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AVOIDABLE ALGEBRAIC SUBSETS
OF EUCLIDEAN SPACE

JAMES H. SCHMERL

Abstract. Fix an integer n ≥ 1 and consider real n-dimensional Rn. A par-
tition of Rn avoids the polynomial p(x0, x1, . . . , xk−1) ∈ R[x0, x1, . . . , xk−1],
where each xi is an n-tuple of variables, if there is no set of the partition which
contains distinct a0, a1, . . . , ak−1 such that p(a0, a1, . . . , ak−1) = 0. The poly-
nomial is avoidable if some countable partition avoids it. The avoidable poly-
nomials are studied here. The polynomial ‖x− y‖2 −‖y− z‖2 is an especially
interesting example of an avoidable one. We find (1) a countable partition
which avoids every avoidable polynomial over Q, and (2) a characterization of
the avoidable polynomials. An important feature is that both the “master”
partition in (1) and the characterization in (2) depend on the cardinality of R.

0. Introduction

A polynomial p(x0, x1, . . . , xk−1) ∈ R[x0, x1, . . . , xk−1], where R is the ordered
field of reals and n, k < ω, is a (k, n)-ary polynomial if each xi is an n-tuple
of variables. A partition of n-dimensional Euclidean space Rn is said to avoid
the (k, n)-ary polynomial p(x0, x1, . . . , xk−1) if whenever a0, a1, . . . , ak−1 ∈ Rn are
distinct and in the same set of the partition, then p(a0, a1, . . . , ak−1) 6= 0. We
say that the polynomial p(x0, x1, . . . , xk−1) is avoidable if some countable partition
avoids it. A polynomial that is not avoidable is unavoidable.

The question of which (1, n)-ary polynomials are avoidable is easily answered. If
p(x) is (1, n)-ary, then p(x) is avoidable iff p(x) has no zeros. Moreover, if p(x) is
avoidable, then every partition of Rn avoids it. Henceforth, even if it is not made
explicit, the following proviso will be in force: all polynomials considered will be
(k, n)-ary where 1 ≤ n < ω and 2 ≤ k < ω. We will say that a polynomial is
(−, n)-ary if it is (k, n)-ary, where 2 ≤ k < ω.

Consider, as a nontrivial example, the (3, n)-ary polynomial p(x, y, z) =
‖x−y‖2−‖y−z‖2, where ‖w‖ denotes the Euclidean norm of w ∈ Rn. If a, b, c ∈ Rn
are the vertices of an isosceles triangle with apex b, then p(a, b, c) = 0. I proved a
theorem in [16] that implies that p(x, y, z) is avoidable, thereby answering a ques-
tion of Erdős about the avoidability of isosceles triangles. The method of proof of
that theorem will be further exploited here, resulting in a complete characteriza-
tion of avoidable polynomials. The following two theorems concerning polynomials
over the field Q of rationals will be proved. The first of the theorems asserts the
existence of what might be called, adapting terminology of [9], a master partition
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of Rn. The second one refers to the effectiveness of determining whether a given
polynomial is avoidable.

Theorem 0.1. For each n < ω there is a countable partition of Rn which avoids
every avoidable (−, n)-ary polynomial over Q.

Theorem 0.2. The set of unavoidable polynomials over Q is recursively enumer-
able.

A subsetX ⊆ (Rn)k is algebraic ifX is the zero-set of some (k, n)-ary polynomial.
Whether or not a polynomial is avoidable depends only on its zero-set, so the
definition of avoidability can easily be extended to all X ⊆ (Rn)k. However, only
algebraic sets will be considered in this paper.

There is a hitch in each of Theorems 0.1 and 0.2. Even though Theorem 0.2
asserts that the set of unavoidable polynomials over Q is recursively enumerable,
we cannot say exactly what that set is since it depends on the underlying set
theory and, in particular, on the size of the continuum (that is, on |R|, which is
2ℵ0). Similarly, exactly which partition will do the job in Theorem 0.1 depends on
the size of the continuum. In order to clarify the situation, the crucial concepts of
m-avoidability, for m < ω, and ω-avoidability will be needed. In Definition 1.1 we
define what it means for a (k, n)-ary polynomial to be m-avoidable. The notion of
m-avoidability gets stricter as m increases; thus, a polynomial which is (m + 1)-
avoidable is also m-avoidable (see Proposition 1.2). A polynomial is ω-avoidable iff
it is m-avoidable for each m < ω; but also a (k, n)-ary polynomial is ω-avoidable iff
it is (k− 1)-avoidable (see Proposition 1.3). The set of m-unavoidable polynomials
over Q is recursively enumerable; in fact, it is r.e. uniformly in m. Moreover, the
notion of m-avoidable is absolute: whether or not a given polynomial is m-avoidable
is independent of the underlying set theory.

The following three theorems clarify and extend Theorems 0.1 and 0.2.

Theorem 0.3 (Assume 2ℵ0 ≥ ℵm). Every avoidable polynomial is m-avoidable.

Theorem 0.4 (Assume 2ℵ0 ≤ ℵm). Every m-avoidable polynomial is avoidable.
Furthermore, if F ⊆ R is a countable subfield and n < ω, then there is a countable
partition of Rn which avoids every polynomial which is an m-avoidable (−, n)-ary
polynomial over F.

Theorem 0.5. Every ω-avoidable polynomial is avoidable. Furthermore, if F ⊆ R
is a countable subfield and n < ω, then there is a countable partition of Rn which
avoids every polynomial which is an ω-avoidable (−, n)-ary polynomial over F.

Theorems 0.3 and 0.4 immediately imply the following corollary.

Corollary 0.6 (Assume 2ℵ0≤ℵm). A polynomial is avoidable iff it is m-avoidable.

Similarly, the following corollary is a consequence of Theorems 0.3 and 0.5.

Corollary 0.7 (Assume 2ℵ0 ≤ ℵω). A polynomial is avoidable iff it is ω-avoidable.

It is evident that Theorem 0.1 is a consequence of Theorems 0.3–0.5. In fact,
Theorem 0.1 follows from Corollary 0.6 and the second part of Theorem 0.4 if 2ℵ0 >
ℵω, and it follows from Corollary 0.7 and the second part of Theorem 0.5 otherwise.
Once the appropriate definitions are made, it will be evident that Theorems 0.3–0.5
also imply Theorem 0.2.
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1. Definitions and examples

The crucial notions of m-avoidable and ω-avoidable polynomials are defined in
this section.

If F ⊆ R and X ⊆ Rm, then X is F-definable if X is definable by a first-order
formula in the language of ordered fields allowing parameters from F. We say that
X is definable if X is R-definable. A subset X ⊆ Rm is semi-algebraic if it is a finite
Boolean combination of sets of the form {x ∈ Rm : p(x) ≥ 0}, where p(x) is an m-
ary polynomial. By Tarski’s theorem on the elimination of quantifiers, the definable
sets are precisely the semi-algebraic ones. The survey article [17] is recommended
as a source of information on Tarski’s theorem and definable subsets of Rm. The
book [1] is recommended for a more thorough treatment of semi-algebraic sets.

We say that a function α : A0×A1×· · ·×Am−1 → B0×B1×· · ·×Bm−1 is coordi-
nately induced if there are functions α0 : A0 → B0, α1 : A1 → B1, . . . , αm−1 : Am−1

→ Bm−1 such that α(a0, a1, . . . , am−1) = 〈α0(a0), α1(a1), . . . , αm−1(am−1)〉 when-
ever 〈a0, a1, . . . , am−1〉 ∈ A0 × A1 × · · · × Am−1. A function g : Am → B is one-
one in each coordinate if whenever a0, a1, . . . , am−1 ∈ A and ai 6= a′i ∈ A, then
g(a0, a1, . . . , am−1) 6= g(a0, a1, . . . , ai−1, a

′
i, ai+1, . . . , am−1).

Definition 1.1. Let n < ω and 2 ≤ k < ω and suppose p(x0, x1, . . . , xk−1) is a
(k, n)-ary polynomial.

(1) For each m < ω, we say that p(x0, x1, . . . , xk−1) is m-avoidable if for each
definable function g : (0, 1)m → Rn which is one-one in each coordinate and for
distinct e0, e1, . . . , ek−1∈(0, 1)m, there is a coordinately induced α : (0, 1)m →
(0, 1)m such that p(gα(e0), gα(e1), . . . , gα(ek−1)) 6= 0.

(2) p(x0, x1, . . . , xk−1) is ω-avoidable if p(x0, x1, . . . , xk−1) is m-avoidable for each
m < ω.

In Definition 1.1(1) it makes sense to consider m = 0: if k ≥ 2, then each
(k, n)-ary polynomial is vacuously 0-avoidable. This case is of no real interest, so
we will tacitly assume that m > 0. Notice that there is some flexibility possible in
Definition 1.1(1). For example, we could use any other open m-box as the domain
of g, and we could take the ei’s to be from Rm (or even Xm for any infinite set
X). Moreover, if it is further required of g that it be analytic, then the notion of
an m-avoidable polynomial remains unchanged. (See the proof of Theorem 0.4 and
Section 2.4. of [1].)

It easily follows from Definition 1.1 and Tarski’s theorem on the decidability of
the theory Th(R,+, ·,≤, 0, 1) (see [17]) that the set of m-unavoidable polynomials
over Q is a recursively enumerable set (uniformly in m). From this it is evident
that Theorems 0.3–0.5 imply Theorem 0.2. I conjecture that the set of m-avoidable
polynomials over Q actually is recursive uniformly in m, thereby implying that a
similar improvement to Theorem 0.2 would hold. This conjecture is discussed in
§3.

The next two propositions state some nearly immediate consequences of Defini-
tion 1.1.

Proposition 1.2. Suppose that r < m < ω. Then every m-avoidable polynomial
is r-avoidable.

Proof. Without loss of generality, we can suppose that m = r + 1 and that
p(x0, x1, . . . , xk−1) is (r + 1)-avoidable. We will show that it is r-avoidable. Let
g : (0, 1)r → Rn be a definable function which is one-one in each coordinate, and
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also let e0, e1, . . . , ek−1 ∈ (0, 1)r be distinct. Now let h : (0, 1)r+1 → Rn be de-
fined so that h(y0, y1, . . . , yr) = g(y0, y1, . . . , yr−2,

1
2 (yr−1 + yr)). Clearly, h is

definable and one-one in each coordinate. For each i < k, let e′i = eiˆ〈12 〉 ∈
(0, 1)r+1, and note that e′0, e

′
1, . . . , e

′
k−1 are distinct. Thus, there is a coordinately

induced β : (0, 1)r+1 → (0, 1)r+1 such that p(hβ(e′0), hβ(e′1), . . . , hβ(e′k−1)) 6= 0.
Let β(y0, y1, . . . , yr) = 〈β0(y0), β1(y1), . . . , βr(yr)〉, and then let α : (0, 1)r → (0, 1)r

be such that

α(y0, y1, . . . , yr−1) = 〈β0(y0), β1(y1), . . . , βr−2(yr−2), 1
2 (βr−1(yr−1) + βr(1

2 ))〉.
Clearly, α is coordinately induced, and gα(ei) = hβ(e′i) for each i < k. Thus,
p(gα(e0), gα(e1), . . . , gα(ek−1)) 6= 0.

Proposition 1.3. Suppose that 2 ≤ k < ω and that p(x0, x1, . . . , xk−1) is a (k, n)-
ary polynomial. Then p(x0, x1, . . . , xk−1) is ω-avoidable iff p(x0, x1, . . . , xk−1) is
(k − 1)-avoidable.

Proof. Suppose that p(x0, x1, . . . , xk−1) is (k − 1)-avoidable and that 2 ≤ k ≤
m < ω. We will show that it is m-avoidable. Let g : (0, 1)m → Rn be a defin-
able function which is one-one in each coordinate. Let e0, e1, . . . , ek−1 ∈ (0, 1)m

be distinct. It is easy to see that there is a set of k − 1 coordinates on which
the ei are distinct. Without loss of generality, assume that these are the first
k − 1 coordinates, and let π : (0, 1)m → (0, 1)k−1 be the projection onto the first
k − 1 coordinates. Let β : (0, 1)k−1 → (0, 1)m be such that β(y0, y1, . . . , yk−2) =
〈y0, y1, . . . , yk−2,

1
2 ,

1
2 , . . . ,

1
2 〉. Since gβ : (0, 1)k−1 → Rn is definable and one-one

in each coordinate, there is a coordinately induced α : (0, 1)k−1 → (0, 1)k−1 such
that p(gβαπ(e0), gβαπ(e1), . . . , gβαπ(ek−1)) 6= 0. But βαπ : (0, 1)m → (0, 1)m is
coordinately induced.

We say that a (k, n)-ary polynomial p(x0, x1, . . . , xk−1) is irreflexive if

p(a, a, . . . , a) 6= 0

for each a ∈ Rn. I proved in [15] that every irreflexive (k, n)-ary polynomial is avoid-
able. Earlier, Komjáth [9] had obtained this result as a consequence of the Con-
tinuum Hypothesis (CH). It is evident that every irreflexive (k, n)-ary polynomial
is ω-avoidable. For, in Definition 1.1(1), no matter what g and e0, e1, . . . , ek−1 are,
just pick any a ∈ (0, 1) and then let α : (0, 1)m → (0, 1)m be the constant function
(a, a, . . . , a). Hence, Theorem 0.5 easily implies that every irreflexive polynomial is
avoidable.

Perhaps the earliest result concerning avoidable polynomials is Cantor’s theorem
that 2ℵ0 > ℵ0. It is evident that Cantor’s theorem can be restated as a property
of the (2, 1)-ary polynomial which is identically 0: this polynomial is unavoidable
iff 2ℵ0 > ℵ0. Notice that this polynomial is not 1-avoidable.

It is easy to see that for every k ≥ 2, each nonzero (k, 1)-ary polynomial is 1-
avoidable. In particular, if r0, r1, . . . , rk−1 ∈ Q are not all 0, then the (k, 1)-ary
polynomial r0x0 + r1x1 + · · · + rk−1xk−1 is 1-avoidable. It had been proved by
Erdős and Kakutani [6], assuming CH, that R can be partitioned into countably
many sets each one of which is linearly independent over Q. In other words, if
CH, then there is a single countable partition of R which avoids each of the nonzero
polynomials r0x0 +r1x1 + · · ·+rk−1xk−1 over Q. This result is an easy consequence
of Theorem 0.4.
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Komjáth [10] proved that for each n there is a countable partition of Rn such that
no two distinct points in the same set of the partition are at a rational distance.
Earlier, Erdős and Komjáth [7] had obtained this result for n = 3, and earlier
still Erdős and Hajnal [4] had obtained it for n = 2. (When n = 1, the result is
trivial.) For each d, where 0 < d ∈ Q, consider the (2, n)-ary polynomial p(x, y) =
‖x − y‖2 − d2. Notice that p(a, b) = 0 just in the case the Euclidean distance
between a and b is d. The Erdős-Komjáth result can be restated as follows: for
each n there is a countable partition of Rn which avoids each (2, n)-ary polynomial
‖x− y‖2 = d2 where 0 < d ∈ Q. Of course, each such polynomial is irreflexive and
consequently ω-avoidable.

It is easy to see that the (3, n)-ary polynomial p(x, y, z) = ‖x− y‖2−‖y− z‖2 is
ω-avoidable. By Proposition 1.3, we need only show that it is 2-avoidable. Consider
a definable function g : (0, 1)2 → Rn which is one-one in each coordinate, and also
consider distinct e0, e1, e2 ∈ (0, 1)2. Since e0 6= e2, we can assume without loss of
generality that e00 6= e20, and then we can also assume, without loss of generality,
that e00 6= e10. Then there is a coordinately induced α : (0, 1)2 → (0, 1)2 such
that α(e0) = e0 and α(e1) = α(e2) = e1. Since g is one-one in each coordinate,
there is a coordinately induced β : (0, 1)2 → (0, 1)2 such that β(e0) 6= e1 = β(e1)
and g(β(e0)) 6= g(β(e1)). Then p(gβα(e0), gβα(e1), gβα(e2)) 6= 0, proving that
p(x, y, z) is ω-avoidable.

As mentioned previously, I had proved in [16] that the (3, n)-ary polynomial
‖x− y‖2−‖y− z‖2 is avoidable, thereby showing that isosceles triangles are avoid-
able. This result, which is now seen to follow from Theorem 0.5, improved on
various partial results in [2], [3], [8], [13], [14], [15].

Whether or not a polynomial is avoidable depends only on its zero-set. Similarly,
whether or not a polynomial is m-avoidable depends only on its zero-set. Consider
a set P of (k, n)-ary polynomials. According to the Hilbert Basis Theorem, there is
a finite subset P0 ⊆ P whose zero-set is the zero-set of P , and then there is a single
polynomial p(x0, x1, . . . , xk−1), which can be taken to be the sum of the squares of
polynomials in P , whose zero-set is the same as the zero-set of P . We will say that
P is m-avoidable just in case p(x0, x1, . . . , xk−1) is m-avoidable.

In the next two propositions we give examples of (sets of) polynomials which are
m-avoidable but not (m+ 1)-avoidable.

Proposition 1.4. Suppose 2 ≤ n < ω. For 0 < i < j ≤ n, consider the (n+ 1, n)-
ary polynomial pij(x0, x1, . . . , xn) = ‖xi − x0‖2 + ‖xj − x0‖2 − ‖xi − xj‖2, and let
P = {pij(x0, x1, . . . , xn) : 0 < i < j ≤ n}. Then P is (n − 1)-avoidable but not
n-avoidable.

Proof. First, we show that P is not n-avoidable. Let g : (0, 1)n → (0, 1)n be the
identity function. Let 0 < a < b < 1, and then let e0 = (0, 0, . . . , 0) and for
1 ≤ i ≤ n, let ei = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) (which consists of i− 1 0’s followed by
1 and then followed by all 0’s). Notice that if 0 < i < j ≤ n, then e0, ei, ej are the
vertices of a right triangle with right angle at e0. If α : Rn → Rn is coordinately
induced, then α(e0), α(ei), α(ej) still are the vertices of a (possibly degenerate)
right triangle with right angle at α(e0), so pij(α(e0), α(ei), α(ej)) = 0. This shows
that P is not n-avoidable.

To prove that P is (n − 1)-avoidable, let g : (0, 1)n−1 → Rn be a definable
function which is one-one in each coordinate. Let e0, e1, . . . , en ∈ (0, 1)n−1 be
distinct. Whenever 1 ≤ i ≤ n, there is k < n − 1 such that eik 6= e0k. Therefore,
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there are i, j, k such that 1 ≤ i < j ≤ n, k < n − 1 and eik 6= e0k 6= ejk. Then
there is a coordinately induced α : (0, 1)n−1 → (0, 1)n−1 such that α(ei) = α(ej)
and (α(ej))r = (α(e0))r iff r 6= k. Hence, gα(ei) = gα(ej) 6= gα(e0), so clearly
pij(gα(e0), gα(ei), gα(ej)) 6= 0.

The zero-set of P in Proposition 1.4 has a clear geometric interpretation. For a
given n ≥ 2, if 〈a0, a1, . . . , an〉 ∈ Rn+1, then 〈a0, a1, . . . , an〉 is in the zero-set of P
iff a0, a1, . . . , an are the vertices of a (possibly degenerate) right simplex with all
angles at a0 being right angles. Erdős and Komjáth [7] proved that CH is equivalent
to the avoidability of the (3, 2)-ary polynomial ‖x− y‖2 + ‖z − y‖2 − ‖x− z‖2.

The polynomials in the proof of the next proposition were used by Komjáth [11]
for a purpose similar to the one we are using them for.

Proposition 1.5. For each n < ω there is an (n + 1)-avoidable, but not (n + 2)-
avoidable, set of (2n+2, 1)-ary linear polynomials.

Proof. Let n < ω, and for each f : n + 2 → 2 let xf be a variable. For functions
f, h, p, q : n+ 2→ 2 and r < n+ 2, where

f(i) = h(i) and p(i) = q(i), if i 6= r,

and

f(r) = p(r) = 0 and h(r) = q(r) = 1,

consider the (2n+2, 1)-ary polynomial xf −xh−xp+xq. Let P be the set of all such
polynomials. We will show that P is (n+ 1)-avoidable but not (n+ 2)-avoidable.

To see that P is not (n+ 2)-avoidable, let g : Rn+2 → R be defined by

g(y0, y1, . . . , yn+1) = y0 + y1 + · · ·+ yn+1.

Clearly, g is definable and one-one in each coordinate. For f : n + 2 → 2, let
ef = 〈f(0), f(1), . . . , f(n + 1)〉, and let α : (0, 1)n+2 → (0, 1)n+2 be coordinately
induced. Consider a polynomial xf − xh − xp + xq in P , where f(r) = p(r) = 0
and h(r) = q(r) = 1. Since, for i 6= r, (ef )i = f(i) = h(i) = (eh)i and (ep)i =
p(i) = q(i) = (eq)i, it follows that (α(ef ))i = αi((ef )i) = αi((eh)i) = (α(eh))i and
(α(ep))i = αi((ep)i) = αi((eq)i) = (α(eq))i. Therefore,

gα(ef )− gα(eh)− gα(ep) + gα(eq)

= (α(ef ))r − (α(eh))r − (α(ep))r + (α(eq))r
= αr(0)− αr(1)− αr(0)− αr(1) = 0.

This proves P is not (n+ 2)-avoidable.
To see that P is (n + 1)-avoidable, let g : (0, 1)n+1 → R be a definable function

which is one-one in each coordinate, and let ef ∈ (0, 1)n+1, for f : n + 2 → 2, be
distinct. There is j < n + 1 such that |{(ef )j : f : n + 2 → 2}| ≥ 3, and then for
that j there is some a ∈ (0, 1) such that 1 ≤ |{f : (ef )j = a, f : n + 2 → 2}| <
2n+1. Then, there are r < n + 2 and f, h such that f(i) = h(i), when i 6= r,
and f(r) = 0 and h(r) = 1, and for just one of these functions (say f) it is the
case that (ef )r = a. Then there are also p, q such that (ep)r 6= a 6= (eq)r and
p(i) = q(i), when i 6= r, and p(r) = 0 and q(r) = 1. Clearly, there is a coordinately
induced α : (0, 1)n+1 → (0, 1)n+1 such that α(ef ) 6= α(eh) = α(ep) = α(eq), and
αi(ef ) = αi(eh) for i 6= r. Then gα(ef ) − gα(eh) − gα(ep) + gα(eq) 6= 0 since
qα(ef ) 6= gα(eh) = gα(ep) = gα(eq). This proves P is (n+ 1)-avoidable.
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In both Propositions 1.4 and 1.5, when proving P was m-avoidable, we made no
use of the fact that g was definable. I conjecture that the omission of this condition
on g in Definition 1.1 would not have any affect on the notion of m-avoidability.
See §3 for more on this conjecture.

2. Characterizing avoidability

In this section Theorems 0.3, 0.4 and 0.5 will be proved. As previously noted,
Theorems 0.1 and 0.2 are consequences of these theorems.

For the proof of Theorem 0.3, we need a special case of the polarized partition
theorem of Erdős and Hajnal. Although this theorem is not explicitly stated in the
comprehensive book [5], similar results can be found there. A proof can be found
in [11]. However, for the sake of completeness, the short proof of this result will
be given here. We state it first, in the conventional way, as Lemma 2.1, and then
restate it as Corollary 2.2 in an equivalent way but one which is better suited for
our purposes.

Lemma 2.1. Suppose k,m < ω, |A| ≥ ℵm, and F : Am → ω. Then there are
B0, B1, . . . , Bm−1 ⊆ A such that |B0| = |B1| = · · · = |Bm−1| = k and F is constant
on B0 ×B1 × · · · ×Bm−1.

Proof. The proof is by induction on m. When m = 0, the lemma is vacuously true,
and when m = 1, it is trivial. Assume that m ≥ 1 and that the lemma is true for m.
Let F = Am+1 → ω, where |A| ≥ ℵm+1. Let A0 ⊆ A be such that |A0| = ℵm. By
the inductive hypothesis, for each a ∈ A there is a cube B0×B1×· · ·×Bm−1 ⊆ Am0 ,
where |B0| = |B1| = · · · = |Bm−1| = k, and there is c < ω such that F has the
constant value c on B0×B1×· · ·×Bm−1×{a}. Since |A| > ℵm, there is Bm ⊆ A0

such that |Bm| = k and there are c < ω and a cube B0 × B1 × · · · × Bm−1 ⊆ Am0
such that F has the constant value c on B0×B1×· · ·×Bm−1×{a} for each a ∈ Bm.
Then F is constant on B0 ×B1 × · · · ×Bm.

Corollary 2.2. Suppose k,m < ω, and |A0|, |A1|, . . . , |Am−1| ≥ ℵm. Let F : A0 ×
A1 × · · · ×Am−1 → ω and e0, e1, . . . , ek−1 ∈ A0 ×A1 × · · · ×Am−1. Then there is
a coordinately induced injection α : A0×A1 × · · · ×Am−1 → A0 ×A1 × · · · ×Am−1

such that Fα(e0) = Fα(e1) = · · · = Fα(ek−1).

Proof of Theorem 0.3. Let p(x0, x1, . . . , xk−1) ∈ R[x0, x1, . . . , xk−1] be an avoid-
able (k, n)-ary polynomial, and let χ : Rn → ω be a countable partition which
avoids it. With the intent of proving p(x0, x1, . . . , xk−1) is m-avoidable, consider
a definable function g : (0, 1)m → Rn which is one-one in each coordinate. Also,
consider distinct e0, e1, . . . , ek−1 ∈ (0, 1)m. Then χg : (0, 1)m → ω is a partition.

Let F ⊆ R be a countable subfield such that g is F-definable. Let B ⊆ (0, 1) be a
transcendence basis for R over F, and let B = B0 ∪B1 ∪ · · · ∪Bm−1 be a partition
of B such that |B0| = |B1| = · · · = |Bm−1| = 2ℵ0 ≥ ℵm. By Corollary 2.2, there
is a coordinately induced injection α : (0, 1)m → B0 × B1 × · · · × Bm−1 such that
χgα(e0) = χgα(e1) = · · · = χgα(ek−1).

We next prove that gα : (0, 1)m → Rn is one-one. Let α0, α1, . . . , αm−1 : (0, 1)→
B be such that α(x0, x1, . . . , xm−1) = 〈α0(x0), α1(x1), . . . , αm−1(xm−1)〉 for each
〈x0, x1, . . . , xm−1〉 ∈ (0, 1)m. Now suppose that

gα(x0, x1, . . . , xm−1) = gα(y0, y1, . . . , ym−1),
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and, say, x0 6= y0. Clearly, each αi is one-one, so α0(x0) 6= α0(y0). Then

g(α0(x0), α1(x1), . . . , αm−1(xm−1)) = g(α0(y0), α1(y1), . . . , αm−1(ym−1)).

Since g is one-one in each coordinate, α0(x0) is the unique b ∈ (0, 1) such that
g(b, α1(x1), . . . , αm−1(xm−1)) = g(α0(y0), α1(y1), . . . , αm−1(ym−1)), and therefore
α0(x0) is (F∪{α1(x1), α2(x2), . . . , αm−1(xm−1), α0(y0), α1(y1), . . . , αm−1(ym−1)})-
definable. But α0(x0) 6∈ {α1(x1), α2(x2), . . . , αm−1(xm−1), α0(y0), α1(y1), . . . ,
αm−1(ym−1)}, which is a contradiction. Thus, gα is one-one.

It follows that the coordinates gα(e0), gα(e1), . . . , gα(ek−1) are distinct. Since
χ avoids p(x0, x1, . . . , xk−1), it must be that p(gα(e0), gα(e1), . . . , gα(ek−1)) 6= 0.
Thus, p(x0, x1, . . . , xk−1) is m-avoidable.

For the proof of Theorem 0.4 we will need a simple combinatorial lemma whose
use was suggested by Komjáth [12] for a similar purpose. The set of finite subsets
of X is denoted by [X ]<ω. If (X,<) is a linearly ordered set and a ∈ [X ]<ω, then
ai is the ith element of a in the given order.

Lemma 2.3. Suppose m < ω and (X,<) is a linearly ordered set such that |X | ≤
ℵm. Then there are functions G : [X ]<ω → ω and H : [X ]<ω → [X ]<ω such that,
whenever a, b ∈ [X ]<ω, the following hold:

(1) H(a) ⊆ a and |H(a)| = min(|a|,m);
(2) if G(a) = G(b) and H(a) = H(b), then a = b;
(3) if G(a) = G(b), then |a| = |b| and for each i < |H(a)|, ai ∈ H(a) iff bi ∈ H(b).

Proof. We first show how to get G and H satisfying just (1) and (2). Without loss
of generality we assume that X = ωm. (Keep in mind that for now only (1) and (2)
are being considered, so the ordering on X plays no role.) We will denote by gm
and hm the functions G and H for this m. For m = 0, just let g0 be any injection
and, of course, h0 is the function which is constantly ∅. Now suppose we have gm
and hm, and we want gm+1 and hm+1. For each α < ωm+1, let Fα : α → ωm be a
one-one function. Consider a ∈ [ωm]<ω. If a = ∅, let gm+1(a) = 0 and hm+1 = ∅.
Supposing a 6= ∅, let α = max a. Then let

hm+1(a) = {α} ∪ F−1
α (hm(Fα[a\{α}])),

and

gm+1(a) = gm(Fα[a\{α}]).
It is easy to see that these functions work.

Having G and H satisfying (1) and (2), we will modify G so that in addition
(3) is satisfied. We now are considering (X,<) as a linearly ordered set. Let
π : ω × [ω]<ω × [ω]<ω → ω be an injection. Let F : [X ]<ω → [ω]<ω be such that
for a ∈ [X ]<ω, i ∈ F (a) iff ai ∈ H(a). Now replace G with the function a 7→
〈G(a), |H(a)|, F (a)〉. It is easy to see that H and this new G satisfy (1)–(3).

We will need another lemma which is a very slight modification of Lemma 7 in
[16]. Since the proof is essentially unchanged from [16], we omit it here.

Lemma 2.4. Let F ⊆ R be a subfield and T a transcendence basis for R over F. Let
D = (q0, r0)×(q1, r1)×· · ·×(qk−1, rk−1) ⊆ Rk be an F-definable open k-box, and let
h : D → R be an F-definable analytic function. Suppose that (t0, t1, . . . , tk−1) ∈ T k∩
D is such that h(t0, t1, . . . , tk−1) = 0. Further, suppose β : {t0, t1, . . . , tk−1} → R is
such that qi < β(ti) < ri for each i < k. Then h(β(t0), β(t1), . . . , β(tk−1)) = 0.



AVOIDABLE ALGEBRAIC SUBSETS OF EUCLIDEAN SPACE 2487

Proof of Theorem 0.4. Let G : [R]<ω → ω and H : [R]<ω → [R]<ω be as in Lemma
2.3, where we let X = R with the usual ordering on R.

We can assume that F is a real-closed subfield of R (which is equivalent to its
being relatively algebraically closed in R). Let T be a transcendence basis for R
over F. Following [16], for each a = 〈a0, a1, . . . , an−1〉 ∈ Rn, we define the support
of a, and denote it by supp(a), to be the unique smallest subset of T such that
{a0, a1, . . . , an−1} is (F ∪ supp(a))-definable. Equivalently, supp(a) is the smallest
subset of T such that {a} is (F ∪ supp(a))-definable.

We next define a countable partition of Rn. Actually, we will define a function
χ on Rn having a countable range, and then identify χ with the countable parti-
tion of Rn which it induces. Let a = 〈a0, a1, . . . , an−1〉 ∈ Rn, and let supp(a) =
{t0, t1, . . . , ts−1}, where t0 < t1 < · · · < ts−1. Let q0, q1, . . . , qs−1, r0, r1, . . . , rs−1 ∈
Q be such that

q0 < t0 < r0 < q1 < t1 < r1 < · · · < qs−1 < ts−1 < rs−1

and (as in [16]) such that there is an F-definable, analytic function f : (q0, r0) ×
(q1, r1) × · · · × (qs−1, rs−1) → Rn which is one-one in each coordinate and is such
that f(t0, t1, . . . , ts−1) = a.

We briefly indicate how such a function f is obtained. For each i < n, let
pi(y0, y1, . . . , ys−1, x) ∈ F[y0, y1, . . . , ys−1, x] be a polynomial such that ai is a sim-
ple root of the polynomial pi(t0, t1, . . . , ts−1, x) in F(t0, t1, . . . , ts−1)[x]. By the
Implicit Function Theorem there is an analytic function fi : Ui → Vi for some open
neighborhoods Ui of 〈t0, t1, . . . , ts−1〉 and Vi of ai such that if 〈y0, y1, . . . , ys−1〉 ∈ Ui
and x ∈ Vi, then fi(y0, y1, . . . , ys−1) = x iff pi(y0, y1, . . . , ys−1, x) = 0. We arrange
that U0 = U1 = · · · = Un−1 = (q0, r0)× (q1, r1)× · · · × (qs−1, rs−1) for some appro-
priate q0, q1, . . . , qs−1, r0, r1, . . . , rs−1 ∈ Q and that each Vi is Q-definable. Hence,
each fi is F-definable. We can also arrange that fi is one-one in the jth coordinate
for those j < s for which tj ∈ supp(ai). Now let f = 〈f0, f1, . . . , fn−1〉. Clearly, f
is as required. Let D be the domain of f .

To complete the definition of χ, let χ(a) = 〈f,G({t0, t1, . . . , ts−1}), N〉, where
H({t0, t1, . . . , ts−1}) = {tj : j ∈ N}. Clearly, χ has a countable range.

We now consider a (k, n)-ary polynomial p(x0, x1, . . . , xk−1) ∈ F[x0, x1, . . . , xk−1]
which is not avoided by χ. We will show that p(x0, x1, . . . , xk−1) is not m-avoidable.
Let a0, a1, . . . , ak−1 ∈ Rn be distinct such that p(a0, a1, . . . , ak−1) = 0 and χ(a0) =
χ(a1) = · · · = χ(ak−1) = 〈f, d,N〉. Let N = {j0, j1, . . . , jv−1}, where j0 < j1 <
· · · < jv−1 < s and v = min(s,m). Let (q0, r0) × (q1, r1) × · · · × (qs−1, rs−1)
be the domain of f . For each i < k, let supp(ai) = {ti,0, ti,1, . . . , ti,s−1}, where
ti,j ∈ (qj , rj). (Since k ≥ 2, it must be that s ≥ 1.) Therefore, by conditions
(1)–(4) of Lemma 2.3, G({ti,0, ti,1, . . . , ti,s−1}) = d and H({ti,0, ti,1, . . . , ti,s−1}) =
{ti,j : j ∈ N}.

It was remarked after Definition 1.1(1) that the open cube (0, 1)m that occurs
in that definition could be replaced by any other open m-box. For this proof, we
will use the open v-box B = (qj0 , rj0 ) × (qj1 , rj1) × · · · × (qjv−1 , rjv−1 ). Thus, we
will show that p(x0, x1, . . . , xk−1) is not v-avoidable; but then Proposition 1.2 will
imply that it is not m-avoidable.

Let g : B → Rn be defined by g(x0, x1, . . . , xv−1) = f(y0, y1, . . . , ys−1), where

yj =

{
xi if j = ji,

t0j if j 6∈ N.
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For each i < k, let ei = 〈tij0 , tij1 , . . . , tijv−1〉 ∈ B. By Lemma 2.3, the ei’s
are distinct. We need to show that for each coordinately induced α : B → B,
p(gα(e0), gα(e1), . . . , gα(ek−1)) = 0.

Consider an arbitrary coordinately induced α : B → B, where α(x0, x1, . . . , xv−1)
= 〈α0(x0), α1(x1), . . . , αv−1(xv−1)〉. Let β : D → D be the coordinately induced
function where β(y0, y1, . . . , ys−1) = 〈β0(y0), β1(y1), . . . , βs−1(ys−1)〉 and

βj(yj) =

{
αi(yj) if j = ji,

t0j if j 6∈ N.

Consider the F-definable analytic function h : Dk → R, where
h(y0,0, y0,1, . . . , y0,s−1, . . . , yk−1,0, yk−1,1, . . . , yk−1,s−1)

= p(f(y0,0, y0,1, . . . , y0,s−1), . . . , f(yk−1,0, yk−1,1, . . . , yk−1,s−1)).

Then h(t0,0, t0,1, . . . , t0,s−1, . . . , tk−1,0, tk−1,1, . . . , tk−1,s−1) = p(a0, a1, . . . , as−1) =
0. Then Lemma 2.4 implies that

p(fβ(t0,0, t0,1, . . . , t0,s−1), . . . , fβ(tk−1,0, tk−1,1, . . . , tk−1,s−1)) = 0.

To complete this proof, we see that
p(gα(e0), gα(e1), . . . , gα(ek−1))

= p(g(α0(t0,j0), . . . , αv−1(t0,jv−1)), . . . , g(α0(tk−1,j0), . . . , αv−1(tk−1,jv−1 )))

= p(g(βj0(t0,j0), . . . , βjv−1(t0,jv−1 )), . . . , g(βj0(tk−1,j0), . . . , βjv−1 (tk−1,jv−1 )))

= p(f(β0(t0,0), . . . , βs−1(t0,s−1)), . . . , f(β0(tk−1,0), . . . , βs−1(tk−1,s−1)))

= p(fβ(t0,0, . . . , t0,s−1), . . . , fβ(tk−1,0, . . . , tk−1,s−1)) = 0.

Proof of Theorem 0.5. This is just like the proof of Theorem 0.4, only easier because
we do not need Lemma 2.3. Proceed as in the proof of Theorem 0.4, but now define
the partition so that χ(a) = f .

3. A conjecture

A consequence of a proof of the conjecture presented in this section would be
an improvement to Theorem 0.2. We would then have that the set of avoidable
polynomials over Q is recursive.

Definition 3.1. Let κ be a cardinal number (either finite or infinite) and let
k, n,m < ω. Then the (k, n)-ary polynomial p(x0, x1, . . . , xk−1) over R is (κ,m)-
irreflexive if, whenever |X | ≥ κ, g : Xm → Rn is one-one in each coordinate and
e0, e1, . . . , ek−1 ∈ ωm are distinct, then there is a coordinately induced α : ωm →
Xm such that p(gα(e0), gα(e1), . . . , gα(ek−1)) 6= 0.

Some simple consequences of this definition are contained in the next proposition.

Proposition 3.2. (1) If λ < κ, then each (λ,m)-irreflexive polynomial is (κ,m)-
irreflexive.

(2) A polynomial is irreflexive iff it is (1,m)-irreflexive iff it is (1, 1)-irreflexive.
(3) If r < m, then each (κ,m)-irreflexive polynomial is (κ, r)-irreflexive.
(4) Every polynomial is ((2ℵ0)+,m)-irreflexive.
(5) No polynomial is (0,m)-irreflexive.
(6) Every (2ℵ0 ,m)-irreflexive polynomial is m-avoidable.

The conjecture is stronger than the converse of Proposition 3.2(6).
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Conjecture 3.3. For each (k, n)-ary polynomial p(x0, x1, . . . , xk−1) there exists
N < ω such that if p(x0, x1, . . . , xk−1) is m-avoidable, then it is (N,m)-irreflexive.

It would follow from Conjecture 3.3, by the decidability of Th(R,+, ·,≤, 0, 1),
that the set of m-avoidable polynomials is recursively enumerable (uniformly in
m). Thus, irrespective of the cardinality of the continuum, it would follow from
Corollaries 0.6 and 0.7 and Proposition 1.3 that the set of avoidable polynomials
over Q is recursive. It would also follow that the requirement in Definition 1.1(1)
that g be definable could be dropped.
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