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BIG RAMSEY DEGREES USING PARAMETER SPACES

JAN HUBIČKA

Abstract. We show that the universal homogeneous partial order has finite

big Ramsey degrees and discuss several corollaries. Our proof uses parameter
spaces and the Carlson–Simpson theorem rather than (a strengthening of) the

Halpern–Läuchli theorem and the Milliken tree theorem, which are the pri-

mary tools used to give bounds on big Ramsey degrees elsewhere (originating
from work of Laver and Milliken). This new technique has many additional

applications. To demonstrate this, we show that the homogeneous universal

triangle-free graph has finite big Ramsey degrees, thus giving a short proof of
a recent result of Dobrinen.

1. Introduction

We consider graphs, partial orders, (vertex)-ordered graphs and partial orders
with linear extensions as special cases of model-theoretic relational structures (de-

fined in Section 2). Given structures A and B, we denote by
(
B
A

)
the set of all

embeddings from A to B. We write C −→ (B)Ar,l to denote the following state-
ment:

For every colouring χ of
(
C
A

)
with r colours, there exists an embed-

ding f : B→ C such that χ does not attain more than l values on(
f(B)
A

)
.

For a countably infinite structure B and its finite substructure A, the big Ramsey
degree of A in B is the least number L ∈ ω ∪{ω} such that B −→ (B)Ar,L for every

r ∈ ω; see [KPT05]. A countably infinite structure B has finite big Ramsey degrees
if the big Ramsey degree of A in B is finite for every finite substructure A of B.

A countable structure A is called (ultra)homogeneous if every isomorphism be-
tween finite substructures extends to an automorphism of A. It is well known
that there is an (up to isomorphism) unique homogeneous partial order P with
the property that every countable partial order has an embedding to P. We call
P the universal homogeneous partial order. Similarly, there is an up to isomor-
phism unique homogeneous triangle-free graph H (called the universal homoge-
neous triangle-free graph, sometimes also triangle-free Henson graph) such that
every countable triangle-free graph embeds to H. (See e.g. [Mac11] for more back-
ground on homogeneous structures.)

Our main result is the following.

Theorem 1.1. The universal homogeneous partial order has finite big Ramsey
degrees.

Presently, there are just a few examples of structures with finite big Ramsey
degrees known. As we show in Section 6 the universal homogeneous partial order
represents an important new example of a structure in which many of the known
examples can be interpreted and thus follow as a direct consequence.

Supported by project 18-13685Y of the Czech Science Foundation (GAČR), Center for Foun-
dations of Modern Computer Science (Charles University project UNCE/SCI/004), by the
PRIMUS/17/SCI/3 project of Charles University and by ERC Synergy grant DYNASNET 810115.
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2 JAN HUBIČKA

The study of big Ramsey degrees originates in work of Laver who, in 1969,
showed that the big Ramsey degrees of the order of rationals are finite [Dev79,
page 73], see also [EH74, Lav84]. In his argument, he re-invented the Halpern–
Läuchli theorem [HL66]. His technique was later formulated more generally by
means of the Milliken tree theorem [Mil79] and the notion of envelopes and em-
bedding types [Tod10, Chapter 6]. The majority of existing results in the area
continue to use the Milliken tree theorem as the primary proof technique. In par-
ticular, Devlin in 1979 [Dev79] refined Laver’s argument thereby giving a precise
characterisation of the big Ramsey degrees of the order of rationals. In 2006,
Sauer [Sau06] and Laflamme, Sauer, and Vuksanovic [LSV06] characterised the big
Ramsey degrees of the Rado graph (with precise counts given by Larson [Lar08]).
This was further generalised in several followup papers [LNVTS10, DLS16].

Our proof of Theorem 1.1, for the first time in the area, uses spaces described
by parameter words. This leads to a finer control over the sub-trees compared to
the aforementioned constructions. Our main Ramsey tool, formulated as Theo-
rem 2.1, is an infinitary extension of the Graham–Rothschild theorem [GR71] and
is a direct consequence of the Carlson–Simpson theorem [CS84]. While the con-
nections of the Carlson–Simpson theorem, Halpern–Läuchli theorem for trees with
bounded branching and the Milliken tree theorem are well known [CS84, DK16],
the additional invariants parameter spaces can preserve have been not applied in
this context so far.

The proof technique presented in this paper is flexible and can be used to obtain
additional finite big Ramsey degrees results for restricted structures (that is, struc-
tures omitting given substructures or satisfying certain axioms). To demonstrate
this, we give a new short proof of the following recent result of Dobrinen [Dob20a]:

Theorem 1.2 (Dobrinen [Dob20a]). The universal homogeneous triangle-free graph
has finite big Ramsey degrees.

Both results have well known finitary counterparts. Given a class K of structures,
the (small) Ramsey degree of A in K is the least l ∈ N ∪ {ω} such that for every
B ∈ K and r ∈ N there exists C ∈ K such that C −→ (B)Ar,l. A class K of finite

structures is Ramsey (or has the Ramsey property) if the small Ramsey degree of
every A ∈ K is one. The Ramsey property for finite partial orders with linear
extensions was announced by Nešetřil and Rödl in 1984 [NR84] with the first proof
published year later [PTW85]. The Ramsey property of finite ordered triangle free
graphs is a direct consequence of the Nešetřil–Rödl theorem [NR77].

While there is a general framework which can be used to show that a given class
K is Ramsey [HN19], the situation is very different in the context of big Ramsey
degrees as there are still only a handful of structures where big Ramsey degrees are
understood. The main difference is the lack of an infinite variant of the (Nešetřil and
Rödl’s) partite construction [NR89] (see [NR18] for its adaptation to partial orders)
which has proved to be a very versatile tool in the structural Ramsey theory. Partite
construction separates the structural and Ramsey arguments. Ramsey objects are
constructed by sequences of (structural) products and amalgamations which are
derived by a combination of Ramsey and Hales–Jewett theorems. In this respect
it differs from other proofs of these results which generally represents a structural
object by means of tools provided by “unstructured” Ramsey theorems (see [Prö13,
Theorem 12.13] for Ramsey property of ordered graphs and [Fou97] for Ramsey
property of partial orders with linear extensions).

For several decades, it was not clear how to generalize Laver’s proof to (count-
able) restricted structures or structures in non-binary languages. Dobrinen’s recent
proof of Theorem 1.2 started a significant progress. Her proof uses a new method
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of bounding big Ramsey degrees inspired by Harrington’s proof of the Halpern–
Läuchli theorem, which uses techniques from forcing and the Erdős–Rado theorem.
The main pigeonhole argument is a technically challenging structured tree theo-
rem, where the tree is built using a particular enumeration of the graph Henson
H in which certain tree levels are coding (and contain vertices of the graph be-
ing represented) while others are branching. This method was later generalized to
(non-oriented) Henson graphs [Dob19]. Recently, Zucker simplified it and further
generalized to finitely constrained free amalgamation classes of structures in binary
languages [Zuc20]. Zucker’s proof is still based on a structured pigeonhole proved
by forcing techniques, but it greatly simplifies the trees by eliminating distinction
between coding and branching levels. This simplification comes at a cost; the upper
bounds on big Ramsey degrees obtained from Zucker’s proof are bigger than ones
obtained from the proof by Dobrinen (which are conjectured to be tight [Dob20a,
Section 10]).

By unrelated techniques, free amalgamation classes with the property that the
big Ramsey degree of a vertex is equal to one were recently characterised by
Sauer [Sau20]. Bounds on big Ramsey degrees of unrestricted structures with arities
greater then 2 were announced in [BCH+19] with a proof based on the vector (or
product) form Milliken tree theorem [BCH+20b, BCH+20a]. Independently, similar
results were obtained by Coulson, Dobrinen and Patel [CDP20] using Dobrinen’s
method of strong coding trees [Dob20b].

We shall also remark that Theorem 2.1 has a direct proof based on Theorem 2 of
[Kar13]. Consequently we obtain the first direct (and simpler) proof of Theorem 1.2.

The paper is organised as follows. In Section 2 we introduce parameter spaces.
In Section 3 we introduce the corresponding notion of envelopes and embedding
types. In Section 4 we prove the main results of this paper. In Section 5 we show
that the construction is tight for determining small Ramsey degrees and thus give
a new proof of a special case of the Nešetřil–Rödl theorem [NR77]. In Section 6 we
discuss several corollaries. In Section 7 we briefly outline ongoing work and further
directions to generalize techniques of this paper.

2. Preliminaries

We use the standard model-theoretic notion of relational structures. Let L be a
language with relation symbols R ∈ L each having its arity. An L-structure A on
A is a structure with vertex set A and relations RA ⊆ Ar for every symbol R ∈ L
of arity r. If the set A is finite, we call A a finite structure. We consider only
structures with finitely many or countably infinitely many vertices.

Given two L-structures A and B, a function f : A→ B is an embedding f : A→
B if it is injective and for every R ∈ L of arity r we have that

(v1, v2, . . . , vr) ∈ RA ⇐⇒ (f(v1), f(v2), . . . , f(vr)) ∈ RB.

We say that A and B are isomorphic if there is an embedding f : A → B that is
onto.

As usual in the structural Ramsey theory, given an embedding f : A → B we
will call the image of A in B (denoted by f(A)) a copy of A in B. Structure A is
rigid if the only automorphism of A (that is, isomorphism A→ A) is the identity.

For rigid structures we will also slightly abuse the notation and write Ã ∈
(
B
A

)
for

any structure for which there exists an embedding f ∈
(
B
A

)
such that f(A) = Ã.

2.1. Parameter words and spaces. Given a finite alphabet Σ and k ∈ ω ∪ {ω},
a k-parameter word is a (possibly infinite) string W in alphabet Σ∪{λi : 0 ≤ i < k}
containing each of λi, 0 ≤ i < k, such that for every 1 ≤ j < k, the first occurrence
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of λj appears after the first occurrence of λj−1. Given a parameter word W , we
denote by |W | its length and for every 0 ≤ j < |W | by Wj the letter (or parameter)
on index j. (Note that the first letter of W has index 0). A 0-parameter word is
simply a word. We will generally denote words by lowercase letters and parameter
words by uppercase letters.

Let W be an n-parameter word and let U be a parameter word of length k ≤ n
(where k, n ∈ ω ∪ {ω}). Then we denote by W (U) the parameter word created
by substituting U to W . More precisely, this is a parameter word created from W
by replacing each occurrence of λi, 0 ≤ i < k, by Ui and truncating it just before
the first occurrence of λk (in W ). Given an n-parameter word W and set S of
parameter words of length at most n, we denote by W (S) the set {W (U) : U ∈ S}.

We denote by [Σ]
(
n
k

)
the set of all k-parameter words of length n (where k ≤

n ∈ ω ∪ {ω}). If k is finite we also denote by

[Σ]
∗
(
n

k

)
=

⋃
i≤n,i∈ω

[Σ]

(
i

k

)
the set of all finite k-parameter words of length at most n. For brevity we put
Σ∗ = [Σ]

∗(ω
0

)
, the set of all words on the alphabet Σ with finite length and no

parameters. Given an n-parameter word W and integer k < n, we call W ([Σ]
∗(n
k

)
)

the k-dimensional subspace described by W . We will denote by ∅ the empty word.
We will make use of the following infinitary variant of the Graham–Rothschild

Theorem [GR71] which is a direct consequence of the Carlson–Simpson theorem
[CS84]. This theorem was also obtained by Voigt around 1983 in a manuscript
which, to our knowledge, was never published (see, i.e., [PV85, Theorem A], [Car87]),

Theorem 2.1. Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set
[Σ]
∗(ω
k

)
is coloured by finitely many colours, then there exists an infinite-parameter

word W such that W
(
[Σ]
∗(ω
k

))
is monochromatic.

We will also make use of the finite version of Theorem 2.1 (which follows from the
Graham–Rothschild theorem by assigning every word W ∈ [Σ]

(
n+1
k

)
, k > 1, a word

W ′ ∈ [Σ]
∗( n
k−1

)
created from W by truncating it just before the first occurrence of

λk−1).

Theorem 2.2. Let Σ be a finite alphabet, 0 ≤ k ≤ n and r > 0 finite integers.
Then there exists N = N(|Σ|, k, n, r) such that for every r-colouring of [Σ]

∗(N
k

)
there exists a word W ∈ [Σ]

∗(N
n

)
such that W

(
[Σ]
∗(n
k

))
is monochromatic.

3. Envelopes and embedding types

Essentially all big Ramsey degree results are based on a notion of envelope and
embedding type introduced by Laver and Milliken, see [Tod10, Section 6.2]. Pre-
cise definitions depend on the notion of a subspace (or a subtree). The following
introduces these concepts for the context of parameter spaces.

Definition 3.1. Given a finite alphabet Σ and a set S of parameter words in
alphabet Σ, an envelope of S is a parameter word W in alphabet Σ such that for
every U ∈ S, there exists a parameter word U ′ such that W (U ′) = U . We call the
envelope W minimal if there is no envelope of S with fewer parameters than W .

Example 1. Consider Σ = {0} The set S = {0, 000} ⊆ [Σ]
∗(ω

0

)
has two minimal

envelopes: 0λ0λ0 and 0λ00. Parameter word λ0λ1λ2λ3 is also an envelope of S, but
it is not a minimal envelope.

Proposition 3.1. Let Σ be a finite alphabet, let k ≥ 0 be a finite integer, let S be
a finite set of finite parameter words in alphabet Σ with at most k parameters and
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let W be a minimal envelope of S. Then W has at most (|Σ| + k)|S| + |S| − |Σ|
parameters. Moreover, for every parameter λi of W and every minimal envelope
W ′ of S it holds that the first occurrence of λi has the same position in W and W ′.

Proof. Fix Σ, k, and S. If the set S is empty, then W can be chosen to be the
empty word. We thus assume that |S| > 0 and put S = {W 0,W 1, . . . ,W `−1}. We
show a method to construct an envelope W .

Put m = max0≤i<`(|W i|) and for every 0 ≤ i < m we define the slice i as a

sequence si = (W 0
i ,W

1
i , . . . ,W

`−1
i ) where we put W j

i = ∗ if |W j | ≤ i (where ∗ is a
special symbol not in Σ). For every 0 ≤ i ≤ j < m we say that slice i is compatible
with slice j if for every 0 ≤ p < ` it holds that either W p

i = W p
j or W p

j = ∗ and

j 6= |W p|.
Now construct a word W of length m by putting for every 0 ≤ j ≤ m

Wj =


s if slice j is (s, s, . . . , s) for some s ∈ Σ,

Wj′ if there exists 0 ≤ j′ < j such that slice j′ is compatible with slice j

and j′ is the minimal index with this property,

λp otherwise, where λp is the first so far unused parameter.

It is easy to see that each new parameter must be introduced and thus the dimension
of an envelope and first occurrences of parameters are uniquely determined by S.
Since there are at most (|Σ| + k)` + ` mutually incompatible slices, we will use at
most (|Σ|+ k)` + `− |Σ| parameters. �

Definition 3.2. Given a finite alphabet Σ, a finite integer k ≥ 0, a set S of
parameter words in alphabet Σ and an envelope W of S, an embedding type of S
in W , denoted by τW (S), is the set of parameter words such that W (τW (S)) = S.

Example 2. The set S = {0, 000} has embedding type {∅, 0} in both minimal
envelopes given in Example 1.

Corollary 3.2. Let Σ be a finite alphabet and let k, ` > 0 be finite integers. Then

(1) the set

{τW (S) : S ⊆ [Σ]
∗
(
ω

k

)
, |S| = `,W is a minimal envelope of S}

is finite, and,
(2) for every finite set S ⊆ [Σ]

∗(ω
k

)
and its minimal envelopes W and W ′ it

holds that τW (S) = τW ′(S).

As a consequence of Corollary 3.2 we can also use τ(S) for τW (S) where W is
some minimal envelope of S.

Remark 3.1. Our Definitions 3.1 and 3.2 are closely related to the definition of
envelopes and types used by Dodos, Kanellopoulos and Tyros [DKT14] and by
Furstenberg and Katznelson [FK89], see also [DK16, Chapter 5]. The main differ-
ence is however the use of subspaces defined by variable words rather than param-
eter words. With respect to this notion subspaces the dimension of envelope and
thus also the number of types is not bounded by the size of the set.

4. Big Ramsey degrees

In this section we prove Theorems 1.1 and 1.2. We start with Theorem 1.2 and
later show that Theorem 1.1 follows by very similar arguments.
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4.1. Triangle-free graphs. In this section we consider graphs to be structures in
a language consisting of a single binary relation E. We fix alphabet Σ = {0}.

Definition 4.1. We define graph G as follows:

(1) The vertex set G is [Σ]
∗(ω

1

)
(that is, the set of all finite 1-parameter words).

(2) Given two vertices U and V such that |U | < |V |, we put an edge between
U and V if and only if
(i) V|U | = λ0 and
(ii) for no 0 ≤ j < |U | it holds that Uj = Vj = λ0.

There are no other edges.

Remark 4.1. Condition (i) in Definition 4.1 is the passing number representation
of the Rado graph used by Sauer [Sau06] (see also [Tod10, Theorem 6.25]). Condi-
tion (ii) is similar to Dobrinen’s parallel 1’s criterion [Dob20a, Definition 3.7]. The
notion of subtree (or a subspace) used here is however different from [Sau06] and
[Dob20a].

Lemma 4.1. Graph G is triangle-free.

Proof. Assume to the contrary that U , V and W form a triangle. Without loss of
generality we can assume that |U | < |V | < |W |. Because there is an edge between
U and V , we know that V|U | = λ0. Because there is an edge between U and W ,
we know that W|U | = λ0. A contradiction with the existence of an edge between V
and W . �

The following follows directly from the definition of the substitution:

Observation 4.2. Let W be an infinite-parameter word. Then for every U, V ∈ G
it holds that U is adjacent to V if and only if W (U) is adjacent to W (V ).

Let H with H = ω be (an enumeration of) the universal homogeneous triangle-
free graph. We define the mapping ϕ : ω → G by putting ϕ(i) = U where U is a
1-parameter word of length i defined by putting for every 0 ≤ j < i

Uj =

{
λ0 if and only if {j, i} is an edge of H,

0 otherwise.

It is easy to check:

Observation 4.3. Function ϕ is an embedding ϕ : H → G and thus G is a uni-
versal triangle-free graph.

Now we prove Theorem 1.2 in the following form:

Theorem 4.4. For every finite k ≥ 1 and every finite colouring of induced sub-
graphs of G with k vertices there exists f ∈

(
G
G

)
such that the colour of every

k-vertex subgraph A of f(G) depends only on τ([A]) = τ(f−1[A]).

Observe that by Corollary 3.2, we obtain the desired finite upper bound on
number of colours. The proof is again structured similarly to Milliken and Laver’s
results, see [Tod10, Section 6.3]: by a repeated application of Theorem 2.1, we
obtain the desired copy.

Proof. Fix k and a finite colouring χ of subsets of G of size k. Let T 0, T 1, . . . , TN−1

be all possible embedding types of subsets of G of size k in their minimal envelopes
(given by Corollary 3.2). For every 0 ≤ i ≤ N − 1, put ni = max{|U | : U ∈ T i}.

Choose an infinite-parameter word W 0 ∈ [Σ]
(
ω
ω

)
arbitrarily. We construct a

sequence of infinite-parameter words W 1,W 2, . . . ,WN such that for every 0 < i ≤
N the following is satisfied:
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(1) W i = W i−1(Zi) for some infinite-parameter word Zi,
(2) There exists colour ci such that

χ(W i(U(T i−1))) = ci

for every U ∈ [Σ]
∗( ω
ni−1

)
.

Let f be defined by f(U) = WN (U). By Observation 4.2 we know that this is an
embedding with the desired properties.

It remains to show the construction of W i. Assume that W i−1 is constructed.
Let χi : [Σ]

∗( ω
ni−1

)
be a colouring given by χi(U) = χ(W i−1(U(T i−1))). By The-

orem 2.1 there exists an infinite-parameter word Zi and colour ci satisfying that
χi(Zi(U)) = ci for every U ∈ [Σ]

∗( ω
ni−1

)
. Put W i = W i−1(Zi). �

4.2. Partial orders. Throughout this section we fix a language with a single bi-
nary relation ≤ and consider a partial order (A,≤A) to be a structure A with
vertex set A and a binary relation ≤A. We also fix the alphabet Σ = {L,X,R}.
We will use the lexicographic order of words that is based on the following order of
the alphabet: L <lex X <lex R. We define the following binary relation on Σ∗:

Definition 4.2. For w,w′ ∈ Σ∗ we put w ≺ w′ if and only if there exists 0 ≤ i <
min(|w|, |w′|) such that

(i) (wi, w
′
i) = (L,R) and

(ii) for every 0 ≤ j < i it holds that wj ≤lex w
′
j .

For w ≺ w′ we denote by i(w,w′) the minimal i satisfying the condition (i) above.
We put w � w′ if and only if either w = w′ or w ≺ w′.

We denote by O the structure with vertex set O = Σ∗ ordered by �. (Thus we
put u ≤O v if and only if u � v.)

Proposition 4.5. Structure O is a partial order.

The intuitive meaning of the definition above is that for every w ∈ Σ∗ and every
j the letter wj describes a position of the vertex w with respect to an extension
of the partial order by a new vertex. When extending a given partial order by a
new vertex v, we obtain a partitioning of its vertex set into three sets: L is the set
of all vertices smaller than v, X is the set of all vertices not comparable to v and
R is the set of all vertices greater than v. Because we aim to define partial order
on the set of all words and because not every choice of L, X and R represent an
extension, we simply disregard all the information which is in conflict with what
has been decided earlier.

Proof of Proposition 4.5. It is easy to see that � is reflexive and anti-symmetric.
We verify transitivity. Let w ≺ w′ ≺ w′′ and put i = min(i(w,w′), i(w′, w′′)).

First assume that i = i(w,w′). Then we have wi = L,w′i = R which implies
that w′′i = R. For every 0 ≤ j < i it holds that wj ≤lex w

′
j ≤lex w

′′
j . It follows that

w � w′′ and i(w,w′′) ≤ i.
Now assume that i = i(w′, w′′). Then we have w′i = L, w′′i = R and because

w′i = L then also wi = L. Again for every 0 ≤ j < i it holds that wj ≤lex w
′
j ≤lex

w′′j . It also follows that w � w′′ and i(w,w′′) ≤ i. �

The key to our construction is the following:

Lemma 4.6. Let W be an infinite-parameter word. Then for every w,w′ ∈ Σ∗ it
holds that w � w′ if and only if W (w) �W (w′).

Proof. This can be easily checked using the fact that for every i > 0, λi first occurs
in W after the first occurrence of λi−1. �
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Recall that by P = (P,≤P) we denote the universal homogeneous partial order.
Without loss of generality, we can assume that P = ω and thus fix an (arbitrary)
enumeration of P. We define function ϕ : ω → Σ∗ by mapping j ∈ P to a word w
of length 2j defined as:

(w2i, w2i+1) =


(L,L) for every i < j, j ≤P i,

(R,R) for every i < j, i ≤P j,

(X,X) for every i < j, i is incomparable with j by ≤P,

(L,R) for i = j.

Proposition 4.7. The function ϕ is an embedding ϕ : P → O. Consequently, O
is a universal partial order.

Proof. Given i < j ∈ ω, put u = ϕ(i) and v = ϕ(j) and consider three cases:

(1) i ≤P j =⇒ u � v: We have u2i = L and v2i = R and we check that for
every 0 ≤ k < i it holds that u2k ≤lex v2k and thus also u2k+1 ≤lex v2k+1.
If u2k = L then this follows trivially. If u2k = X then we know that k is
incomparable with i by ≤P. It follows that v2k 6= L because i ≤P j and
thus it can not hold that j ≤P k. If u2k = R then we get k ≤P i ≤P j and
thus also v2k = R.

(2) j ≤P i =⇒ v � i: Here we have u2i+1 = R and v2i+1 = L. Analogously
as in the previous case we can check that for every 0 ≤ k < i it holds that
v2k ≤lex u2k.

(3) If i is incomparable with j in ≤P then u is incomparable with v in �:
Assume the contrary and let k ≤ i be such that either u2k = L and v2k = R
or u2k+1 = L and v2k+1 = R. Clearly k < i because v2i = v2i+1 = X. We
get that i ≤P k ≤P j. A contradiction.

�

Remark 4.2. Easy constructions of universal partial orders are interesting in their
own right, see [Hed69, PT80, HN05b, HN05a, HN11]. Observe also that ≤lex is a
linear extension of � and thus the construction can be seen as a direct refinement
of the Laver–Devlin construction.

Now we are ready to prove Theorem 1.1 in the following form.

Theorem 4.8. For every finite k ≥ 1 and every finite colouring of (induced) sub-

orders of O with k elements, there exists f ∈
(
O
O

)
such that the colour of every

suborder A of f(O) with k vertices depends only on τ([A]) = τ(f−1[A]).

Proof. This follows in an analogy to Theorem 4.4.
Fix k and a finite colouring χ of subsets of O of size k. Let T 0, T 1, . . . , TN−1 be

all possible embedding types of subsets of O of size k in their minimal envelopes
(given by Corollary 3.2). For every 0 ≤ i ≤ N − 1 put ni = max{|U | : U ∈ T i}.

Choose infinite-parameter word W 0 ∈ [Σ]
(
ω
ω

)
arbitrarily. We construct a se-

quence of infinite-parameter words W 1,W 2, . . . ,WN such that for every 0 < i ≤ N
the following is satisfied:

(1) W i = W i−1(Zi) for some infinite-parameter word Zi,
(2) There exists colour ci such that

χ(W i(U(T i−1))) = ci

for every U ∈ [Σ]
∗( ω
ni−1

)
.

Let f be defined by f(U) = WN (U). By Lemma 4.6 we know that this is an
embedding with the desired properties.

Word W i is again constructed by an application of Theorem 2.1. �
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5. Ramsey classes (of finite structures)

5.1. Ordered triangle-free graphs. An ordered graph is a relational structure
A in a language consisting of two binary relations E and ≤ such that (A,EA) is a
graph and (A,≤A) is a linear order.

We prove a special case of the Nešetřil–Rödl theorem. Our proof is based on the
ideas developed in the previous sections and is arguably the most direct proof of this
result known to date, giving a particularly simple description of the Ramsey graph
C. We shall remark that similar constructions have been known for unrestricted
classes, see [Prö13, Theorem 12.13] for a proof of the Ramsey property of the class
of all finite ordered graphs. However, to our best knowledge, a similar strategy has
been applied to a class of graphs with a forbidden subgraph in a special cases only
(for coloring vertices and edges [NR75a, NR75b]).

Theorem 5.1 (Nešetřil–Rödl). For every integer r > 0 and every pair of finite
ordered triangle-free graphs A and B, there exists a finite ordered triangle-free graph
C such that C −→ (B)Ar,1.

Proof. We fix alphabet Σ = {0}. Recall the graph G defined in Definition 4.1.
By GN , we denote the ordered graph created from G by considering only vertices
in [Σ]

∗(N
1

)
and adding a lexicographic ordering of the vertices (where we consider

vertices to be strings in alphabet {0, λ0} ordered 0 ≤lex λ0).
We will show that for sufficiently large N (to be specified at the end of the proof)

it holds that GN −→ (B)Ar,1. Towards this, we first define a more careful way to
embed an ordered triangle-free graph B to a graph Gn.

Let B be an ordered triangle-free graph. For simplicity we can assume that
B = {0, 1, . . . , |B|− 1} and that ≤B coincides with the order of integers. We define
an embedding ϕ : B → Gn for some sufficiently large n to be fixed later by the
following procedure. We say that a function f : B → {0, λ0} is a Katětov function
(for B) if B extended by a new vertex which is adjacent precisely to those vertices
v ∈ B satisfying f(v) = λ0 is a triangle free graph. In other words, there are no
two adjacent vertices v, v′ ∈ B such that f(v) = f(v′) = λ0.

Now enumerate all possible Katětov functions as f0, f1, . . . , fd−1 ordered lexico-
graphically with respect to ≤B. More precisely, we see every function fi as a word
wi of length |B| with wij = fi(j) and order those words lexicographically.

Put ϕ(v) = V where |V | = d+ v and

Vj =


fj(v) for j < d,

λ0 for d ≤ j < d+ v such that v is adjacent to j − d in B,

0 for d ≤ j < d+ v such that v is not adjacent to j − d in B.

Now put n = d + |B|. It is easy to see that ϕ is an embedding of B to Gn (to
see that the order is preserved, note that all extensions by a vertex connected to
precisely one vertex of B are triangle-free). An example of this representation is
depicted in Figure 1.

Let ϕ′ be an embedding of A→ Gk for some k > 0 constructed in the same way
as above.

Claim 5.2. For every Ã ∈
(
B
A

)
there exists a k-parameter word W ∈ [Σ]

∗(n
k

)
such

that W (ϕ′(A)) = ϕ(Ã).

Let f0, f1, . . . , fd−1 be the enumeration of Katětov functions of B in the lexico-
graphic order and let f ′1, f

′
2, . . . , f

′
d′−1 be the enumeration of Katětov functions of

Ã also ordered lexicographically. Let h : {0, 1, . . . , d−1} → {0, 1, . . . , d′−1} be the
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ϕ(a) = 00000λλ

ϕ(b) = 000λλ00λ

ϕ(c) = 00λ0λ00λ0

ϕ(d) = 0λ0000λ0λλ ϕ′(f) = 0λ0λ0

ϕ′(e) = 00λλ

e 7→ a, f 7→ d : λ0λ1λ0λ0λ0λ2λ3λ4λ0λ1λ1

d

c

b

a

f

e

e 7→ b, f 7→ c : λ0λ0λ1λ2λ3λ0λ0λ3λ4

Figure 1. Representation of a graph B ordered a ≤B b ≤B c ≤B

d and a graph A ordered e ≤A f along with a parameter word
representing all embeddings of A to B as constructed in the proof
of Claim 5.2. For easier reading, λ0 is typeset as λ.

mapping such that for every i ∈ {0, 1, . . . , d− 1} function fi restricted to Ã is f ′h(i).

Observe that every Katětov function f of Ã can be extended to a Katětov function

f ′ of B by putting f ′ = f(v) for v ∈ Ã and f ′(v) = 0 otherwise. It follows that h
exists and is surjective.

Let θ be the isomorphism A → Ã. For every v ∈ B \ Ã we put e(v) to be an

integer such that f ′e(v) describes the neighbourhood of v in Ã.

We now define a string W of length d+ max(Ã) as follows:

Wj =


λh(j) for every 0 ≤ j < d,

λd′+θ−1(j−d) for every d ≤ j such that j − d ∈ Ã,

λe(j−d) for every d ≤ j such that j − d /∈ Ã.

First observe that W0 = λ0. This is because f0 and f ′0 are both constant zero
functions.

We verify that W is a k-parameter word, that is, for every 1 ≤ j < k it holds
that the first occurrence of λj comes after the first occurrence of λj−1. We consider
three cases:

(1) j < d′: Function f ′j can be extended to function f ′′j : B → {0, λ0} by

putting f ′′j (v) = 0 for every v /∈ Ã. This is clearly a Katětov function of
B and therefore there exists j′ such that f ′′j = fj′ . From this it follows
that Wj′ = λj . Because zero is the minimal element of the alphabet we
get that this is also the first occurrence of λj in W . Finally because the
first occurrence of λj−1 can be found same way and the extension by zeros
preserves the relative lexicographic order, we know that λj appears after
λj−1.

(2) j = d′: λj occurs once at position d + θ(j − d′) = d + θ(0). We already
checked that λj−1 occurs before d.

(3) d′ < j < k: For every d′ < j < k it holds that λj occurs precisely once at
position d+ θ(j− d′) so the desired ordering follows form the monotonicity
of θ.

This finishes the proof that W is indeed k-parameter word. By substituting ϕ′(A)

into W it can be also checked that W (ϕ′(A)) = ϕ(Ã). This finishes the proof of
Claim 5.2.

Now let N = N(1, n, k, r) be given by Theorem 2.2. We claim that GN −→
(B)Ar,1. Consider an r-colouring of GN . Observe that for every W ∈ [Σ]

∗(N
k

)
we get

a unique copy of A in GN given by W (ϕ′(A)). We thus obtain an r-colouring of

[Σ]
∗(N
k

)
and by an application of Theorem 2.2 a word W̃ ∈ [Σ]

∗(N
n

)
for which this

colouring is constant. The monochromatic copy of B is now given by W̃ (ϕ(B)). �
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ϕ(a) = LLLLLXL

ϕ(b) = LLLXXXRL

ϕ(c) = LLXLXXRRL

ϕ(d) = LXXXXXRRRL ϕ′(f) = LXLXRL

ϕ′(e) = LLXXL

e 7→ b, f 7→ c : λ0λ0λ1λ2λ3λ3RRλ5λ6

d

c

b

a

f

e

Figure 2. Representation of a partial order B with linear exten-
sion a ≤B b ≤B c ≤B d and a partial order A with linear extension
a ≤A b (relations EB and EA are depicted by Hasse diagrams)
along with a parameter word representing the embedding of A to
B as constructed in the proof of Claim 5.4.

5.2. Partial orders with linear extension. Now we will consider structures in
language with two binary relations ≤ and E. A is a partial order with linear
extension if (A,EA) a partial order and (A,≤A) its linear extension.

We prove:

Theorem 5.3 ([NR84, PTW85]). For every integer r > 0 and every pair of finite
partial orders with linear extensions A and B there exists a finite partial order with
linear extension C such that C −→ (B)Ar,1.

Remark 5.1. The proof of Theorem 5.3 presented here is related to proofs of this re-
sult based on the Graham–Rothschild theorem (by Fouché [Fou97], see also [Maš18,
Theorem 4.1]). We present it because our representation of the partial order by
finite words is different. This difference is necessary to show Theorem 1.1 (where
countably infinite partial orders need to be represented), but also perhaps makes
the proof of Theorem 5.3 a bit more systematic.

Proof. We fix alphabet Σ = {L,X,R} and its ordering L <lex X <lex R. Denote

by ON the partial order induced on [Σ]
∗(N

0

)
by O (given by Definition 4.2) with a

linear extension defined by the lexicographic order.
Fix A and B and proceed in analogy to the proof of Theorem 5.1. For simplicity

we can assume that B = {0, 1, . . . , |B| − 1} and that ≤B coincides with the order
of integers. We show that there exists N such that ON −→ (B)Ar,1.

We define an embedding ϕ : B → On for some sufficiently large n (to be fixed
later) by the following procedure. We say that function f : B → {L,X} represents
a downset of B if the set {v : f(v) = L} is downwards closed with respect to EB.

Now enumerate all possible functions representing a downset as f0, f1, . . . , fd−1

ordered lexicographically with respect to ≤B. Put ϕ(v) = w where is a word of
length d+ v + 1 defined as follows:

wj =


fj(v) for 0 ≤ j < d,

R for d ≤ j < d+ v,

L for j = d+ v.

An example of this representation is depicted in Figure 2.
Now put n = d + |B| + 1. It is easy to see that ϕ is an embedding of B to

On: levels d to d+ |B| code the linear extensions given by ≤B while earlier levels
code all downsets. Every pair of vertices u ≤B v which are not comparable by
E have downsets witnessing this which makes sure that their images are also not
comparable by �.

Let ϕ′ be an embedding of A → Ok for some k > 0 constructed the same way
as above.
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Claim 5.4. For every Ã ∈
(
B
A

)
there exists a k-parameter word W ∈ [Σ]

∗(n
k

)
such

that W (ϕ′(A)) = ϕ(Ã).

Let f0, f1, . . . , fd−1 be the enumeration of functions representing downsets of
B in the lexicographic order (with respect to ≤B) and f ′1, f

′
2, . . . , f

′
d′−1 be the

enumeration of functions representing downsets of Ã also ordered lexicographically.
Let h : {0, 1, . . . , d− 1} → {0, 1, . . . , d′ − 1} be the mapping such that fi restricted

to Ã is f ′h(i). Observe that every downset f of Ã can be extended to a downset of

f ′ and thus h is well defined and surjective.

Let θ be the embedding A→ Ã. We now define a string W of length d+max(Ã)
as follows:

Wj =


λh(j) for every 0 ≤ j < d,

λd′+θ−1(j−d) for every d ≤ j < |B|+ 1 such that j − d ∈ Ã,
R for every d ≤ j < |B|+ 1 such that j − d /∈ Ã.

Next we verify that W is a k-parameter word. For this we need to find for every f ′j
its lexicographically minimal extension fj′ and verify that the lexicographic order
is preserved. Given f ′j , we construct function f : B→ {L,X,R} by putting:

f(v) =


f ′j(v) if v ∈ Ã,

X if v /∈ Ã and there exists u ∈ Ã, f ′j(u) = X and u EB v,

L otherwise.

Observe that there is j′ such that f = fj′ and that fj′ is lexicographically
minimal among all functions f` which represent a downset of B such that h(f`) = f ′j .
This is due to fact that we put f(v) = X only when this was forced by a “witness”

u ∈ Ã for which f ′j(u) = X, and thus the value of v is X in every extension
of f ′j which represents a downset. To see that this construction preserves the
lexicographic order, it remains to observe that since u EB v, we also have u ≤B v
and thus while constructing the lexicographic order of extensions, f(u) will take a
precedence over f(v).

Note that at this moment we make use of the fact that our representation uses
downsets rather than all Katětov functions which would seem as more direct analogy
of the proof of Theorem 5.1.

We thus conclude that W is indeed a parameter word. This finishes the proof of
the claim.

Now let N = N(0, n, k, r) be given by Theorem 2.2. We claim that ON −→
(B)Ar,1. Consider an r-colouring of ON . Observe that for every W ∈ [Σ]

∗(N
k

)
we

get a unique copy of A in ON given by W (ϕ′(A)). We thus obtain an r-colouring

of [Σ]
∗(N
k

)
and by application of Theorem 2.2 a word W̃ ∈ [Σ]

∗(N
n

)
for which this

colouring is constant. The monochromatic copy of B is now given by W̃ (ϕ(B)). �

6. Applications

In this section we briefly discuss some examples of structures where finiteness of
big Ramsey degrees follows as a direct consequence of Theorems 1.1 and 4.8. This
includes some already known examples (linear orders, graphs, triangle-free graphs,
ultrametric spaces) as well and a new example (S-metric spaces).

For each of the examples we will construct an interpretation in the universal
homogeneous partial order P (or its fixed linear extension) which has the property

that vertices of this interpretation are formed by
(
P
V

)
for some finite poset V.

By obtaining a common representation of these structures within partial orders we
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also show that free superpositions of such structures have finite big Ramsey degrees,
thereby giving a partial answer to a question asked by Zucker during the 2018 BIRS
workshop “Unifying Themes in Ramsey Theory.”

We stress that the representations here generally only lead to very generous
upper bounds on big Ramsey degrees.

6.1. Triangle-free graphs. It may be a bit of a surprise that Theorem 1.1 implies
Theorem 1.2 in a particularly easy way. Given a homogeneous partial order P, we
denote by GP the following graph:

(1) Vertices of GP are all triples of distinct vertices (u0, u1, u2) of P such that
u0 <P u2, while (u0, u1) and (u1, u2) are incomparable in P.

(2) Vertices (u0, u1, u2) and (v0, v1, v2) form an edge of GP if and only if u0 <P

v1 <P u2, v0 <P u1 <P v2 and all other pairs (ui, vj), i, j ∈ {0, 1, 2}, are
incomparable in P.

By transitivity, GP is triangle-free: if both {(u0, u1, u2), (v0, v1, v2)} and {(v0, v1, v2),
(w0, w1, w2)} are edges of GP then we have u0 ≤P w2 which implies that {(u0, u1,
u2), (w0, w1, w2)} is a non-edge.

It is not hard to check that there is an embedding ϕ form the homogeneous
universal triangle free graph H to GP. Recall that the vertex set of H is ω and
construct the embedding ϕ inductively. For each vertex i ∈ ω assume that ϕ(i′) is
constructed for every i′ < i and apply the extension property of P to obtain three
disjoint vertices i0, i1, i2 ∈ P , such (i0, i1, i2) is a vertex of GP, adn for every j ≤ i
vertices ϕ(j) = (j0, j1, j2) are disjoint from (i0, i1, i2) and the following is satisfied:

(1) If i, j forms an edge of H put i0 ≤P j1 ≤P i2 and j0,≤P i1,≤P j2 so
(i0, i1, i2) and (j0, j1, j2) forms an edge of GP.

(2) If i, j does not form an edge of H put i0 ≤P j2 and j0 ≤P i2 while keeping
all other pairs (ik, j

′
k), k ∈ {0, 1, 2} incomparable in P.

To finish the proof of Theorem 1.2, assume that we are given a finite colouring of(
H
A

)
for some finite triangle-free graph A. Since H is universal, it contains a copy

of GP and hence it induces a colouring of
(
GP

A

)
. This can be turned into a finite

colouring of substructures of P on at most 3|A| vertices and hence, by Theorem 1.1,
there is a copy of P with at most a bounded number of colours. This corresponds
to a copy of GP in GP with at most a bounded number of colours and the rest
follows by universality of GP.

6.2. Urysohn S-metric spaces. Let S be a set of non-negative reals such that
0 ∈ S. A metric space M = (M,d) is an S-metric space if for every u, v ∈ M it
holds that d(u, v) ∈ S. We call a countable S-metric space M a Urysohn S-metric
space if it is homogeneous (that is, every isometry of its finite subspaces extends to
a bijective isometry from M to M) and every countable S-metric space embeds to
it. In the following we will see S-metric spaces as relational structures in a language
with a binary relation R` for every ` ∈ S \ {0}.

Finite set of non-negative reals S = {0 = s0 < s1 < · · · < sn} is tight if if
si+j ≤ si + sj for all 0 ≤ i ≤ j ≤ i + j ≤ n (see [Maš18]). It follows from
a classification by Sauer [Sau13] that for every such S there exists an Urysohn
S-metric space.

Mašulović in [Maš18, Theorem 4.4] shows a way to represent all S-metric cases
with finitely many distances (for every tight set S) as a partial order. Using this
construction we obtain:

Corollary 6.1. Let S be a finite tight set of non-negative reals. Then the Urysohn
S-metric space has finite big Ramsey degrees.
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We will show a special case of Corollary 6.1 where S = {0, 1, . . . , d}. For other
tight sets we refer the reader to [Maš18, Theorem 4.4].

Proof (sketch). Fix d and S = {0, 1, . . . , d}. Construct an S-metric space MS as
follows:

(1) Vertices are chains of vertices of P of length d.
(2) Given two chains u0 ≤P · · · ≤P ud−1 and v0 ≤P · · · ≤P vd−1 their distance

is the minimal ` ∈ {0, 1, . . . d} such that for every i ∈ {0, 1, . . . d−i} it holds
that ui ≤P vi+` and vi ≤P ui+`.

Just as in the case of triangle-free graphs, triangle inequality follows from transitiv-
ity, one can embed the Urysohn S-metric space to MS using an on-line algorithm
and hence Corollary 6.1 follows. �

Note that not all finite sets S for which there exists a Urysohn S-metric space
(these were characterised by Sauer [Sau13]) are tight and thus Corollary 6.1 is not
a complete characterisation.

Just like Theorem 1.1, Corollary 6.1 has a known finite form. Ramsey property
of the class of all finite ordered metric spaces was shown by Nešetřil [Neš07] (see
also [DR12] for graph metric spaces). This result was later generalised to all S-
metric spaces [HN19, HKN19a]. Big Ramsey degrees of vertices for all Urysohn S-
metric spaces with S finite was shown to be one by Sauer [Sau12]. See also [DLPS07,
DLPS08, NVT10] for more background on vertex partition theorems of Urysohn
spaces.

6.3. Ultrametric spaces. Recall that metric space M = (M,d) is an ultrametric
space if the triangle inequality can be strengthened to d(u,w) ≤ max{d(u, v), d(v, w)}.
The Urysohn ultrametric space of diameter d is the universal and homogeneous ul-
trametric space with distances {0, 1, . . . , d}. The following was shown by Nguyen
Van Thé [NVT09] (along with a full characterisation of big Ramsey degrees of
ultrametric spaces):

Theorem 6.2. For every d ≥ 1 the Urysohn ultrametric space of diameter d has
finite big Ramsey degrees.

Proof. We construct ultrametric space Ud as follows:

(1) Vertices of Ud are d-tuples of vertices of P.
(2) The distance between vertices (u0, u1, . . . ud−1) and (v0, v1, . . . , vd−1) is the

minimal ` such that for every 0 ≤ i < d− ` it holds that ui = vi.

Again, it is easy to verify that this is a universal ultrametric space. The finiteness
of big Ramsey degrees now follows by an application of Theorem 1.1. �

Observe that by replacing P by ω above, the same result (with better bounds)
follows by the infinite Ramsey theorem. Note that the construction above can be
strengthened to the Λ-ultrametric spaces for a given finite lattice Λ [Bra17].

6.4. Linear orders. By fixing a linear extension of P one obtains an alternative
proof of the Laver’s result:

Corollary 6.3. The order of rationals has finite big Ramsey degrees.

While this may not be very powerful observation at its own, we will discuss its
consequences in Corollary 6.5. Observe also that P has a natural linear extension
in the form of the lexicographic order.



BIG RAMSEY DEGREES USING PARAMETER SPACES 15

6.5. Structures with unary relations. Another particularly simple consequence
of Theorem 1.1 is:

Corollary 6.4. Let L be a finite language consisting of unary relational symbols.
Then the universal homogeneous L-structure has finite big Ramsey degrees.

Proof. For simplicity assume that L consists of single unary relation R. Then the
universal L-structure can be represented using P as follows:

(1) Vertices are all pairs of distinct vertices of P.
(2) Put vertex (u0, u1) to the relation R if and only if u0 ≤P u1.

�

6.6. Free superpositions. Recall that the age of a structure M is the set of all
finite structures having an embedding to M. Given a language L and its sub-
language L− ⊆ L, an L−-structure M is the L−-reduct of an L-structure N if
M = N and RM = RN for every R ∈ L−.

Let L and L′ be languages such that L ∩ L′ = ∅. Let M be a homogeneous
L-structure and N a homogeneous L′-structure. Then the free superposition of M
and N, denoted by M ∗N, is the homogeneous L∪L′-structure whose age consists
precisely of those finite (L∪L′)-structures with the property that their L-reduct is
in the age of M and L′-reduct is in the age of N (see e.g. [Bod15]).

It follows from the product Ramsey argument that the free interposition of
finitely many Ramsey classes with strong amalgamation property and no algebraic-
ity is also Ramsey [Bod15, Lemma 3.22], see also [HN19, Proposition 4.45]. Similar
general result is not known for big Ramsey structures. However, we can combine
the above observation to the following corollary (of Theorem 4.8) which heads in
this direction by providing means to interpose many of the known structures with
finite big Ramsey degrees:

Corollary 6.5. Let M be a homogeneous structure that is a free superposition of
finitely many copies of structures from the following list (each in a language disjoint
from the others):

(1) the homogeneous universal partial order,
(2) the homogeneous universal triangle-free graph,
(3) the Urysohn S-metric space for a finite thin set S (for S = {0, 1, 2} one

obtains the Rado graph),
(4) the Urysohn ultrametric space of a finite diameter d,
(5) the order of rationals,
(6) the homogeneous universal structure in a finite unary relational language,

then M has finite big Ramsey degrees.

Proof. Let M1,M2, . . . ,Mn be structures from the statement of the corollary, in
mutually disjoint languages L1, L2, . . . , Ln such that for every 1 ≤ i ≤ n it holds
that Mi is Li-structure. Put M = M1 ∗M2 ∗ · · · ∗Mn.

As shown above, for each structure Mi, 1 ≤ i ≤ n, there exists a structure Ni

and an embedding ei : Mi → Ni such that Mi =
(
P
Vi

)
for some finite structure Vi

and Mi is represented using the partial order P (or its linear extension).
Now consider a (L1 ∪ L2 ∪ · · · ∪ Ln)-structure N defined as follows. The vertex

set N of N consists of all n-tuples (~v1, . . . , ~vn) with the property that for every
1 ≤ i ≤ n it holds that ~vi is a vertex of Ni. Denote by πi the i-th projection
(~v1, . . . , ~vn) 7→ ~vi.

Now we define relations of N. For every 1 ≤ i ≤ n, consider structure Ni:

(1) If Ni is a partial order, then the corresponding partial order of N is created
by putting u ≤ v if and only if either u = v or πi(u) 6= πi(v) and πi(u) ≤Ni

πi(v).
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(2) If Ni is homogeneous universal triangle free graph then we put u and v
adjacent if and only if πi(u) is adjacent to πi(v) in Ni.

(3) If Ni is the order of rationals, then the corresponding linear order of N is
any linear order satisfying that πi is a monotone function.

(4) If Ni is an S-metric space, then the corresponding metric space on N is
created by defining a distance of u and v to be 0 if u = v, min(S \ {0}) if
πi(u) = πi(v) and the distance of πi(u) and πi(v) otherwise.

(5) If Ni is an ultrametric space then the corresponding ultrametric space is
created analogously, but by putting the distance to be 1 for every u 6= v,
πi(u) = πi(v).

(6) If Ni is a structure with unary relations, then for every relation R ∈ Li we
put v to RN if and only if πi(v) ∈ R.

We say that substructure A of N is transversal if for every two vertices (u1, u2,
. . . , un), (v1, v2, . . . , vn) ∈ A and every 1 ≤ i ≤ n it holds that ui 6= vi. Observe
that embeddings ei : Mi → Ni, 1 ≤ i ≤ n, can be combined to an embedding
e : M→ N defined by putting e(v) 7→ (e1(v), e2(v), . . . , en(v)), and that the image
e(M) is transversal. One can also verify that for every 1 ≤ i ≤ n it holds that the
age of Ni is the same as the age of the Li-reduct of N . It follows that N and M
have same ages. By universality of M it follows that there is also an embedding
f : N→M.

Fix a finite structure A and a finite coloring χ of
(
M
A

)
. Denote by A the set

of all transversal structures in
(
N
A

)
. Consider a finite coloring χ′ of A defined by

χ′(Ã) = χ(f−1(Ã)). For every 1 ≤ i ≤ n this coloring projects by πi to a finite
coloring of finite substructures of Ni and consequently also of P. This follows from
the fact that vertex set of Nj is

(
P
Nj

)
, for every 1 ≤ j ≤ n and thus preimages of

vertices in projection πi are all finite and isomorphic. By a repeated application of
Theorem 4.8 it follows that N has finite big Ramsey degrees. By the existence of
embedding e the corollary follows. �

Corollary 6.5 has further consequences. Superposing the Rado graph (which
is the Urysohn S-metric space for S = {0, 1, 2}) and the universal homogeneous
structure in language with one unary relation one can obtain that the random
countable bipartite graph has finite big Ramsey degrees. This follows from the fact
that the random countable bipartite graph can be defined in the superposition by
considering only those edges where precisely one of the endpoints is in the unary
relation.

Similarly, superposing the linear order with the universal homogeneous struc-
ture in language with one unary relation it follows that the homogeneous dense
local order has big Ramsey degrees (as shown by Laflamme, Nguyen Van Thé
and Sauer [LNVTS10]). Superposing multiple linear and partial orders leads to
big Ramsey equivalents of results of Sokić [Sok13], Solecki and Zhao [SZ17], and
Draganić and Mašulović [DM19].

7. Concluding remarks

7.1. Bigger forbidden substructures and bigger arities. The method pre-
sented in this paper can be used to strengthen Theorem 1.2 for free amalgamation
classes in finite binary languages defined by finitely many forbidden irreducible
substructures on at most 3 vertices.

For non-binary relations and bigger forbidden irreducible substructures it seems
necessary to refine Theorem 2.1 for colouring multi-dimensional objects rather than
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words in a similar manner as in [BCH+19, BCH+20a]. This seems to further de-
velop the link between constructions in structural Ramsey theory and the extension
property for partial automorphisms [HKN19b].

7.2. Optimality. Big Ramsey degree a vertex in the universal homogeneous tri-
angle-free graph was shown to be one by Komjáth and Rödl [KR86] in 1986. Big
Ramsey degree of an edge is four as shown by Sauer [Sau98] in 1998. Proof of
Theorems 1.1 and 1.2 can be refined to precisely describe the big Ramsey degrees in
a similar way as was as done by Sauer [Sau06] for the random graph and Laflamme,
Sauer and Vuksanovic for free binary structures [LSV06]. This leads to the big
Ramsey structure as defined by Zucker [Zuc19]. This will appear in [BCH+20c].
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