Uj U(a, Ti),

 and

 L(a, W) = {L(a, Ti): i < cl}

 Claim. For some a c Q. U(a, W) <m W and for each i, if x is a node of

 L(a, Ti) then U({lj(x)}, W)-m W.

 Proof of claim. We have U(0, W) = 0 <m W, and L(0, W)= W, so

 if a = 0 fails to satisfy the claim there will be a qA r Q such that
 U({qO}, W) <m W. Suppose, continuing in this way, we have picked a set
 {qo, q1, , qk} such that

 i < < k > qj S; qj and U({qO, , qk}, W) <m W.

 If a = {q0, *--, qkJ doesn't satisfy the claim then for some i < co and node

 x e L({qO, ** qk, Ti), U({li(x)}, W) <m W. Set
 qk+= li(x)

 We have

 r < k - qr qk?+ 1

 since x C L({qO, * * *, qk}, Ti). We have that

 U({qO, , * * i qk+9} W) ' ( J({qO . , qk, TW) U U({qk+l}, W))

 Each of the two sets on the right hand side is <m fW by hypothesis, but W
 is a chain, from which it follows that

 (U({qO * *, q k} W) U U({qk+l}, W)) <m fW

 and hence

 U({qO9 * qk+119 W) <m If W

 completing the induction step. Thus, for some k, a = {q0, ..., qk must satisfy
 the claim lest an infinite sequence {qj: i < a)} be obtained with i < j

 qj :? qj, which would contradict Q wqo.
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 AN ORDER TYPE DECOMPOSITION 103

 Given a c Q as in the claim, then, we want to build up an n-cover of Q,
 for some n < o. As in the first part of the theorem, find by Lemma 1.5

 a u < w and sets U'(a, To) c U(a, To) all of cardinality < u such that

 {U'(a, To): i < ()} { U(a, To); i < c}. Write

 U'(a, To) - {(T1, li), *., (Too, 11)},

 and cut down to an infinite A c w such that for each r < u, {(Tir, 1): i C A}
 is a <?mchain. Now, using the fact that U(a, W) <K W. pick nr: r < u such

 that {(Tir, 1): i < A} is nr-coverable.
 To handle the set L(a, W), let Q(a) c Q be {l(x): x C L(a, Ti), some i}.

 If pig ... pn Q(a)g i < A, let

 [pig .. - -P.In; ( Tig l)]

 be the Q-tree which is for its first n levels a single chain x1, *.., xa, where

 x; is labelled by pj, and which above the chain is a copy of (Ti, Qi).

 Claim. For all p1, ..., p e Q(a), i < a, there is a j < a) with [p1, ..., p;

 (Mgi 1,)] <Mo (Tj9 Ij) -

 Proof of claim. By induction on n. The case n = 1 is like the case

 n > 1 considered here. By the induction hypothesis choose a j such that

 [P2,q .. * *,.; ( Tig 1i)] < m ( Tig 1j) -

 By the assumption (b) above we may <m embed (Tj, lj) into a proper branch
 of some (Tk, ik). By the previous claim,

 U({p1}, W) m W
 so there will be a branch of some tree in W, having root node labelled > p1,
 which is >m (Tk, 1k). This branch is >m[P1, P2, *--, Pa; (Ti, 1)] as desired,
 giving the claim.

 It now follows that W is Er,. nr-coverable, as follows. Given (Ti, li) e W.
 to cover it, enumerate L(a, To) in a sequence xl, x2, *.., X compatible with

 the order on Ti. Now consider the tree

 [li(Xl)g li(X2)9 . . . li(X,); (Tjg lj)] ,

 where by the construction it is possible to choose (Tj, lj) to contain a subtree

 with at most Eru nr treetops which is >m , every member of U(a, To). We
 have that

 (Tig li) < m [iz(Xl)g li(X2)9 . . *, li(X,); ( Tjg lI)] 9

 but by the claim, [li(x1), *1., l7(x,); (Tj, lj)] is ?m some (Tk, Qk). Thus there
 is a subtree of (Tk, 1k) having < Eir<u7nr treetops which is ?m (Ti, Qi). This
 completes the proof.
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 104 RICHARD LAVER

 2. The main theorem for scattered types

 Quasi-order the class of order types by the relation

 9 < * -,df 9 is order embeddable in -.

 Let ir be the order type of the rationals. An order type 9 is defined to be

 scattered just in case r A Ap. Let 3 be the class of all scattered types. In

 this section the version of our main result which applies to scattered types

 will be proved; for the extensions to Q-types (which are occasionally needed

 in applications) and to OR types, see the next section.
 We assume familiarity with the basic definitions involved. Results from

 [9] will be used; Theorems 2.1-2.5, below, extracted from the more general
 versions in [9], summarize the basic properties of 3 and its members which

 will be needed.

 THEOREM 2.1. [6]. S is the closure of the set of order types {O, 1} under

 well ordered and converse well ordered sums.

 THEOREM 2.2. [9]. 3 is better-quasi-ordered under embeddability.

 A type 9 is called additively indecomposable (AI) if 9q = ( + 8) p9 <
 or ?<0.

 THEOREM 2.3. [9]. Every 9 e 3 is a finite sum of AI types.

 Define a regular unbounded sum of order types qat to be a sum La< 9

 orasum ,a<r*9a(=df(9O+9P+ ---+9+---)and(.** + +- -+9i+o)
 resp.), where r is an infinite regular cardinal and

 V a < r Card {,8 < r: 9A ? y} = K.

 THEOREM 2.4. [9]. The class of AI members of S is the closure of {O, 1}

 under regular unbounded sums.

 Let

 (<,a= {q 'e: Card 'p < }.

 THEOREM 2.5 [9]. For any cardinal K, Card (S<A:/-) = K.

 (For instance, while there are 2Ro countable order types, there are only

 t1 when mutually embeddable types are identified.)
 As a beginning in the proof of the representation theorem, define a regu-

 lar increasing sum of order types Ad, to be a sum a<, q or a sum 5a,<K* A,
 where K is an infinite regular cardinal and v a, S < K (a <fS -d q< y 'PP).
 Define (C5c S to be the closure of the set of order types {O, 1} under the

 operations of taking regular increasing sums. Members of the class (C5 will
 be called hereditarily increasing types.
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 AN ORDER TYPE DECOMPOSITION 105

 Recall that a type q' is called strongly indecomposable (SI) if whenever

 L is a linearly ordered set, tp(L) = qA, and L = L1 U L2, then q) < tp(L1)

 or (p < tp(L2). From the construction of XJC it is seen by induction that

 LEMMA 2.6. Every member of XJC5 is strongly indecomposable.

 We will define a class

 at C~ XJ)S

 (i.e., a member of 6f1 is a finite (T, 1) where 1: T X TfC5, X75 quasi-ordered

 by embeddability). Suppose T is a tree and for each a < K, 1a: T S. Then
 define

 5 a <x (T. 1a) (57a<,,* (T. 1a), resp.)

 to be (T, 1), where for each x E T, I(x) = l l(x) (resp., for each x G T.

 I(x) = ,<K* l(x)). If (T1 11), *.., * (To, ln) are 3-trees, q' e 5, define

 [q; (T 11) *99 (To ln)]

 to be the 3-tree whose root is labelled by q' and whose branches which begin at

 the immediate successors of the root are (T1, l) ..., 9 (To, I). If 1a, glp: TV 5,
 write

 (T. 1a) <I(T. 1I)

 just in case V x E T la(x) < l(x).

 q1T, then, is defined to be the smallest class of 3-trees containing 0 (the

 empty tree) and 11 (the one point tree labelled by the order type 1) such that

 (i) if K is an infinite regular cardinal and for some T, lo, ... *, 1a, *
 (T lI) e Gt for all a < K, and V a, r < K, a< (T. 1a) <I (T. 1), then
 '<, (T. 1a) E eT and a<K* (T. 1a) E Gt,

 (ii) (a) If (T1, 11) *** (To, In) E 6(U for each i < n, (Ti, li) = Tj, (Ti, lij),
 i < k (Ti, lij) < I (Tk, iki), then [0); (Ti, i)9 ...* (To, ln)] E BU, and

 (b) if as in (a), except each (Ti, li) is Ski<,,, (Ti, lij), then [w)*; (T1, ig), ***,

 (To, ln)] G Glu.

 Convention. If a sum is written E$<K (T, 1a) or I (T, la), it is as-

 sumed that a < 8 (T 1a) ?<I (T, la), as above.

 By the construction we have that all the members of q1T are in fact XCJ-

 trees. To each (T, 1) eg q, now, we associate an order type (T, 1) G H5. (T, 1)
 can be viewed as a "shuffle" of the types l(x), x a treetop of T, where the
 various depths at which the shuffle is being carried out are given by the
 bottom part of (T, 1). Let

 0 = ?, 11 = 1 .

This content downloaded from 
�����������128.8.127.150 on Mon, 23 Oct 2023 21:24:00 +00:00������������ 

All use subject to https://about.jstor.org/terms



 106 RICHARD LAVER

 If (T, 1) e qt( is a sum I (T, 1a), (Q <K. (T, 1a), resp.) obtained as in (i), let

 (To) = (T 1), (Ea<K*(T a) P) resp.)
 If (T, 1) = [w; (T1, 11), *.., (To ln)] is obtained by (ii) (a), where thus each
 (Tig Ti) E j<,,, (Tijq 1i),. let

 (T, 1) = Tj<(O ((T1j, 11) + (T26, 12) + + (Twi ln))

 if (T, 1) falls under case (ii) (b) take the symmetric o* sum. (Note: strictly
 speaking, (T, 1) should be taken as the set of all types which can be associated

 to (T, 1) by these rules, but we don't do this, citing the proof of Lemma 2.7

 below, which shows that all such types are-.)

 LEMMA 2.7. If (S, 1), (T, m) E qi and (S, 1) <?,, (T, m), then (S, I) <
 (T, m).

 Proof. Assume the lemma holds for all (T', m) <1 (T, m), and that
 with (T, m) it holds for all (S', 1) <mn (S. 1). If (T, m) is 0 or 11, we are
 done, likewise we can assume that Card S > 1.

 Case 1. (T, m) = [a; (T1, im1), *, (Tn, n)]. We look at the possible
 cases for (S, 1).

 If (S, 1) = [w: (S1, 11), *., (So, lr)] then V i 3 j (Si, 1i) <m (Tj, mj); using
 the induction hypothesis and the fact that the (Si, 1i) and (Tj, mj)'s are w0-
 chains, we can construct an embedding of (S, 1) into (T, m).

 If (S, 1) = [a*; (S1, 11), *..., (S7, l,) then 3 j (S, 1) <?m (Tj, mj), so by in-
 duction (S, 1) < (Tj, mj) < (T, in).

 Finally, if (S, 1) is EI,: (S, la) or < (S, la), then, since Card S > 1,
 the construction of qt( is such that we must have l(root S) o w, whence
 (S. 1) <? (Tj, mj) for some jo and we are done by induction.

 The case where (T, m) = [w*;(T1, m1), *.., (T., in)] is symmetric, so
 suppose now that

 Case 2. (T, m) = > (T, ma).

 First suppose that (S, 1) = 573<2 (S, lA). Lest (S, 1) <?m (T, ma) for some
 a (where we'd be done by induction), we may assume X < K. Since the (S, 1i)
 and (T, mi)'s are finite and JC5 labelled, and the types l(x): x E S, are AI,
 we have: if K = oj then Vr< 3 s<wo (S. 1,) < (T,imn), and if K>o)
 then

 v < X a o < K (S. IB) <?fi<n (Tm.Ma)

 The latter sum, being <,-increasing and of length oa, is verifiably in Gl. By
 the induction hypothesis and regularity of K, an embedding of (S, 1) into
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 AN ORDER TYPE DECOMPOSITION 107

 (T, m) may be constructed.

 Suppose now that (S, 1) = , (S, lo). We must have (S, 1) <m (T, ma)
 for some a < K, done by induction.

 If (S, 1) = [w; (S1, l1), *.., (Sn, ln)] where each (Si, li) = ,j<( (Si, lij)
 then if K = w, we will have that V j < a) 3 r < v i < n (Si, lij) ?m(Trymr),
 and if K > co then

 vj < (o 3 (x < is V i < n (Sig lij) <fi~~(T,,,9m")

 We can then use the induction hypothesis to embed (S, l) into (T, m).

 Finally, if (S, 1) = [w*; (S1, Iq), *I* *, (Sn, l")], then for some a < K (S. l) ?m
 (Ta,, may), done by the induction hypothesis.

 The case (T, m) = , (T, mao) being symmetric, this completes the
 proof.

 Using Lemma 2.7 it is verified by induction that

 LEMMA 2.8. If (T, 1) e q1, then (T, 1) is additively indecomposable.

 LEMMA 2.9. (a) If (T, 1) q1I, S a subtree of T such that y e S and

 X <T y-xeS, then (S, l) BU.

 (b) If (T, 1) e qt, x e T a node with exactly one immediate successor,

 then the collapsed tree (T - {x}, 1) E 11 and (T - {x}, 1) (T, 1).

 Proof. (a) If (T, 1) = < (T, la), then (S, 1) = < (S, la), where

 each (S, lg) Q T1( by the induction hypothesis, and thus (S, 1) E 6f1. If (T, l) =
 [wj; (T1, 11), *.. , (TV, lu)], then (S, 1) = [w); (Sil, liz) ... (Sir, lr)] where Sij is
 a downward closed subtree of Ti.; by induction as in the first part, each

 (Sij, lij) is in q1T and is an w-increasing sum, so (S, 1) E qt(. The converse well
 ordered cases are symmetric.

 (b) If (T. 1) = 5, (T, Ij), then (T - {X}, 1) = , (T - {X}, 1a), and
 we are done by induction. If (T. 1) = [w;(T1, li), 1) , (TV, lu)], and x is the
 root of T, then n = 1 and the case is clear by construction. If x E Ti for

 some i, then (Ti - {x}, li) is by induction an w increasing sum _ (Ti, li), so

 (T - {x}, 1) (T, 1) as desired. Again, converse well ordered sums are done
 symmetrically.

 LEMMA 2.10. If q' E 3 is a regular unbounded sum K cp, with K > (0,
 then q' <,PK, where each *fr is AI and a < , fra ? .

 Proof. Using Theorem 2.3, write each initial segment 'P< q. of (P as a
 finite sum

 (All + *. +

 of AI types. Since K > co is regular and 3 is wqo we may cut down to a K
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 108 RICHARD LAVER

 powered subset of K where each n. = n and for each r < n, y < am -rr<
 *Jr. The reader may verify that for the least r < n such that the sequence
 {1ar} is unbounded in q' we must have

 5a 'c/"ar -
 as desired.

 THEOREM 2.11. If q' H 3 is additively indecomposable then for some
 (T. I) E t Gal ='- (Ty 1).

 Proof. Assume the theorem holds for all types * < qA. By the inductive
 hierarchy for AI types given by Theorem 2.4, assume first that q' is a regular
 unbounded well ordered sum of smaller AI types. We consider separately the
 cases whether or not this sum can be taken to be increasing.

 Case 1. (P = qa, where K is an infinite regular cardinal, each PAd is

 AI, and a < /8 A qd, <(by. For each a < K, pick (Ta, ya) E et with (Ta, 1a)-
 Ad, by the induction hypothesis. We obtain a tree (Ty 1) as follows.

 If K > co cut down to a K powered subset of K on which a < 8 Ta =

 Tp = Ty then cut down further (Card T times) to assume a < -8 (Ty ta) 1<
 (T, 1t); take (T, 1) = 5 (T, It).

 If K = co, then obtain, by Theorem 1.6, an n < a) and a subtree (Ti, ta)
 of each (Ta, ta) such that each T' has < n treetops and V ao 3/3 (Ta, ta) <m
 (Tyi, la). We may assume that each (T,, la) is closed downward in (Ta, la),
 which implies, by Lemma 2.9(a), that each (T,, la) e Gf. Also, it can be seen
 that the (T,, l)'s can be chosen so that a </3 (T', lcg) <m (Tyi, l). Hence,
 by Lemma 2.7, EA (T', a) -=A (Ta, la). Using repeated applications of
 Lemma 2.9(b), collapse each (T,, la) to a subtree (T,,, la) e qt with the same
 number of treetops such that each (T,", la) has height < n and (Ta", l,)-
 (T', l). Since there are now only finitely many different T"'s, we may cut
 down to an infinite subset of w and assume they are the same tree T,
 and cut down further to assume a < /m (Ty lo) <I (Ty 1a). Take (Ty l) =
 EI (T, 1a).

 In either case, (Ty 1) E GU and (Ty 1) - p.

 Case 2. Case 1 fails. Then in view of Lemma 2.10, we must have K = co.
 By Lemma 1.4, we can write

 (P /~r ((P"" + (P"" + **+ (vnr) Y

 where each q'ni is AI, and m < n ) ( ? q',,i for all i < r. Let (pi = n q.i.
 Apply the methods of Case 1 to each (pi to obtain (Ti, 1i) EN 6U, (Ti, 1i) =
 I< (Tij, lj), (Ti, 1i) -q(i. Letting (Ty 1) = [w); (T1, 11), ..., (Try Ir)], we

 have that (Ty 1) E q11 and (Ty 1) -p.
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 AN ORDER TYPE DECOMPOSITION 109

 The cases where q' is a converse well ordered sum are dealt with sym-

 metrically, so the proof is complete.

 The partition relation 9 > (q)<t,, means: if (L, < L) is a linearly ordered

 set of type q' and L = Ui,' Li where Card I < a), then for some < n ele-
 ment I' c I, 9 _ tp (Uie6, Lt. <L)

 THEOREM 2.12. (a) If (T, 1) e Gl, T has n treetops, and (T, 1) 9 , then

 9 -) ((P) <1/ .

 (b) If 9pe then for some n<w, 9-(9)>< (q)

 Proof. (a). If (T, 1) = ,I<r (T, 1,), then, letting (T, 1a) = Ad, we have

 9- wpg, where the cp,'s are increasing and qgo (-> )o .<. by induction.
 It follows that q' (-* If (T, 1) = [co; (T1, 11), ... , (Tr, lv)] then, letting
 (Ti, li) = 99, we have q- (pi ) ,,ni ni the number of treetops of Ti, by in-
 duction, and it follows that 9(9))<, .z ,r., as desired. Converse well

 ordered sums are symmetrically handled.

 (b) Let 9 = (91 + 92 + * * * + 9r,) be the decomposition of 9 into a finite

 sum of AI's given by Theorem 2.3. By Theorems 2.11 and 2.12(a), there are

 ni < co such that (in > i ? r. Hence 9 (9p)< w- rn.

 THEOREM 2.13. 9 e 3 is strongly indecomposable (i.e., 9p > (9)<,,,) just
 in case 9 p for some * E XCJ.

 Proof. Given 9 SI, by Theorem 2.11, pick (T. 1) eG 1, (T, 1) - , where

 subject to those conditions, (T, 1) has the least possible number n of treetops.

 By construction, (T, 1) gives a canonical decomposition of (T, l) into subsets

 of type 1(x), x a treetop of T. We must then have n = 1, otherwise (T, l)

 could be partitioned into a finite number of smaller parts. But now 9-

 1 (the treetop of T), an XJC type.

 Note that Theorem 2.13 can be generalized to characterize, for each r < co,

 the class {9) e : 9' (-> ) and 9 --> (9))oJ/}; the characterization comes
 out of Theorems 2.3, 2.11, and 2.12.

 3. Extension to the class OTQ

 Let OR be the class of all order types 9 such that a linearly ordered set

 of type 9 can be partitioned into ?< , subsets, each of which is scattered

 under the inherited ordering. The class 9OT was introduced and given a

 Hausdorff-like classification by F. Galvin; we assume familiarity with this

 work (see [9], Section 3). In this section we will indicate how to prove the
 results of Section 2 for this larger class of types; since the proofs, though

 more complicated, should be accessible to those familiar with [91 and with

 the scattered case above, we leave them to the reader.
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 110 RICHARD LAYER

 Recall that for Q a quasi-ordered set, a Q-type D with base p is a labelled
 order type tp(L, 1), tp(L) = qp, 1: L - Q. Writing bs(ID) for the base type
 of D we let 91tQ be the class of all Q-types JD with bs($) e DR. For q C Q, let
 1q be the one point order type, labelled by q. All the basic definitions for

 order types (embeddability, sums, decomposability) carry over naturally to

 Q-types.

 We state our results in terminology which can be specialized to the scat-

 tered case. Call a type qp regular if whenever tp(L) < q and for each x E L,
 9x < 9, then PxeL qpx < (p. Call a Q-type D regular unbounded just in case
 D is of the form tp(L, 1), where tp(L) is infinite and regular, 1: L o Q, and
 if L' c L is an open interval of L with tp(L') _ tp(L), then tp(L',l) _ tp(L, 1).

 If (D e O91Q9 i.e. D = tp(L, 1), 1: L > ORQ, let qD e 9RQ be 7xeLl(x). A regular
 unbounded sum of members of DR? is a type of the form <I, where D e 9TLXRQ
 is regular unbounded.

 The following theorem summarizes the results from [91; Galvin's clas-
 sification, stated in the present terminology, is part (a) and (b), the direction

 left to right of (a) being provable by those methods.

 THEOREM 3.1. [9]. (a) An infinite q' E OR is regular either 9 is IC
 or K *, for some infinite regular cardinal I, or 9 is -an rang

 (b) The class of nonzero members of DR is the closure of {1} under nonzero

 regular Ot sums.

 (c) Q bqo > 9RQ bqo.

 (d) Q bqo > each (D C 91Q is a finite sum of additively indecomposable
 members of ILRQ.

 (e) If Q wqo, D E OtQ, bs(D) = A, cp infinite, then $D is a < q sum of
 types lq: q E Q and regular unbounded members of ORAQ.

 (f) Q bqo > the class of Al members of 91Q is the closure of {0} U {lq: q E Q}
 under regular unbounded sums.

 (g) Q bqo, K an infinite cardinal, Card(Q/=) < K-,Card((9T(<,)Q) = K.

 Define a regular increasing sum of members of 9RQ to be a sum .<K (Da
 or 5,<* Dl, where K is an infinite regular cardinal and

 a < 8 > Da < $Dp

 or a sum (xe72. Th, where
 XI 8ye-7 -* > (($ < Dy or Py ? ($) I

 and for every interval (x, y) of Us,

 V z G Rae 3 w G (x,9y) ?Dz < Dw.
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 AN ORDER TYPE DECOMPOSITION 1ll

 Let XT5Q, the class of hereditarily increasing members of 'TLQ, be the closure

 of {O} U {lq: q E Q} under regular increasing sums.

 We define a class 'IQ of finite labelled trees; 'IQ is the smallest class

 containing 0 and the one point tree labelled by lq, each q eQ, which is

 closed under the operations (i) and (ii) used to define the class qT of Section

 2 and

 (iii) if for each z e s(T, lz) e 'IQ and V z, z'e ,, (T, lz) <? (T, lz,) or
 (T, Iz,) <? (T, Iz), and for all intervals (u, v) of ap,

 v z E ran, 3 zf E (ug v),9 ( T. lz) < I ( T. lz) ,

 then (T, 1) E 611Q, where for x E T, 1(x) = Ezr lz (x).

 We will have that if (T, 1) E 'IIQ, then the treetops of T are XJC5Q labelled,

 and the nodes below the treetops are labelled by X7J members of OR. To each

 (T, 1) e 'IQ we may now assign a type (T, 1) e '9RQ, in a manner unique up to

 =, by extending the rules of Section 2 to include a clause for Y)a-increasing
 sums corresponding to (iii) above. The analogs of Lemmas 2.6-2.9 may then

 be proved. The proposition which we add to Lemma 2.10 is the following:

 If Q is bqo and $D e iRLQ is an riap-unbounded sum ( D., each (D < 0,
 then (D 5xe , eTxq where each PT < (D and the sum T , x is regular
 increasing.

 As an indication of the proof, assume without loss of generality that

 a < 8, and thus Card Y),B = ( where 8 = 3+. Let {$(D: x e Ya} = y07-: - < 3}.
 Using various parts of Theorem 3.1, apply the method of Lemma 2.10 to the

 type E.<, (D. to obtain increasing sequence TP: p < a, a < a of types
 < r<A 0, such that v y < ( 3 p < 1 (r < TP (the cases 3 regular and 3
 singular are considered separately). Since 3' < (3- 3' < )7, it can be seen
 that each 'PT < (. Finally, it is verified that an Y)a-increasing sum of the
 Tp's will be - , as desired.

 The analog of Theorem 2.11 may then be proved; in the case where ( is

 an Y,-unbounded sum of smaller AI Q-types, the proposition above is used.
 The relation ( D (()'<,,/ for Q-types means: whenever the base of ( is

 partitioned into < wo subsets, the union of some < n of those subsets will

 induce a Q-type --. The main results which can now be verified are given by

 THEOREM 3.2. Assuming Q is bqo, then

 (a) if ( e'9RLQ is AI, there is a (T, 1) e G1Q, (T, 1)-='(

 (b) if (T, 1) e 6ItQ has < n treetops, (T, 1) _ $, then (D (D)<'W/n

 (c) if (D e DRQ then for some n < w, (D$ (D),j/n.
 (d) if (D e (RQ is SI then for some T e CXQ, ( 'T.
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 112 RICHARD LAVER

 Theorem 3.2(d) should be compared with Theorem 3.1(b) and (f). Al-

 though in 3.2(d) the SI types are only generated up to =-, they can in fact

 all be generated by taking regular increasing sums where the set {JO: Y < 61
 of summands, instead of being a chain, only satisfies V i < &, 3, <

 Va<Y, $!?$P.

 4. Mappings and partitions

 In this section the results of Section 2 are used to give some combinatorial

 properties of order types. For simplicity we consider only countable types

 (though at the end a result is sketched for scattered types). If a classical

 theorem holds for only countable ordinals then of course its analog is only

 expected to hold for countable types, but if it holds for arbitrary ordinals a

 generalization to the entire class 'TD would be expected.

 The analog to the notion of limit ordinal for the class 'DR is the following:

 q' e 't is a limit type if no 1 appears in the expression of q' as a minimal sum

 of AI's, that is, q' has no points which are left fixed under every order em-

 bedding of q' into itself. From Theorem 3.1, it is seen that the limit types

 are those which can be written a type of the form x I. where each

 ', is ( or (o*.
 If q' is a countable limit type, q' = tp(L), L = ?eL' Ly, each tp(L')

 either w or a)*, then let

 L = X19 29 X$$nq (n < oj)

 where, for each y, this ordering restricted to L' is the natural c-ordering of

 Ly. Call <Kx: n < w> a standard enumeration of L; it possesses the property

 that if Xi, <LXi2 < L <LXi, and {xil, ..., xij = {x1, ..., xn}, then each
 of the open L-intervals (- cc, xi1), (x'l, xi2),9 ... (xi, xi,), (i, + o) has
 limit order type.

 THEOREM 4.1(a). Let q' be a countable limit type, tp(L) = Aq f: L L
 (not necessarily order preserving), fx # x, all x E L. Then 3 M c L tp(M) =

 q', Mnff[mJ=0.
 (b) If, additionally, f is onto L, then

 3 Mc L tp(M) tp(f[MI) _ ', Mnf[M = 0.

 Proof. (a). Let X1, X2, *, xn, ... (n < a)) be a standard enumeration

 of L. Suppose n < o and we have found Y1, Y2, . y., {Yi, 9 y* .. } C Ye C L
 such that

 (Yan <Ld Y19 * I *, -- (L, <Lo X1 . * Xn

 and
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 i < n - (f (yi) C Y., (f-'({iy}) n Y4) = 0)

 We show that yn,~ and Yn, c YE can be found satisfying like conditions;
 the set M = {y1, y2, ..., y,, ... } which is obtained by this process will then
 satisfy the conditions of the theorem. Let {xl, *.., xn} = {1xi, .., xin},

 Xi, <L~ i2 <L ... <L Xi,,, Suppose, for instance, xij <L xn+1 <LXij+l Since
 tp(xij, xij+,) is a limit type, there is an a or o* sequence A C (Y f n (yij, yij,?))
 of images of x., under order embeddings from (xij, xi,+,) into (Y. n (yib, Yij,+)).
 Let q0, qi, **, ,Pn+2 be the types of the open intervals determined by -00,

 *il, * xij, xn+l, xii+g *, Xin, + o. By Theorem 2.12(b) pick ri < w so that
 (q)<w)rr Let p = ri. Choose an a c A, Card a = p + 1.

 (Y - {y1, *.., yn}) - (the closed interval containing a) is divided into sets Bi of
 type pi, i < n + 2. Write each Bi as a union of disjoint sets:

 Bi = Bi U Uxea (Bi n f-'(x))

 Applying successively the n + 2 partition relations given above gives sets

 B C Bi of type pi and a y,?+ c a such that

 f-i({y"1}) nf B = 0
 for all i. Take

 Y1+1 = ({Y1, Y2, , Yn+?} U Uisn+2 BR) - f (yn+l)-

 Since the removal of f(y.+?) does not affect the order types of the Bi's - they
 are limit types - Y, is as desired, completing the induction step.

 Note that (a) could be strengthened by only requiring that, for some

 fixed j < co, each f(x) c L, x f(x) and Card f(x) < j. For the proof of (b),

 which is left to the reader, the induction step is as in (a), with the addition

 that we have constructed also zl, ., z w, *-, we, where f(wi)

 Yi <L Yj ( Zi <L zj, and (f-'({wi}) n Y,) = 0, with the intention of taking
 M = {Y11 Y2, . ** w1, W2, ... }.

 We would like to mention two other applications of Theorem 2.12(b).

 Erdbs and Milner [3], and independently, Galvin, have generalized Milner's

 8 +an )(21g W1+,a)2 to a theorem which holds for countable order types. Galvin
 [5] has shown that if tp(L) ? C has at most one fixed point, and two players,
 White and Black, play an infinite game consisting of alternately picking previ-

 ously unchosen members of [LU2, then White has a strategy which guarantees

 that after w steps he will have obtained all the 2-element subsets from

 an L'c L, tp(L') = tp(L).

 We will give two partition theorems for order types whose proofs involve

 the representation theorem rather than just Theorem 2.12(b). For the rest

 of this section, all types will be in 3.

This content downloaded from 
�����������128.8.127.150 on Mon, 23 Oct 2023 21:24:00 +00:00������������ 

All use subject to https://about.jstor.org/terms



 114 RICHARD LAVER

 Since the properties of order types we are interested in are invariant

 under =, we may always assume that we are working with types p c3
 which have associated with them a canonical representation, that is, A=

 (T1, 11) + (T2, 12) + * * * + (T, lu) I (Ti, l,) C 11, n minimal. In places then,
 definitions and theorems about order types are tacitly understood to proceed

 inductively on a given tree representation. We use the notation La,

 Ea<x* La, [a); L1, *i-, L.], and [wo*; L1, *i*, L.] to denote linear orderings
 obtained in a canonical way from subsets via a given tree representation.

 Let p C3, tp(L) = p. We define the notion L' Cc L (L' is a complete
 subset of L) by induction:

 (i) if tp(L) O or 1, L' CcL (L' = L,

 (ii) if L IL or La,, L' -ce L Card {a: L' nLa ceL} = K,
 (iii) if L [a); L1, *--, Lj] or [o*; L1, *--, L], L' CcL L i < n

 L' n Li ccLi,
 (iv) if L (L, + L2 + *+* ? L,), a minimal sum of AI's, L' -LCc

 Vi < n L' nfL ccLi.
 Define the notion L' Cz, L (L' is almost all of L) by replacing Cc by C a

 everywhere in the above definition, and replacing the cardinality condition
 in (iii) by

 Card {a: L', nLa 7a La} <K.
 By induction it can be shown that

 LEMMA 4.2. (a) c, Ca are transitive.

 (b) L' -C a L L' -C e L' tp L' = tp L.
 (c) {L': L' _ a L} is a filter.

 (d) If tp(L) is SI and L = L' U L", then either L' Cc L or L" Ca L.

 If (T. 1) C 611, {xl, ** , xO} a set of treetops of T, then let (T-x, 1) be the
 subtree of (T, 1) obtained by closing x1, *--, xn downwards in T. If tp(L)

 (T. 1) and the treetops of T, written without repetition, are x1, **--, Xms
 y, . y, then L is canonically decomposed into L7 U L-, where tp(L-) =
 (Tx, 1), tp(L7) = (T;, 1).

 Suppose now that L' Cc L-. Then Com (L', L), the reduced complement
 of L' in L, is to be a certain complete subset of L-, defined inductively as
 follows:

 (i) if x = 0, Com (L', L) = L, and if =0, Com (L', L) =0,

 (ii) if (T. 1) = (T, la) or ,<,* (T. la) (whence L = La, or
 L = a<lr* La) then

 Com (L', L) = Ua,<K:L' ScLa Com (L', La)
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 where L' = fL' nL Lo.

 (iii) if (T, 1) (T1, li), *.., (T., l)] or rwj*; (T1, l1), *.., (T. In1)I
 (whence L= [ko; L1, * * *, Lj] or L= [w*; L1, * * *, LJ]) then L' =,,L, n Li CcL--
 where x(i) =,f fn {treetops of TV}; take Com (L', L) Ui<" Com (L', Li).

 LEMMA 4.3. Let tp(L) = (T, 1), L = L7 U L7 as above. Then

 (a) If AcaL-, BcaL then AUBZCaL
 (b) If ACcL-, B CCom (AL) then AUBCcL.

 The proof of this lemma by induction is left to the reader.

 The partition relation

 -* (ap, infinite path)2

 means: if tp(L) = p and [LI2 = R U S, then either 3 L' c L, tp(L') -
 and [L']2 c R, or there is a nonrepeating sequence ***, x_, ***, x_1, x0,

 x1, *.. , n ... from L with each {Jx, x+?1} c S. Erd6s, Milner, and Hajnal [2]
 showed that if a is a countable limit ordinal then aow (a, infinite path)2;

 we show here how to get it for countable limit types.

 THEOREM 4.4. If w is a countable limit type, then (p- ((P, infinite path)2.

 Proof. Since C2 - (1), 1o)2, we may assume p < r. Let tp(L) = A,
 [LI2 R U S, and suppose there is no infinite S path. Let x1, x2, *.**, x, ...
 (n < co) be a standard enumeration of L.

 Claim. For every infinite A C L, infinite SI B C L, B canonically re-

 presented, there is a B' c B such that for all but finitely many w c A,

 {z E B': {w, z} E R} CaB'

 Proof of Claim. If otherwise, then from Lemma 4.2 it follows that

 3 A, B, v B' Cc B (there are 14 w C A: {z C B': {w, z} S} Cc B'). We leave
 it to the reader to show that this would imply the existence of an infinite

 S-path alternating between A and B.

 Suppose now that we have chosen {y1, Y2, * y* } C YJ C L, with

 (ynj <LI YI ... I * j = J)- (LI < L, X11 .. * *,.) 9

 and so that

 i<n, ye Y ->{yi, y}cR;

 we want to continue and find Y,,,, yJn,, satisfying the same conditions. Let
 {x1, .**, xn} be xi1 <L Xi2 <L ... <L Xi, and suppose, say, that xi- <L Xn+1 <L

 xij.1. As in Theorem 4.1(a), there is an wj or wj* sequence A c (Y. n (e ?1))
 of possible candidates for y,+,. Using Ramsey's theorem we may assume A
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 116 RICHARD LAVER

 has been cut down so that [A]2 cR. Y may be partitioned: - Cc <L Yil <L
 B, <L <LYi <LB < LA <L Bj4- <L YA?1 <L ... <L Yin <LBl,+ <L + CO
 where each B. has limit type (p.

 We are going to find an A' c' A and a B' c, Bo such that

 w CA' > {z C BJ: {w, z} C R} Cz Bo'.

 Then, by cutting down and repeating this process for B,, B2, *.., IB., we
 will be in position to choose Yn+1 Yn+1 correctly, completing the inductive
 step. Let Bo = B. We may reduce to the case where B is AI. Let tp(B)

 (T, 1), where T has r treetops corresponding to SI sets B', *--, Bc B.

 Suppose k < r and we have found B(k) Cc B' U B2 U * U Bk, and A(k) c: A
 such that

 (*) w C A(k) {z C B(k): {w, z} R}I C aB(k)

 Let C Cc Bk+l be Com (B(k), B' U ... U Bk+1). We may now apply the claim

 and Lemma 4.3 to get A(k + 1) Ca A(k) and C' Cc C such that, letting

 B(k + 1) (B(k) U C'), the condition (*) holds for k + 1. Then it is seen

 that A' A(r), B' = B(r) have the desired properties. This completes the
 proof.

 The partition relation

 )((;P, (n0))2

 means: if tp(L) = Ap, [L]2 = R U S, then either 3 L' c L, tp(L') = p and

 [L]2 R or 3 a, A c L, Card a = n, Card A = ko and (a ? A) C S. Erd6s,
 Milner and Hajnal [2] proved that if a is a limit ordinal then for all n < co,

 a ' (a, (XO))2 (this may be contrasted with Theorem 4.4, which is not known
 to hold for all limit ordinals), and Galvin proved it for all countable limit

 types, using Theorem 2.12(b). We show here the extension to scattered limit

 types. A number of new features arise; we think it reasonable just to in-

 dicate the proof, leaving the rather complicated details to the interested
 reader.

 THEOREM 4.5. If 9 C35 is a limit type, n < o, then - ((I, (no))2.
 Proof. Let tp(L) = p, [LI2 = R U S, Card L = K. Assume no

 (n (n ?0) C S.

 Case 1. 9 C SI. We will assume here that K: is singular, the regular case
 is similar. By a component of L we will mean any subset of L of power x

 which appears at some point as a summand in the inductive construction of

 L. A component X is a Kc-block if X is a cf Kr or (cf r) * sum of orderings of
 power < Kr. We will construct L' c L, tp L' = p, [L']2_ R, in cf Kr stages.
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 If Jca < Jr, to K,-fix a component X will mean to find a Zsc L, Card Z < Ka
 and to find an X' CC X, in such a way that if Yc L - Z, Card Y < K, then

 (Y ?0 X") R for some X"_ X.
 It is seen that for each component X there is a ica < K such that X can

 be Ka-fixed; otherwise, using Lemma 4.2, n times, an (n (? ,,) c S could be

 found. Let cf K < K0 < K1 < ... < Ka <... (a < cf K) I K, each Ka regular.
 Whenever a component X is Ka-fixed in the course of the construction below,

 X is replaced by X' in all future steps, and the set Z is discarded entirely

 (znL'= 0).

 Stage 0. < /co-fix L if possible, otherwise stage 0 terminates. Suppose

 stage 0 has progressed and some component X has been ? K0-fixed. If X is

 a > OK0 or > K* sum, no components of X will be fixed at stage 0, if X is a

 <Ko or K* sum fix each component of X which it is possible to < Ko-fix.
 Stage 0 terminates when this process cannot be continued. It is shown by

 induction that at most Ko components of L become fixed at stage 0, in parti-

 cular the Kc-blocks which are fixed can be enumerated

 X1, X29,. *-- Yrl *--, ) < it a <_K0

 Pick Xl(O) c X1, Card Xl(O) = Ko so that, if possible, tp(X1(O)) 2 tp(the Oth

 subcomponent of X). For each y < a 3 X,' ca X, (Xl(O) (? X') c R, so we
 may continue this process and choose X2(O) c X2' similarly; letting

 Bo = Ur<a Xr(O)

 we have [Bo]2c R, Card Bo < K0, and (Bo ? Lo) c R for some Lo_ L,
 tp Lo = 0.

 Stage a + 1, a < cf(k). Proceed in the same manner inside of La, begin-

 ning with the components which have been fixed but which contain unfixed

 subcomponents, obtaining sets Ba+, La+, [Ba+,]2 _ R, Card Ba, < Ka+i,
 (Ba+ ?& La+) c R, where Lai _ La, tp(La?1) = p. At limit stages X < cf KC it is
 shown that B2- U,< Ba, L, = nfl< La satisfy the hypotheses. Finally, we
 have that L' = Uoa<cf Ba has type p and [L']2 c R, as desired.

 Case 2. p arbitrary. We will only consider the case where p = tp(L, 1),

 the treetops of T are x, y, and accordingly, L is of the form Lx U Ly, where
 we assume Card Lx = K, Card Ly = a < K, and [LX]2C R, [Ly]2'c R. Lest
 there be an (n ? ,) c S, find Z c Lx, Card Z a (whence L' =
 (Lx - Z) C a Lx) such that

 V zGL' Card {wGLy: {z, w}S} < n- .

 Write Ly = ueM Mu, each Mu of type a) or a)*, and let Ly Uj! Ly(i),
 where each LY(i) n Mu is infinite and i # j Ly(i) n Ly(j) = 0. Obtain
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 118 RICHARD LAVER

 L" c Lx such that for some i, (L"f ? Ly(i)) C R. tp(Lf' U Ly(i)) _ p, as
 desired. This completes the sketch of the theorem; the remaining cases can

 be done by these methods, using Lemma 4.3 as in the proof of Theorem 4.4.

 5. A result on dimension

 If P is a partial order, the dimension of P, written dim (P), is defined

 to be the least cardinal Kr such that P is isomorphically embeddable in the

 direct product of Kr linear orderings. This notion was introduced in [1], where

 it is verified that dim (P) < Card (P). In [11] it is shown that dim (P) is the

 least Kr such that <, can be written as the intersection of K linear orders on

 P. Recall that o<,(1(<,( ) is the set of members of S(9R) which have power
 < Kr. A question raised in [13] was whether there are wqo sets of uncount-

 able dimension; the next theorem shows that there are bqo sets of arbitrary

 dimension (for another example of such sets, see [16]).

 THEOREM 5.1. If K > Wo then dim (o(<S,/ ) = dim (9R(<,)/) = K.

 Proof. Let A be the AI members of S(< Ke)/_. By Theorem 3.1,

 Card ()(<, = K, so it will suffice to show dim A > Kr. If Kr is a limit cardinal
 we are done by induction, so assume Kr = a+. Suppose, by way of contradic-

 tion, that A- B c ?<& Ls, each Ls linearly ordered. We may clearly
 f

 assume that x E Ls 3 p E A, f(p)4 = x, and thus, since A is wqo, each LP
 is well ordered. We have A = U< A,, where, for X a limit ordinal,

 A2+2n + is the closure of A+2, under regular unbounded sums of length < ,c,
 A2+2,+2 is the closure of A2+2+l under regular unbounded sums of length < Kv,

 and A, = U<1 A, .

 It can be proved by induction that

 aU < 6, 0 ( AQ,, * ( (A,1- A,) >+0

 If a < Kr, , <y, let P(a, ,3) mean

 v xeL P 3 GpAa f(c) AL,3X.

 Let Ga ={j <y P(a, e)}. Clearly a < 3 > Ga G6, so there must be an

 ao < K so that ao is a successor ordinal and

 v 3 > a. G(6) = G(a.).

 For R_ / define (P< 1 + to mean that

 V S G R f(99) < L3f+

 Let a1 = ao + 1. By diagonalizing over the set y-Ga0 and using the closure
 of A under regular unbounded sums of length < y, it is seen that an a2> a,
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 AN ORDER TYPE DECOMPOSITION 119

 and a p E A,2 can be found so that for each i/C Ae ,

 * < (T-Gao ) 9 -

 However, by the closure properties of Aa1 there will be a + e (Aa1 - AaO) with
 9 (this is proved by an inductive argument). Since Ga0= Ga1, the

 closure of Aa, allows a 0 e A,0 to be found satisfying

 * < Gao 0

 (and yet ' A 0). We must now have * <, (9 + 0), and so - < (q' + 0), but,
 since * is AI, * < p or * < 0, a contradiction, completing the proof.

 UNIVERSITY OF CALIFORNIA, Los ANGELES
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