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Joyce trees have concrete realizations as J-trees of sequences of 0’s and 1’s. Algorithms are
given for computing the number of minimal height J-trees of d-ary sequences with n leaves
and the number of them with minimal parent passing numbers to obtain polynomials ρn(d)
for the full collection and αn(d) for the subcollection.

The number of traditional Joyce trees is the tangent number αn(1); αn(2) is the number
of cells in the canonical partition by Laflamme, Sauer and Vuksanovic of n-element subsets
of the infinite random (Rado) graph; and ρn(2) is the number of weak embedding types
of rooted n-leaf J-trees of sequences of 0’s and 1’s.

1. Introduction

By definition, a Joyce tree is a finite rooted tree for which no two nodes
have the same level, all levels up to that of the top leaf have a node (either
a parent or a leaf), and every parent has exactly two children, which are
ordered: left and right. They were named Joyce trees by Ross Street [13]
after the physicist William P. Joyce who was using them in his calculations.

One way to represent Joyce trees concretely is to use a collection of
sequences of 0’s and 1’s as the nodes and to use the length of the sequence
to indicate the level on which a node is placed. The children of a node s
are extensions of s�〈0〉 and s�〈1〉 ordered lexicographically. We generalize
this approach below. As a preliminary, by an abuse of notation, we write
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d={0,1, . . . ,d−1}. Note that a d-ary sequence is one whose entries are from
the set d.

Definition 1.1. A J-tree is a finite rooted tree T of sequences of non-
negative integers with the properties that different nodes have different
lengths (as sequences); t is a child of s in T if it is a minimal proper exten-
sion of s in T ; each parent node has exactly two children; and each parent
node is the longest initial segment common to its two children. A J-tree with
n-leaves has minimal height if the lengths of the nodes are 0,1,2, . . . ,2n−2.
For d>1, let J (n,d) denote the set of n-leaf J-trees of minimal height whose
nodes are d-ary sequences.

In Theorem 6.5, we give an expression for counting the number ρn(d)=
|J (n,d)| of minimal height J-trees with n leaves all of whose nodes are d-
ary sequences. As a corollary, we derive the fact that the number of weak
embedding types of n-leaf J-trees of d-ary sequences is also ρn(d). Weakly
embedded trees were introduced by Milliken [6], who proved a Ramsey The-
orem for them which has been applied widely. The expression for ρn(d) is
translated into Maple code for easy computation.

Given two nodes x and y of a J-tree, if x is shorter than y, in symbols,
k = |x| < |y| = �, then the passing number of y = 〈y0,y1, . . . ,y�−1〉 over x
is y(|x|) = yk. A J-tree T has minimal parent passing numbers if for all
parents s∈T , the two children of s are extensions of s�〈0〉 and s�〈1〉 and
if whenever t=〈t0, t1, . . . , tn−1〉∈T is longer than s=〈s0, t1, . . . ,si−1〉∈T and
t does not extend s, then also t(|s|)= ti =0.

In Theorem 6.1, we give an expression for the number αn(d) of J-trees
T ∈J (n,d) such that T has minimal parent passing numbers. This expression
is translated into Maple code for ease of computation.

The algorithm for counting αn(d) can be used to count the number of
cells in a canonical partition of the n-element subsets of universal purely
binary relational structures. This application is discussed in the final section
of the paper, where the notion of canonical partition is defined and universal
purely binary relational structures are discussed.

Here is a brief description of the ingredients of the proofs of the main
theorems. We associate with each (n + 1)-leaf J-tree T a parent indicator
sequence σT and show (see Section 5) they coincide with Raney sequences.
We identify the critical subcollection J (n+1,1)⊆J (n+1,2) of (n+1)-leaf J-
trees with minimal passing numbers (they are the concrete realizations of the
traditional Joyce trees), and introduce some useful equivalence relations in
Section 2, including shape similarity. We compute the cardinality of J (n+
1,d) by summing over all Raney sequences σ the product of the number
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of U ∈ J (n+1,1) with σU = σ times the number of T ∈ J (n+1,d) shape
similar to U . The computation of the number of J-trees with minimal parent
passing numbers in J (n+1,d) is a modification of the larger computation.
See Sections 3, 4, 6 for details.

This remainder of this section collects basic notation and definitions in
one place for the convenience of the reader. Some of the definitions are
repeated for consistency. Each ordinal is the set of its predecessors, so,
in particular, 0 = ∅, 1 = {0}, n = {0,1, . . . ,n−1}, and ω = {0,1, . . .} is
the set of non-negative integers. Denote by ω>d the set of all finite se-
quences s = 〈s0,s1, . . . ,sn−1〉 with entries from d = {0,1, . . . ,d−1}. For any
J-tree T , the transitive closure of the parent-child relation is the relation of
end-extension, ⊂, and (T,⊂) is the set theoretic version of the tree. Note
that the parent-child relation can be recovered from the relation of end-
extension, since parents are nodes with proper extensions in T and their
children are their minimal proper extensions in T . When partially ordered
by end-extension, (ω>d,⊂) is the regular d-ary set theoretic tree with root
the empty sequence, ∅. We write (2n)≥d for the subtree of ω>d of sequences
of length at most 2n. The meet, s∧ t, of s,t ∈ ω>d is the longest sequence
which is an initial segment of both s and t. We write |s| = m to indicate
that the length of the sequence s is m. We freely move between functional
notation for sequences and writing them explicitly as an ordered list, such
as 〈+1,+1,−1〉. We write s�t for the concatenation of s and t.

2. Similarity

The equivalence relations of similarity, shape similarity and having the same
week embedding type are introduced for J-trees.

Definition 2.1. Two J-trees S,T ⊆ ω>d are shape similar if there is a
shape similarity f : S → T , that is a bijection which preserves the parent-
child relationship, the lexicographic order of the leaves and the length order
of the nodes. The function f is a similarity and S and T are similar if f
satisfies

• (leaf passing number preservation) for all leaves x,z∈S, if |z|> |x|, then
z(|x|)=f(z)(|f(x)|).

The function f is a weak embedding and S and T have the same weak em-
bedding type if f satisfies

• (passing number preservation) for all nodes x,z ∈ S, if |z| > |x|, then
z(|x|)=f(z)(|f(x)|).
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Note that a weak embedding is a similarity in addition to being a shape
similarity. The definition of weak embedding is based on one introduced
by Milliken [6] and made more specific by Vuksanovic [14] by use of the
lexicographic order. The definition of similarity for J-trees parallels that of
Laflamme, Sauer and Vuksanovic (see pages 188–189 of [5]) of similarity for
diagonal subsets of ω>ω.

Next consider a notion of collapse for J-trees.

Definition 2.2. For any sequence s : q→ 2 any strictly increasing function
h : p → q, define the collapse of s with respect to h by clph(s) = s ◦h, i.e.,
clph(s)(k)=s(h(k)) for all k<p.

If S ⊆ ω>d is an n-leaf J-tree whose elements are listed in increasing
order as b0, b1, . . . , b2n−2 and I : 2n− 1 → ω is the function i 
→ |bi|, then
clp(S)={clpI(b) :b∈S} is the collapse of S.

Lemma 2.3. If S⊆ω>d is an n-leaf J-tree, then S is both similar and shape
similar to clp(S) and S and clp(S) have the same weak embedding type.

Proof. Let d0,d1, . . . ,d2n−2 enumerate the elements of S, an n-leaf J-
tree in increasing order of length, and let I : (2n − 1) → ω be defined
by I(j) = |dj |. Then clp(d0) = ∅. By recursion, |clp(dj)| = j. Thus for
i < j, clp(dj)(|clp(di)|) = clp(dj)(i) = dj(|di|). Therefore, the function
clpI :S→clp(S) is a similarity, a shape similarity and a weak embedding.

Lemma 2.4. For any n,d with 2≤n,d<ω, the relations of shape similar-
ity, similarity and having the same weak embedding type are equivalence
relations on n-leaf J-trees of ω>d, and each has finitely many equivalence
classes.

Proof. To see that these are equivalence relations, first check that the iden-
tity is simultaneously a shape similarity, a similarity and a weak embedding.
Next note that inverses of shape similarities are shape similarities, and the
same is true for similarities and weak embedding, and all three types of
mappings are closed under composition. To see that there are only finitely
many shape similarity classes, only finitely many similarity classes, and only
finitely many weak embedding types, observe that every J-tree with n≥ 2
leaves is shape similar and similar to one which is a subtree of the d-ary tree
of sequences of length at most 2n−2, by Lemma 2.3.

In the introduction we defined J-trees with minimal parent passing num-
bers. Here is another interesting collection.

Definition 2.5. A J-tree S ⊆ ω>d has minimal passing numbers if for all
s,t∈S,
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1. if s� t, then t(|s|)<2; and
2. if s ⊆ t and |s|< |t|, then t(|s|)=0.

Let J (n,1) denote the set of T ∈J (n,2) with minimal passing numbers.

Note that J-trees with minimal passing numbers have collapses which
are subsets of ω>2.

Lemma 2.6. Suppose S and T are shape similar J-trees. Then clp(S) =
clp(T ) if one of the following conditions holds:

• S and T have the same weak embedding type;
• S and T are similar and have minimal parent passing numbers; or
• S and T are shape similar and have minimal passing numbers.

Proof. Let s0,s1, . . . ,s2n−2 enumerate S, and t0, t1, . . . , t2n−2 enumerate T ,
both in increasing order of length. Let g : S → T be the map defined by
g(si)= ti, the unique length order preserving map. Since S and T are shape
similar, the function g is a shape similarity.

In the first item, the hypothesis says that g is a weak embedding, so
it preserves all passing numbers. In the second item, g is a similarity, so
it preserves all leaf passing numbers, and S and T are assumed to have
minimal parent passing numbers, so g preserves parent passing numbers as
well. In the third item, S and T both have minimal passing numbers, so g
again preserves all passing numbers.

Thus g is a weak embedding between S and T .
Let I,J : (2n−1)→ω be defined by I(j)= |sj | and J(k)= |tk|. Note that

clpI(s0)=∅=clpJ(t0) has length 0 and for �>0, clpI(s�) and clpJ(t�) have
length �. Moreover, for �>0, every value of the form clpI(s�)(k) or clpj(t�)(k)
is a passing number. Since g preserves passing numbers, it follows that for
all �>0, if k<�, then clpI(s�)(k)=clpj(t�)(k), so clpI(s�)=clpJ(t�). Hence
clpI(S)=clpJ(T ).

Lemma 2.7. Let R be an n-leaf J-tree.

1. R has the same weak embedding type as a unique tree S = clp(R)
in J (n,d);

2. R is similar to a unique tree T ∈ J (n,d) with minimal parent passing
numbers; and

3. R is shape similar to a unique tree U ∈J (n,1).

Proof. Since any tree in J (n,d) is its own collapse, the uniqueness in all
three cases follows from Lemma 2.6.

Existence for first item follows from Lemma 2.3.
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To prove existence in the other two items, assume, without loss of gen-
erality, that clp(R) = R. Enumerate R in increasing order of length as
r0,r1, . . . ,r2n−2. Let s0 = ∅ = t0. For positive � < n Let t� and u� for be
the sequences of length �= |r�| such that for all k<�,

t�(k) =

⎧
⎪⎨

⎪⎩

r�(k), if rk is a leaf,
1, if r� is the right child of rk,
0, otherwise;

and u�(k) = 1 if r� is the right child of rk and otherwise u�(k) = 0. Let
T = {t� :r�∈R} and U = {u� :r�∈R}. Note that T is in J (n,d) and U is
in J (n,2), since R = clp(R) is in J (n,d). By construction, S has minimal
parent passing numbers and U and has minimal passing numbers. The reader
may check r� 
→ t� is a similarity and r� 
→u� is a shape similarity.

3. Alternating permutations

The goal of this section is to count the number of J-trees in J (n+1,1) which
have a specified parent indicator sequence. A key tool is a bijection between
J (n+1,1) and the set of alternating permutations on the set {0,1, . . . ,2n}.

Definition 3.1. An alternating permutation on {0,1, . . . ,2n} is a permu-
tation π = 〈p0,p1, . . . ,p2n〉 with the properties that {p0,p1, . . . ,2n} and
p0 >p1 <p2 > · · ·<p2n.

Lemma 3.2. For each n, define An J (n+1,1) by

An(U) := 〈|�0|, |�0 ∧ �1|, |�1|, . . . , |�2n−1 ∧ �2n|, |�2n|〉,

where �0, �1, . . . , �2n lists the leaves of U in increasing lexicographic order.
For each n, An is a bijection onto the set of alternating permutations on the
set {0,1, . . . ,2n}.

Proof. Fix n. Note that An maps into the alternating permutations on
{0,1, . . . ,2n} since a meet is always smaller than the leaves of which it is a
meet, and the values listed in An(U) are the distinct lengths of the elements
of U , i.e., the values in {0,1, . . . ,2n}.

To show that An is an injection, suppose that An(U) = An(V ). Let g :
U → V be the unique length order preserving map. Since An(U) = An(V ),
it follows that g preserves the lexicographic order of leaves and the parent-
child relationship. Thus g is a shape similarity. By Lemma 2.6, U =V . Thus
An is an injection.
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To show that An is a surjection, fix an alternating permutation π =
〈p0,p1, . . . ,p2n〉. Use recursion to define t0, t1, . . . , t2n as follows. Let t0 be the
sequence of 0’s of length p0. If ti has been defined for some even i<2n, then
ti+1 is the initial segment of ti of length pi. If tj has been defined for some
odd j, then tj+1 is the sequence of length pj+1 obtained by the extension by
zeros of tj

�〈1〉. Let U ={t0, t1, . . . , t2n}. Then U is a tree under extension. By
construction, each ti has length pi; for even indices i, the sequence ti is a leaf
of U , while for odd indices j, the sequence tj is a parent of U with exactly
two children, tj−1 and tj+1. Thus U is in J (n+1,2). Furthermore, U has
minimal passing numbers, since it is a subset of 2n≥2 and if t(pj) = 1 for
some j, then j is odd, and tj ⊆ t. Thus for every alternating permutation π,
there is some U ∈ J (n+1,1) for which An(U) = π. It follows that An is a
surjection, hence a bijection.

For the purposes of counting, it will be useful to look at collections of
convex segments of a sequence.

Definition 3.3. A convex segment of a sequence π is a sequence ρ for which
there are ρ0 and ρ1 (possibly empty) for which π = ρ0

�ρ�ρ1. Given an
alternating permutation π on {0,1, . . . ,2n}, let P (π)=〈P1,P2, . . . ,P2n+1〉 be
the sequence in which Pi is the set of all maximal convex segments of π all
of whose members are from {2n,2n−1, . . . ,2n− i+1}.

In the definition of P (π), we have P1 ={〈2n〉}, P2 ={〈2n〉,〈2n−1〉}, and
P2n+1 ={π}, so P (π) and π are definable one from the other.

Definition 3.4. Suppose that S⊆ω>d is an (n+1)-leaf J-tree enumerated in
decreasing length order as x0, . . . ,x2n. The parent indicator sequence of S, σS ,
is the sequence of +1’s and −1’s of length 2n+1 defined by σS(j) :=−1 if
and only if xj is a parent.

Remark 3.4.1. By an abuse of notation, we say an alternating permuta-
tion π has parent indicator sequence σ if the corresponding U ∈J (n+1,1)
has σU = σ. Without constructing U , it is easy to identify σ, since for all
k≤2n, σ(k)=−1 if and only if 2n−k appears between larger neighbors in π.

Definition 3.5. Given any σ : 2n−1→{−1,+1}, define the tally sequence
of σ τσ : (2n−1)→ω by τσ(0)=0 and for positive j, τσ(j) :=

∑
i<j σ(j).

Lemma 3.6. If π is an alternating permutation on {0,1, . . . ,2n} with parent
indicator sequence σ and P (π)=〈P1,P2, . . . ,P2n+1〉, then |Pj |=τσ(j).

Proof. Use induction on j. For j=1, |P1|=1=σ(0)=τσ(1). If σ(j)=+1 and
|Pj |=τσ(j), then Pj+1 =Pj∪{〈2n−j〉} and |Pj+1|=τσ(j)+1=

∑
i<j+1σ(i)=
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τσ(j + 1). If σ(j) = −1 and |Pj | = τσ(j), then Pj+1 = (Pj \ {Lj+1,Rj+1})∪
{Lj+1

�〈2n− j〉�Rj+1} for some Lj+1,Rj+1∈Pj , so |Pj+1|= τσ(j)−2+1=∑
i<j σ(i)=1=τσ(j +1).

Corollary 3.7. Suppose σ is the parent indicator sequence of some element
of J (n+1,1). The number of U ∈J (n+1,1) for which σU =σ is

∏

j<2n

σ(j)<0

(
∑

i<j

σ(i)

)(

−1 +
∑

i<j

σ(i)

)

=
∏

j<2n

σ(j)<0

τσ(j) (τσ(j) − 1) .

Proof. It suffices to compute the cardinality of the set Q(σ) of se-
quences P (π) for π an alternating permutation with parent indicator se-
quence σ.

Claim 3.7.1. For all j≤2n, the size of the set Qj(σ) of initial segments of
length j+1 of elements of Q(σ) is

∏
i<j q(i), where q(i)=1 if σ(i)=+1 and

q(i)=τσ(i)(τσ(i)−1) if σ(i)=−1.

Proof. Use induction on j. Since all sequences in Q(σ) start with 〈{〈2n〉}〉,
|Q0(σ)|=1=q(0), as required.

Next suppose σ(j)=+1 and |Qj(σ)|=
∏

i<j q(i). Then q(j)=1. Since for
any sequence P (π) of Q(σ), Pj+1 =Pj∪{〈2n−j〉}, it follows that |Qj+1(σ)|=
|Qj(σ)|=

∏
i<j q(i)=

∏
i<j+1 q(i), and the claim holds in this case.

Finally suppose σ(j) = −1 and |Qj(σ)| =
∏

i<j q(i). Note that, un-
der these circumstances, q(j) = τσ(j)(τσ(j)−1). For each initial segment
〈P1,P2, . . . ,Pj〉 in Qj(σ), the set Pj has cardinality τσ(j) so there are
q(j) many ways to select Lj+1,Rj+1 ∈ Pj and extend the sequence by
adding the set (Pj \{Lj+1,Rj+1})∪{Lj+1

�〈2n− j〉�Rj+1}. It follows that
|Qj+1(σ)|= |Qj(σ)| · q(j) =

∏
i<j+1 q(i), and the claim holds in this case as

well.

The corollary follows from the claim since

|Q(σ)| = |Q2n(σ)| =
∏

i<2n

q(i) =
∏

j<2n

σ(j)<0

τσ(j) (τσ(j) − 1) .

4. Local computations

For this section, fix attention on some U ∈J (n+1,1). The goal is to compute,
for any d≥2, both the number of trees T ∈J (n+1,d) which are shape similar
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to U and the smaller number of them which also have minimal parent passing
numbers.

The next definition is useful in these computations.

Definition 4.1. For T ∈J (n+1,d), let T =
{
s∈2n≥2:(∃t∈T )(s⊆ t)

}
be the

closure of T under initial segments. For each �≤2n, let Tn =
{
s∈T : |s|=�

}

be the set of elements on level �.

The next lemma follows straightforwardly from the definitions and the
fact that T is the set of leaves of T together with the parents in T of exactly
two children.

Lemma 4.2. Suppose T ∈J (n+1,d).

• T may be defined from T .
• Suppose U is shape similar to T via g :U →T . Let g :U →T be defined

by g(s)=g(u)�|s| where u∈U is the shortest element with s⊆u. Then g
is a bijection which preserves length (level), extension, the parent-child
relationship, and the lexicographic order of leaves.

Lemma 4.3. Suppose T ∈J (n+1,d) has σT =σ. For all �≤2n, |T 2n+1−�|=
τσ(�).

Proof. Use induction on j≤2n+1 to show that |T 2n+1−j |=τσ(j). To start
the induction with j =0, note that T 2n+1−0 is empty, so |T 2n+1−0|=0.

For the induction step, let j < 2n + 1 be given and assume w = τσ(j).
Let y0,y1, . . . ,y2n enumerate the nodes of T in decreasing length order. The
node yj has length 2n− j = (2n+1)− (j +1). To see that |T (2n+1)−(j+1)|=
|T 2n+1−j|+σ(j), observe that if σ(j) = +1 and yj is a leaf, then yj is the
unique element of T (2n+1)−(j+1) which is not the restriction of a member
of T 2n+1−j , while if σ(j)=−1 and yj is a parent, then yj is the restriction
of both of its children in T 2n+1−j . Thus |T (2n+1)−(j+1)|= |T 2n+1−j |+σ(j)=
τσ(j)+σ(j)=τσ(j +1).

Corollary 4.4. Suppose that T ∈ J (n + 1,d) and σT = σ. For positive
k≤2n+1, the partial sum

∑
j<k σT (j) is positive, and

∑
j<2n+1 σT (j)=1.

Proof. The value of
∑

j<� σT (j), for positive �≤ 2n, is τσ(�), by definition
of τS . By the previous lemma, the value of τσ(�) is also |T 2n1−�|. Since T 2n1−�

is non-empty, for positive �≤2n, it follows that the proper partial sums are
all positive. Since σS is a sequence of n+1 (+1)’s and n (−1)’s, the sum of
the entire sequence is +1, as desired.
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Notation. For each T ∈J (n+1,d) which is shape similar U , let gT :U →T
denote a shape similarity and let hT : U \ {∅} → d be defined by hT (s) =
gT (|s|−1).

Lemma 4.5. The mapping T 
→hT defined on the set of all T ∈J (n+1,d)
shape similar to U is a bijection onto the set of functions h : U \ {∅} → d
which preserve the lexicographic order of children, i.e., the set of those h
such that for all s∈U with two children, h(s�〈0〉)<h(s�〈1〉).

Proof. Since shape similarity preserves the lexicographic order of leaves,
for any T which is shape similar to U , the mapping hT preserves the lexico-
graphic order of children. Thus the mapping is well-defined.

To see that the mapping is one-to-one, suppose S and T are both shape
similar to U , and hS = hT = h. Define f∗ on U by recursion on the levels.
Let f∗(∅) = ∅. If f∗(s) has been defined and s�〈δ〉 ∈ U , then f∗(s�〈δ〉) =
f∗(s)�〈h(s�〈δ〉)〉. Use induction on the levels to show that f∗=gT =gS . To
start the induction, f∗(∅) = ∅= gT (∅) = gS(∅). Suppose s�〈δ〉 ∈U . Further
suppose that f∗(s)=gT (s)=gS(s). Then

f∗(s�〈δ〉) = f∗(s)�〈h(s�〈δ〉)〉
= gT (s)�〈hT (s�〈δ〉)〉
= gT (s�〈δ〉)
= gS(s)�〈hS(s�〈δ〉)〉
= gS(s�〈δ〉).

Thus by induction, f∗=gT =gS and S =T , so S =T .
To see that the mapping is onto, suppose h : U → d preserves the lexi-

cographic order of children. Define f∗ on U as in the previous paragraph.
By definition, f∗ preserves extension and hence the parent-child relation-
ship. Moreover, for all s∈U , the length of f∗(s) is the same as the length
of s. Since h preserves the lexicographic order of children, it follows that
f∗ preserves the lexicographic order of leaves. Hence the restriction of f∗ to
domain U and codomain f∗[U ] is a shape similarity. It follows that T =f∗[U ]
is in J (n+1,d) and h=hT .

Lemma 4.6. Suppose U ∈J (n+1,1) and σU =σ.

1. The number of T ∈J (n+1,d) shape similar to U is dR(σ)
[d(d−1)

2

]n
where

R(σ) :=−2n+
∑

j<2n τσ(j).
2. The number of T ∈ J (n + 1,d) with minimal parent passing numbers

which are shape similar to U is dQ(σ) for Q(σ)=
∑

0<j<2n∧σ(j)=1 τσ(j).
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Proof. For the first item, by Lemma 4.5, it suffices to show the number of
functions h :U \{∅}→d which preserve the lexicographical order of children
has the specified value.

The set U \{∅}, by Lemma 4.3, has size
∑

j≤2n τσ(j). There are n nodes
of U which are parents with exactly two children. There are [d(d−1)/2]n

ways to chose the values of a function defined on the set of those children
which preserves the lexicographic order of children. The other values may be
freely chosen from d for a total of dR(σ) [d(d−1)/2]n functions h :U \{∅}→d
which preserve the lexicographic order of children.

Now consider the second item. Enumerate the elements of U in decreasing
order of length as y0,y1, . . . ,y2n. If T is shape similar to U and has minimal
parent passing numbers, then for all j≤2n, if σ(j)=−1, then yj is the parent
of exactly two children, and the restriction of hT to U2n+1−j is determined,
namely hT (z)=0=hU (z) if z is not the left child of yj and hT (z)=1=hU (z)
if z is the left child of yj . By Lemma 4.5, it suffices to show that there are
dQ(σ) many functions h :U\{∅}→d which preserve the lexicographical order
of children and agree with hU on U2n+1−j for all j≤2n with σ(j)=−1. By
Lemma 4.3, there are Q(σ) remaining elements of U \{∅}. Since the other
values may be freely chose, the second item follows as well.

5. Raney sequences

In Section 4, for a fixed U ∈J (n+1,2) with minimal passing numbers, the
size of the set of T shape similar to U was computed as an expression in the
tally sequence τσ for the parent indicator sequence σ = σU . An expression
in τσ was also found for the size of the set of those T shape similar to U which
have minimal parent passing numbers. The sequences σ that occur in this
fashion have been studied (see Concrete Mathematics [4] pages 345–347).
They are closely related to the ballot sequences discussed in Enumerative
Combinatorics, volume 2 [12] (see page 173 for a definition).

Definition 5.1. A sequence σ : (2n+1)→{−1,+1} is a 2-Raney sequence
of length 2n+1 if all of its partial sums are positive and its total sum is +1.
Let R(n) denote the set of 2-Raney sequences of length 2n+1.

Lemma 5.2. For all n<ω, the number of sequences in R(n) is a Catalan
number:

|R(n)| = C(n) =
(

2n
n

)
1

n + 1
.
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Proof. George Raney [7] showed in 1959 that if 〈x0,x1, . . . ,xm〉 is any se-
quence of integers whose sum is +1, then exactly one of the cyclic shifts

〈x0, x1, . . . , xm〉, 〈x1, x3, . . . , xm, x0〉, . . . , 〈xm, x0, . . . , xm−1〉

has all of its partial sums positive. In Concrete Mathematics, Graham, Knuth
and Patashnik [4] (see pages 345–6) show that the number of these sequences
is the Catalan number above.

Proposition 5.3. For any positive n < ω and any σ : (2n + 1) → {−1,1},
there is U ∈J (n+1,1) such that σU =σ if and only if σ∈R(n).

Proof. For the first direction, note that by Definitions 1.1, 3.4 and Corol-
lary 4.4, every parent indicator sequence for a J-tree T ∈ J (n + 1,d) is a
2-Raney sequence in R(n).

For the other direction, suppose σ ∈ R(n). Since the sum of the entire
sequence is +1, there are n+1 indices for which σ takes the value +1 and
n indices for which σ takes the value −1. Let i0, i1, . . . , in−1 list the indices
with σ(i)=−1 in increasing order, and let k0,k1, . . . ,kn list the indices with
σ(k)=+1.

Claim 5.3.1. The following sequence πσ is an alternating permutation on
{0,1, . . . ,2n} with parent indicator sequence σ:

πσ := 〈2n − k0, 2n − i0, 2n − k1, 2n − i1, . . . , 2n − kn−1, 2n − in−1, 2n − kn〉.

Proof. Note that the sequences 2n−i0,2n−i1, . . . ,2n−in−1 and 2n−k0,2n−
k1, . . . ,2n−kn are decreasing and every value from 0 to 2n occurs in one or
the other list, but not both. Thus πσ is a permutation on {0,1, . . . ,n}.

Since all partial sums τσ(�) =
∑

j<� σ(j) are positive for positive �≤ 2n,
k0 = 0 and k1 = 1, so 2n− k0 > 2n− i0 < 2n− k1. Moreover, in−1 = 2n, so
2n− kn−1 > 0 = 2n− i0 < 2n− kn. Also kj+1 < ij for all j < n− 1, else for
the least � with k�+1 > i� one has k� < i�−1 < i� < k�+1 which leads to the
contradiction that

∑
i≤i�

σ(i)=0. Since kj <kj+1 <ij for j <n−1, it follows
that 2n−kj >2n− ij <2n−kj+1 for all j <n−1. Thus πσ is an alternating
permutation whose parent indicator is σ.

By Lemma 3.2, there is U ∈ J (n+1,1) such that An(U) = πσ. By Re-
mark 3.4.1, the parent indicator sequence of U is σ.

Lemma 5.4. Suppose σ∈R(n) for some positive n.

1. Let R(σ) :=−2n+
∑

j<2n τσ(j). The number of T ∈J (n+1,d) with σT =σ

is dR(σ)
[d(d−1)

2

]n∏
j<2n∧σ(j)<0τσ(j)(τσ(j)−1).
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2. Let Q(σ) =
∑

0<j<2n∧σ(j)=1 τσ(j). The number of T ∈ J (n + 1,d) with

minimal parent passing numbers is dQ(σ)
∏

j<2n∧σ(j)<0τσ(j)(τσ(j)−1).

Proof. By Proposition 5.3, σ is the parent indicator sequence of some ele-
ment of J (n+1,1). By Corollary 3.7, the number of U ∈J (n+1,1) which have
σU =σ is

∏
j<2n∧σ(j)<0τσ(j)(τσ(j)−1). By Lemma 2.7, every T ∈J (n+1,d)

is shape similar to a unique tree U ∈ J (n+1,1). By Lemma 4.6, for each
U ∈J (n+1,1) with σU =σ, the number of T ∈J (n+1,d) which are shape
similar to U is dR(σ) [d(d−1)/2]n and the number of T ∈ J (n + 1,d) with
minimal parent passing numbers which are shape similar to U is dQ(σ). The
sums of these expressions over all U ∈J (n+1,1) and σU =σ give the cardi-
nalities of the sets specified in the lemma.

For n=0, there is a single Raney sequence of length 2·0+1, namely, 〈+1〉.
It is the parent indicator sequence for the trivial J-tree with one leaf and
no parents, which corresponds to the trivial permutation 〈0〉, so the corre-
spondences extend to these trivial cases.

6. The theorems and the algorithms

Theorem 6.1. For 1≤ n,d < ω, σ ∈R(n), define αn+1(d) to be the cardi-
nality of the set of all T ∈J (n+1,d) such that T has minimal parent passing
numbers. For positive n,d<ω and Q(σ) :=

∑
j<2n∧σ(j)>0 τσ(j),

αn+1(d) =
∑

σ∈R(n)

dQ(σ)
∏

j<2n

σ(j)<0

τσ(j)(τσ(j) − 1) =
∑

σ∈R(n)

∏

j<2n

θσ(j),

where θσ(j)=dτσ(j) if σ(j)>0 and θσ(j)=τσ(j)(τσ(j)−1) if σ(j)<0.

Proof. For d = 1, dQ(σ) = 1 and the result follows from Corollary 3.7. For
d>1, sum the results of the second part of Lemma 5.4.

In order to take the above theorem and turn it into a Maple procedure, it
is useful to introduce some small values that fit in. As noted above, a single
node may be considered a J-tree with one leaf, and any two single node
trees are shape similar and similar, so α1(d)= 1 for all d. For convenience,
set αn(d)=0 for all n<1.

Note that τσ(j) is the difference between the number of indices smaller
than j with σ(j)>0 and the number of indices smaller than j with σ(j)>0.
Hence τσ(j) = j−2k where k is the number of indices smaller than j with
σ(j) > 0. We introduce a two parameter family of polynomials, p(k,m,x),
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where p(k,m,x) computes the sum over all initial segments µ of length k
of 2-Raney sequences with m entries of (−1) and k−m entries of (+1) of
the product

∏
j≤k θµ(j). Then αn(x) = p(2n− 1,n− 1,x). The test that a

sequence µ of length k with m entries of (−1) and k−m entries of (+1)
is an initial segment of a 2-Raney sequence is easy: µ must satisfy 2m<k.
Thus we set p(k,m,x)=0 if 2m≥ k or if m< 0. For m=0, we can directly
compute the value of p(k,0,x) = x[k(k−1)]/2. Since the recurrence relation
in terms of initial segments of length one less uses both p(k− 1,m,x) and
p(k−1,m−1,x), this initial data is needed for the Maple procedure.

p := proc(k,m,x) option remember;
if (k < 1 or m < 0 or 2*m >= k) then

0
elif (m = 0) then

x^((k)*(k-1)/2)
else

p(k-1,m-1,x)*(k-1-2*(m-1))*(k-2-2*(m-1)) # ends in -1
+p(k-1,m,x)*(x^(k-1-2*(m))) # ends in +1

end if end proc:
P := n -> p(2*n-1,n-1,x);

for n from 1 to 10 do
sort(expand(P(n)));

end do;

Examples 6.2. Here are the values of αn(2) for n=1, . . . ,10:

1 : 1
2 : 4
3 : 112
4 : 12352
5 : 4437760
6 : 4686103552
7 : 13624250626048
8 : 104218697796173824
9 : 2028257407393613676544

10 : 97849915247810309454561280

Examples 6.3. The following are a few examples of the polynomials αn(d):

• α2(d)=2d;
• α3(d)=12d3 +4d2;
• α4(d)=144d6 +72d5 +48d4 +8d3;
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• α5(d)=2880d10 +1728d9 +1728d8 +1008d7 +432d6 +144d5 +16d4.

Corollary 6.4. The polynomial αn+1(d) the following properties:

1. the degree of αn+1(d) is n(n+1)/2;
2. the leading coefficient of αn+1(d) is n!(n+1)!;
3. the lowest degree term of αn+1(d) is 2ndn; and
4. n!(n+1)!dn(n+1)/2≤αn+1(d)<(2n)!dn(n+1)/2.

Proof. Each 2-Raney sequence σ ∈ R(n) contributes to the dQ(σ) term
of αn+1(d) the quantity

∏
j≤2n∧σ(j)<0 τσ(j)(τσ(j)−1).

By the definitions of τσ and 2-Raney sequences, the value of τσ(j) is
positive for all positive j <2n and τσ(0)=0. Thus Q(σ)≥n, since there are
n+1 indices j for which σ(j)> 0. This value n is achieved by the 2-Raney
sequence σ∗ := 〈1〉�〈1,−1〉n and by no other 2-Raney sequence. Item 3
follows since τ∗ :=τµ∗ =〈0〉�〈1,2〉n, and

∏
j<2n

σ∗(j)<0

τ∗(j)(τ∗(j)−1)=2n.

For a 2-Raney sequence σ∈R(n), the function τσ(j) counts the difference
between the number of k <j with σ(k)=+1 and the number of k <j with
σ(k)=−1. Thus the largest possible value for Q(σ) is 0+1+· · ·+n=n(n+1)/2.
This value is achieved uniquely for σ∗ := 〈+1〉n+1�〈−1〉n. Note that τ∗ :=
τσ∗ = 〈0,1,2, . . . ,n,n+1,n,n−1,n−2, . . . ,2〉. Thus the degree of αn+1(d) is
Q(σ∗)=n(n+1)/2, and the leading coefficient is

∏

j≤2n

σ(j)<0

τ∗(j)(τ∗(j) − 1) =
∏

2≤�≤n+1

�(� − 1) = n!(n + 1)! .

To get the lower bound of item 4, simply truncate the polynomial to its
leading term. Note that the computation of the leading coefficient gives
the largest value that can be contributed toward the polynomial by any
2-Raney sequence. Since |R(n)| = C(n) = (2n)!/[(n!)((n + 1)!)], the upper
bound is obtained by using n!(n+1)!dn(n+1)/2 as an estimate for every Raney
sequence.

Theorem 6.5. For positive n,d < ω and R(σ) := −2n +
∑

j<2n τσ(j), the

cardinality of J (n+1,d) is

ρn+1(d) :=
∑

σ∈R(n)

dR(σ)

[
d(d − 1)

2

]n ∏

j<2n

σ(j)<0

τA(j) (τA(j) − 1) .
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Proof. Sum the results of the first part of Lemma 5.4.

We translate this theorem into an algorithm via a Maple procedure using
the techniques applied above to Theorem 6.5. First note that R(σ)=−2n+∑

j<2n τσ(j) =
∑

j<2n [τσ(j)+σ(j)−1]. Thus ρn+1 =
∑

σ∈R(n)

∏
j<2nησ(j)

where ησ(j)=dτσ (j) if σ(j)>0 and ησ(j)=dτσ(j)−2(τσ(j)−1) if σ(j)<0.

q := proc(k,m,x) option remember;
if (k < 1 or m < 0 or 2*m >= k) then
0

elif (m = 0) then
x^((k)*(k-1)/2)

else
q(k-1,m-1,x)*(k-1-2*(m-1))*(k-2-2*(m-1))*x^(k-1-2*(m-1)-2)

# ends in -1
+q(k-1,m,x)*(x^(k-1-2*(m-1)))

# ends in +1
end if end proc:

Q := n -> q(2*n-1,n-1,x)*((x^2-x)/2)^(n-1);

for n from 1 to 4 do
sort(expand(Q(n)));

end do;

Examples 6.6. Here are the values of ρn(2) for n=1, . . . ,10:

1 : 1
2 : 4
3 : 208
4 : 84544
5 : 225285376
6 : 3562673554432
7 : 313228604408713216
8 : 146151093077541238226944
9 : 349492125813998287750324092928

10 : 4168173726631464433483457866110337024

Examples 6.7. The following are a few examples of the polynomials ρn(d):

• ρ2(d)=d3−d2;
• ρ3(d)=3d8−6d7 +4d6−2d5 +d4;
• ρ4(d)=18d15−54d14 +63d13−45d12 +33d10 +19d9−9d8 +3d7−d6.
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7. Applications

The first application is a direct corollary of Theorem 6.1.

Corollary 7.1. The value αn(1) is the cardinality of J (n,1), the set of
T ∈ J (n,2) with minimal passing numbers. It is also the number of shape
similarity classes of (n)-leaf subtrees of ω>d which are J-trees. Moreover,
〈αn(1) :1≤n<ω〉> is the sequence of tangent numbers, so αn(1) = tn may
also be computed using the generating function

tan(x) =
∞∑

1

tn
x2n−1

(2n − 1)!
.

Proof. The value αn(1) is by definition the size of J (n,1), which is the set of
trees in J (n,2) with minimal passing numbers. It follows from Lemma 2.7,
that αn(1) is the number of shape similarity classes, since each class has a
unique member from J (n,1). To see that this sequence is the tangent num-
bers, observe that Vuksanovic computes this quantity in [14] (for a version
in the language of category theory, see [1]), or check Sloane’s On-Line En-
cyclopedia of Integer Sequences [11] where the tangent numbers appear as
the number of Joyce trees on 2n−1 nodes.

The next application is to weak embedding types of (n+1)-leaf J-trees.

Theorem 7.2. The number of weak embedding types of (n+1)-leaf subtrees
of ω>d which are J-trees is ρn+1(d)= |J (n+1,d)|.

Proof. Use Theorem 6.5 and Lemma 2.7.

Theorem 7.3. The number of similarity equivalence classes of (n+1)-leaf
subtrees of ω>d which are J-trees is αn+1(d).

Proof. Use Theorem 6.1 and Lemma 2.7.

Laflame, Sauer and Vuksanovic [5] use diagonal sets (see the definitions
on pages 188–189) in the definition of their canonical partitions. One can
show that a finite set D ⊆ ω>d is diagonal if and only if D is the set of
leaves of T = D∪{s∧ t :s,t∈D} and T is a J-tree. Moreover, two diagonal
sets are similar in the sense of Laflamme, Sauer and Vuksanovic if and only
if their corresponding J-trees are similar as in Definition 2.1. Thus we have
the following corollary to Theorem 7.3.

Corollary 7.4. For 2 ≤ n,d < ω, the number of similarity classes of n-
element diagonal subsets of ω>d is αn(d).
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The application mentioned in the title of the paper is part of the the
Ramsey theory of n-tuples of the countable universal binary homogeneous
relational structures as discussed in [10] and [5]. In particular, these are
structures in a language with only binary relations which are determined by
their two element substructures and may be coded as a cofinal subset of ω>d
for some finite d. For concreteness, here is a short list of universal countable
purely binary relational structures with the tree in which they may be coded
as a cofinal set.
1. The Rado (random) graph may be coded in ω>2.
2. The random oriented graph may be coded in ω>3.
3. The random directed graph may be coded in ω>4.
4. The random tournament may be coded in ω>2.
For clarity, we point out that the countable homogeneous triangle-free graph
is an example of a countable homogeneous purely binary relational structure
which is not universal in the sense used here, since it forbids a three element
substructure, so is not determined by its two element substructures. See [9]
for more information about universal countable binary relational structures.

For background information on the Ramsey theory of countable univer-
sal homogeneous relational structures, see the introductory section of the
paper Coloring subgraphs of the Rado graph by Sauer [10] and the final sec-
tion of Canonical partitions of universal structures by Laflamme, Sauer and
Vuksanovic [5].

Sauer in [10] proved the existence of canonical partitions for countable
universal binary homogeneous relational structures and showed that the
cells of the partitions he described were indivisible. Laflamme, Sauer and
Vuksanovic [5] showed the cells were persistent and hence the partitions
identified by Sauer were shown to be canonical. Below two theorems from [5]
are quoted and then followed with some related definitions and notation.

Theorem 7.5 ([5, Theorem 7.9]). Let U=(U ;L) be a universal countable
binary relational structure and n∈ω. Then Cn(U) is a canonical partition of
the n-element subsets of U .

Here U is identified with a cofinal subset of ω>d, Cn(U) is a partition of
the n-element subsets of U consisting of the similarity classes of n-element
diagonal subsets of U with a specified similarity class enlarged by addition
of all the non-diagonal subsets of U . Let rU denote the number of similarity
equivalence classes of the n-element diagonal subsets of U .

Corollary 7.6 ([5, Corollary 7.10]). Let U=(U,L) be a universal count-
able binary relational structure and n∈ ω. Moreover, if U � (U)n<ω/s, then

s≥rU(n).
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By definition, the partition relation U → (U)n<ω/r holds if for every col-
oring of the n-element subsets of U with finitely many colors, there is an
induced substructure of U isomorphic to U on whose n-element subsets the
coloring takes at most r values. The number of cells, rU, of the canonical
partition is a critical number for this partition relation.

Below we apply Corollary 7.4 to find the value of rU.

Corollary 7.7. For positive n < ω and d with 2 ≤ d < ω, if U = (U,L) is
a universal countable binary relational structure coded as a cofinal subset
of ω>d, then the number of cells in a canonical partition of [5, Theorem 7.9]
and the critical value for the partition relation of [5, Corollary 7.10] is rU =
αn(d).

This work of Sauer and Laflamme, Sauer and Vuksanovic generalizes that
of Erdős and Rado [3], who determined the canonical partitions of n element
sequences of natural numbers.

Devlin [1], in his thesis, proved a parallel Ramsey Theorem for (Q,<) in
which the critical values are the tangent numbers (see also Vuksanovic [14]).
Vuksanovic [15] has worked on canonical partitions for (Q,<).

The work of Laflamme, Sauer and Vuksanovic also generalizes work of
Erdős, Hajnal and Pósa [2], who showed that any partition of the edges
of the random graph must have at least two colors. The random (Rado)
graph, RG = (ω,ERG), is a special case of a universal countable binary
relational structure of degree 2. Vuksanovic, in Lemma 2.1 of [16], gives a
characterization of the equivalence classes of a canonical partition for the
random graph and includes a table with the first few values for the number
of cells the canonical partition of n-tuples: there is one cell for singletons,
four cells for pairs, and 112 cells for three element sets. rn = αn(2): r1 = 1,
r2 =4, r3 =112. More generally, by Corollary 7.7 above, there are αn(2) cells
in the canonical partition of n-element sets of the random graph.

Sauer [8] has proved a Ramsey theorem for colorings of the edges of the
countable triangle free homogenous graph, but Ramsey questions for larger
size subsets remain open.
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