TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 352, Number 6, Pages 2479-2489

S 0002-9947(99)02331-4

Article electronically published on July 9, 1999

AVOIDABLE ALGEBRAIC SUBSETS
OF EUCLIDEAN SPACE
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ABSTRACT. Fix an integer n > 1 and consider real n-dimensional R™. A par-
tition of R™ avoids the polynomial p(zo,z1,...,2k—1) € Rlzo,z1,...,Tk—-1],
where each x; is an n-tuple of variables, if there is no set of the partition which
contains distinct ag, a1, ..., ax—1 such that p(ag,a1,...,ar—1) = 0. The poly-
nomial is avoidable if some countable partition avoids it. The avoidable poly-
nomials are studied here. The polynomial ||z — y||? — ||y — 2||? is an especially
interesting example of an avoidable one. We find (1) a countable partition
which avoids every avoidable polynomial over @, and (2) a characterization of
the avoidable polynomials. An important feature is that both the “master”
partition in (1) and the characterization in (2) depend on the cardinality of R.

0. INTRODUCTION

A polynomial p(zg, z1,...,zk-1) € Rlzo,21,...,2k_1], where R is the ordered
field of reals and n,k < w, is a (k,n)-ary polynomial if each z; is an n-tuple
of variables. A partition of n-dimensional Euclidean space R™ is said to avoid

the (k,n)-ary polynomial p(zg,x1,...,2x—1) if whenever ag,as,...,a;_1 € R™ are
distinct and in the same set of the partition, then p(ag,as,...,ax—1) # 0. We
say that the polynomial p(xg,x1,...,2x—1) is avoidable if some countable partition

avoids it. A polynomial that is not avoidable is unavoidable.

The question of which (1, n)-ary polynomials are avoidable is easily answered. If
p(z) is (1,n)-ary, then p(z) is avoidable iff p(x) has no zeros. Moreover, if p(x) is
avoidable, then every partition of R™ avoids it. Henceforth, even if it is not made
explicit, the following proviso will be in force: all polynomials considered will be
(k,n)-ary where 1 < n < w and 2 < k < w. We will say that a polynomial is
(—,n)-ary if it is (k,n)-ary, where 2 < k < w.

Consider, as a nontrivial example, the (3,n)-ary polynomial p(z,y,z) =
|z —yl|?>—|ly—2||?, where ||w|| denotes the Euclidean norm of w € R™. If a,b,c € R"
are the vertices of an isosceles triangle with apex b, then p(a,b,c) = 0. I proved a
theorem in [16] that implies that p(x,y, z) is avoidable, thereby answering a ques-
tion of Erdés about the avoidability of isosceles triangles. The method of proof of
that theorem will be further exploited here, resulting in a complete characteriza-
tion of avoidable polynomials. The following two theorems concerning polynomials
over the field Q of rationals will be proved. The first of the theorems asserts the
existence of what might be called, adapting terminology of [9], a master partition
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of R™. The second one refers to the effectiveness of determining whether a given
polynomial is avoidable.

Theorem 0.1. For each n < w there is a countable partition of R™ which avoids
every avoidable (—,n)-ary polynomial over Q.

Theorem 0.2. The set of unavoidable polynomials over Q is recursively enumer-
able.

A subset X C (R™)* is algebraic if X is the zero-set of some (k, n)-ary polynomial.
Whether or not a polynomial is avoidable depends only on its zero-set, so the
definition of avoidability can easily be extended to all X C (R™)*. However, only
algebraic sets will be considered in this paper.

There is a hitch in each of Theorems [0l and 2. Even though Theorem
asserts that the set of unavoidable polynomials over Q is recursively enumerable,
we cannot say exactly what that set is since it depends on the underlying set
theory and, in particular, on the size of the continuum (that is, on |R|, which is
2%0). Similarly, exactly which partition will do the job in Theorem [T depends on
the size of the continuum. In order to clarify the situation, the crucial concepts of
m-avoidability, for m < w, and w-avoidability will be needed. In Definition [LT] we
define what it means for a (k,n)-ary polynomial to be m-avoidable. The notion of
m-avoidability gets stricter as m increases; thus, a polynomial which is (m + 1)-
avoidable is also m-avoidable (see Proposition[:2). A polynomial is w-avoidable iff
it is m-avoidable for each m < w; but also a (k, n)-ary polynomial is w-avoidable iff
it is (k — 1)-avoidable (see Proposition[[3). The set of m-unavoidable polynomials
over QQ is recursively enumerable; in fact, it is r.e. uniformly in m. Moreover, the
notion of m-avoidable is absolute: whether or not a given polynomial is m-avoidable
is independent of the underlying set theory.

The following three theorems clarify and extend Theorems and

Theorem 0.3 (Assume 2% > R,,). Every avoidable polynomial is m-avoidable.

Theorem 0.4 (Assume 2% < R,,). Bvery m-avoidable polynomial is avoidable.
Furthermore, if F C R is a countable subfield and n < w, then there is a countable
partition of R™ which avoids every polynomial which is an m-avoidable (—,n)-ary
polynomial over .

Theorem 0.5. FEvery w-avoidable polynomial is avoidable. Furthermore, if F C R
is a countable subfield and n < w, then there is a countable partition of R™ which
avoids every polynomial which is an w-avoidable (—,n)-ary polynomial over F.

Theorems [0-3 and [0.4] immediately imply the following corollary.
Corollary 0.6 (Assume 2%° <N,.). A polynomial is avoidable iff it is m-avoidable.
Similarly, the following corollary is a consequence of Theorems and
Corollary 0.7 (Assume 2% < R,,). A polynomial is avoidable iff it is w-avoidable.

It is evident that Theorem [0l is a consequence of Theorems In fact,
Theorem [ITlfollows from Corollary [I.6 and the second part of Theorem if 2% >
N, and it follows from Corollary [I.'1 and the second part of Theorem [0.5] otherwise.
Once the appropriate definitions are made, it will be evident that Theorems
also imply Theorem [0.2.
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1. DEFINITIONS AND EXAMPLES

The crucial notions of m-avoidable and w-avoidable polynomials are defined in
this section.

If FCRand X C R™, then X is F-definable if X is definable by a first-order
formula in the language of ordered fields allowing parameters from F. We say that
X is definable if X is R-definable. A subset X C R™ is semi-algebraic if it is a finite
Boolean combination of sets of the form {z € R™: p(x) > 0}, where p(z) is an m-
ary polynomial. By Tarski’s theorem on the elimination of quantifiers, the definable
sets are precisely the semi-algebraic ones. The survey article [17] is recommended
as a source of information on Tarski’s theorem and definable subsets of R”. The
book [1] is recommended for a more thorough treatment of semi-algebraic sets.

We say that a function ac: Agx Ay XX A1 — BygX By X-++-X By, is coordi-
nately induced if there are functions ag: Ag — Bg,a1: A1 — By, ..., m_1: Am_1
— By,—1 such that a(ag,a1,...,am-1) = {ag(ag),a1(a1),. .., m—1(am-1)) when-
ever (ag,a1,...,am-1) € Ag X A1 X -++ X Ap—1. A function g: A™ — B is one-
one in each coordinate if whenever ag,as,...,am—1 € A and a; # a} € A, then
g(GO; ag, ..., amfl) # g(a07 A1y - vy Ai—1, a{ia i1y e vy amfl)'

Definition 1.1. Let n < w and 2 < k < w and suppose p(xg,Z1,...,Tp—1) IS a
(k,n)-ary polynomial.

(1) For each m < w, we say that p(xg,x1,...,2x_1) is m-avoidable if for each
definable function g: (0,1)™ — R™ which is one-one in each coordinate and for
distinct eq, €1, . .., ex—1 €(0,1)™, there is a coordinately induced «: (0,1)™ —
(0,1)™ such that p(gaeo), ga(e1), -, galex1)) # 0.

(2) p(zo,21,...,Tk—1) is w-avoidable if p(xg,x1, ..., zE_1) is m-avoidable for each
m < w.

In Definition [[I(1) it makes sense to consider m = 0: if &k > 2, then each
(k,n)-ary polynomial is vacuously 0-avoidable. This case is of no real interest, so
we will tacitly assume that m > 0. Notice that there is some flexibility possible in
Definition [[I(1). For example, we could use any other open m-box as the domain
of g, and we could take the e;’s to be from R™ (or even X™ for any infinite set
X). Moreover, if it is further required of g that it be analytic, then the notion of
an m-avoidable polynomial remains unchanged. (See the proof of Theorem and
Section 2.4. of [1].)

It easily follows from Definition [[LI] and Tarski’s theorem on the decidability of
the theory Th(R, +, -, <,0,1) (see [17]) that the set of m-unavoidable polynomials
over Q is a recursively enumerable set (uniformly in m). From this it is evident
that Theorems[L3HIElimply Theorem[L2l T conjecture that the set of m-avoidable
polynomials over Q actually is recursive uniformly in m, thereby implying that a
similar improvement to Theorem would hold. This conjecture is discussed in

3

The next two propositions state some nearly immediate consequences of Defini-

tion 11

Proposition 1.2. Suppose that r < m < w. Then every m-avoidable polynomial
is r-avoidable.

Proof. Without loss of generality, we can suppose that m = r + 1 and that
p(zo,x1,...,Tk—1) is (r + 1)-avoidable. We will show that it is r-avoidable. Let
g: (0,1)" — R™ be a definable function which is one-one in each coordinate, and
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also let eg,e1,...,ex—1 € (0,1)" be distinct. Now let h: (0,1)" Tt — R™ be de-
fined so that h(yo,y1,...,¥) = 9o Y1, Yr—2, 3(Yr—1 + yr)). Clearly, h is
definable and one-one in each coordinate. For each i < k, let e} = ef(%) €
(0,1)"!, and note that ej,e},...,e}_, are distinct. Thus, there is a coordinately
induced 3: (0,1)"*' — (0,1)"! such that p(hB(ep), hB(eh),. .., hB(e)_1)) # 0.
Let 8(yo0, y1,---»¥r) = {Bo(yo), B1(y1), - - ., Br(yr)), and then let a: (0,1)" — (0,1)"
be such that

(Yo, y1, -, Yr—1) = (Bo(W0), B1(y1), - - -, Br—2(yr—2), 2 (Br—1(yr—1) + Br(2))).
Clearly, « is coordinately induced, and ga(e;) = hf(e}) for each i < k. Thus,

p(ga(eo)aga(el)7"'aga(ek—l)) 7é 0. O
Proposition 1.3. Suppose that 2 < k < w and that p(xo,x1,...,25—1) s a (k,n)-
ary polynomial. Then p(xo,x1,...,xp_1) is w-avoidable iff p(xo,x1,...,TK_1) 1

(k — 1)-avoidable.

Proof. Suppose that p(zg,x1,...,25-1) is (k — 1)-avoidable and that 2 < k <
m < w. We will show that it is m-avoidable. Let g: (0,1)™ — R"™ be a defin-
able function which is one-one in each coordinate. Let eg,eq,...,ex—1 € (0,1)™
be distinct. It is easy to see that there is a set of kK — 1 coordinates on which
the e; are distinct. Without loss of generality, assume that these are the first
k — 1 coordinates, and let 7: (0,1)™ — (0,1)*~! be the projection onto the first
k — 1 coordinates. Let 3: (0,1)*~! — (0,1)™ be such that B(yo,y1,---,Yk—2) =
(Yo, Y1, - -+ Yk—2, %, %, R %> Since gB3: (0,1)¥=! — R" is definable and one-one
in each coordinate, there is a coordinately induced a: (0,1)*=1 — (0,1)*~! such
that p(gBarm(co), gBam(er). ..., gBam(er_)) £ 0. But fom: (0,1)™ — (0,1)™ is
coordinately induced. O

We say that a (k,n)-ary polynomial p(zo, z1,...,zk_1) is irreflexive if

p(a‘aav"'aa/)#o

for each a € R™. I proved in [15] that every irreflexive (k, n)-ary polynomial is avoid-
able. Earlier, Komjdth [9] had obtained this result as a consequence of the Con-
tinuum Hypothesis (CH). It is evident that every irreflexive (k,n)-ary polynomial
is w-avoidable. For, in Definition [[.I(1), no matter what g and eq, e, ..., e, are,
just pick any a € (0,1) and then let a: (0,1)™ — (0,1)™ be the constant function
(a,a,...,a). Hence, Theorem Ll easily implies that every irreflexive polynomial is
avoidable.

Perhaps the earliest result concerning avoidable polynomials is Cantor’s theorem
that 2% > Ro. It is evident that Cantor’s theorem can be restated as a property
of the (2, 1)-ary polynomial which is identically 0: this polynomial is unavoidable
iff 2% > Ny. Notice that this polynomial is not 1-avoidable.

It is easy to see that for every k > 2, each nonzero (k,1)-ary polynomial is 1-
avoidable. In particular, if ro,71,...,7x—1 € Q are not all 0, then the (k,1)-ary
polynomial roxg + 7121 + -+ + rx,_1x,_1 is l-avoidable. It had been proved by
Erdés and Kakutani [6], assuming CH, that R can be partitioned into countably
many sets each one of which is linearly independent over Q. In other words, if
CH, then there is a single countable partition of R which avoids each of the nonzero
polynomials rozg+r1x1+- - -+ 7x—125—1 over Q. This result is an easy consequence
of Theorem [0.4]
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Komjath [10] proved that for each n there is a countable partition of R™ such that
no two distinct points in the same set of the partition are at a rational distance.
Earlier, Erd6és and Komjéth [7] had obtained this result for n = 3, and earlier
still Erdés and Hajnal [4] had obtained it for n = 2. (When n = 1, the result is
trivial.) For each d, where 0 < d € Q, consider the (2,n)-ary polynomial p(z,y) =
|z — y||> — d®. Notice that p(a,b) = 0 just in the case the Euclidean distance
between a and b is d. The Erdés-Komjéath result can be restated as follows: for
each n there is a countable partition of R™ which avoids each (2, n)-ary polynomial
|z — y||?> = d* where 0 < d € Q. Of course, each such polynomial is irreflexive and
consequently w-avoidable.

It is easy to see that the (3, n)-ary polynomial p(z,y, z) = ||z —y||*> — ||y — 2||? is
w-avoidable. By Proposition 3] we need only show that it is 2-avoidable. Consider
a definable function g: (0,1)? — R™ which is one-one in each coordinate, and also
consider distinct eq,e1,ea € (0,1)2. Since eg # ea, we can assume without loss of
generality that egy # egg, and then we can also assume, without loss of generality,
that ey # e1p- Then there is a coordinately induced «: (0,1)? — (0,1)? such
that a(eg) = ep and a(e1) = a(ez) = ey. Since g is one-one in each coordinate,
there is a coordinately induced 3: (0,1)2 — (0,1)? such that 8(eq) # e1 = B(e1)
and g(3(e0)) # g(B(e1)). Then plgBa(eo), gBaler), glalez)) # 0, proving that
p(x,y, 2) is w-avoidable.

As mentioned previously, I had proved in [16] that the (3,n)-ary polynomial
|z —y||* = |ly — 2|2 is avoidable, thereby showing that isosceles triangles are avoid-
able. This result, which is now seen to follow from Theorem (.5, improved on
various partial results in [2], [3], [8], [13], [14], [15].

Whether or not a polynomial is avoidable depends only on its zero-set. Similarly,
whether or not a polynomial is m-avoidable depends only on its zero-set. Consider
a set P of (k,n)-ary polynomials. According to the Hilbert Basis Theorem, there is
a finite subset Py C P whose zero-set is the zero-set of P, and then there is a single
polynomial p(zo, 21, ..., Zr—1), which can be taken to be the sum of the squares of
polynomials in P, whose zero-set is the same as the zero-set of P. We will say that
P is m-avoidable just in case p(zg, 1, ..., Tx—1) is m-avoidable.

In the next two propositions we give examples of (sets of) polynomials which are
m-avoidable but not (m + 1)-avoidable.

Proposition 1.4. Suppose 2 <n < w. For 0 < i< j <mn, consider the (n+ 1,n)-
ary polynomial p;j(zo, 21, ..., 2n) = ||zi — xo||* + ||xj — zo||* — || — x;]|?, and let
P = {pij(xo,21,...,2n): 0 < i < j < n}. Then P is (n — 1)-avoidable but not
n-avoidable.

Proof. First, we show that P is not n-avoidable. Let g: (0,1)" — (0,1)" be the
identity function. Let 0 < a < b < 1, and then let ¢g = (0,0,...,0) and for
1<i<n,lete; =(0,0,...,0,1,0,0,...,0) (which consists of ¢ — 1 0’s followed by
1 and then followed by all 0’s). Notice that if 0 < ¢ < j < n, then e, ¢;, ¢; are the
vertices of a right triangle with right angle at eg. If a: R™ — R" is coordinately
induced, then «(eq), a(e;), a(e;) still are the vertices of a (possibly degenerate)
right triangle with right angle at a(eq), so pij(a(eo), a(e;), ale;)) = 0. This shows
that P is not n-avoidable.

To prove that P is (n — 1)-avoidable, let g: (0,1)"! — R™ be a definable
function which is one-one in each coordinate. Let eg,eq,...,e, € (0,1)""1 be
distinct. Whenever 1 < i < n, there is k < n — 1 such that e;; # egr. Therefore,
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there are 4,7,k such that 1 < i < j < m,k <n—1and e # eor # ejr. Then
there is a coordinately induced a: (0,1)"~! — (0,1)""! such that a(e;) = a(e;)
and (a(e;))r = (aleg))r iff » # k. Hence, ga(e;) = ga(e;) # galeg), so clearly
pij(ga(eo)aga(ei)aga(ej)) 7é 0. O

The zero-set of P in Proposition [[[4 has a clear geometric interpretation. For a
given n > 2, if {(ag, a1,...,a,) € R*"! then (ag,a,...,a,) is in the zero-set of P
iff ag,a1,...,a, are the vertices of a (possibly degenerate) right simplex with all
angles at ag being right angles. Erdés and Komjath [7] proved that CH is equivalent
to the avoidability of the (3,2)-ary polynomial ||z — y||* + ||z — y||? — ||z — z||*.

The polynomials in the proof of the next proposition were used by Komjath [11]
for a purpose similar to the one we are using them for.

Proposition 1.5. For each n < w there is an (n + 1)-avoidable, but not (n + 2)-
avoidable, set of (2712,1)-ary linear polynomials.

Proof. Let n < w, and for each f: n+2 — 2 let xy be a variable. For functions
fh,p,g:n+2—2and r <n+ 2, where

f() = hG) and p(i) = q(i), ifi 7.

and
f(r)=p(r)=0 and h(r)=q(r)=1,

consider the (27*2,1)-ary polynomial Ty —xp —Tp+2xq. Let P be the set of all such
polynomials. We will show that P is (n + 1)-avoidable but not (n + 2)-avoidable.
To see that P is not (n + 2)-avoidable, let g: R"*2 — R be defined by

g(y07yla"'7yn+l) :y0+y1+"'+yn+l-

Clearly, g is definable and one-one in each coordinate. For f: n + 2 — 2, let
er = (f(0), f(1),..., f(n + 1)), and let a: (0,1)"*2 — (0,1)"*2 be coordinately
induced. Consider a polynomial ¢ — x, — xp + 24 in P, where f(r) = p(r) =0
and h(r) = g(r) = 1. Since, for i # r, (ef); = f(i) = h(i) = (en); and (ep); =
p(i) = q(i) = (eq)s, it follows that (a(ey))i = ai((ef)i) = ai((en)s) = (a(en)): and
(alep))i = ai((ep)i) = ai((eq)i) = (a(eq)):- Therefore,
galey) — golen) — galep) + galeq)
= (a(eg))r — (a(en))r — (alep))r + (aleg))r
=a,;(0) — a,(1) — a,(0) — a,(1) = 0.

This proves P is not (n + 2)-avoidable.

To see that P is (n + 1)-avoidable, let g: (0,1)"*! — R be a definable function
which is one-one in each coordinate, and let ey € (0,1)"*!, for f:n+2 — 2, be
distinct. There is j < n + 1 such that |[{(ef);: f: n+2 — 2}| > 3, and then for
that j there is some a € (0,1) such that 1 < [{f: (ef); = a,f:n+2 — 2}| <
271 Then, there are 7 < n + 2 and f,h such that f(i) = h(i), when i # r,
and f(r) = 0 and h(r) = 1, and for just one of these functions (say f) it is the
case that (ef), = a. Then there are also p,q such that (ep)r # a # (eq)r and
p(i) = q(i), when i # r, and p(r) = 0 and ¢(r) = 1. Clearly, there is a coordinately
induced «a: (0,1)"*! — (0,1)"*! such that a(ef) # alen) = a(e,) = al(e,), and
a;(ef) = ayep) for ¢ # r. Then gales) — galen) — ga(ep) + galeq) # 0 since
qa(ey) # galen) = ga(ep) = ga(eq). This proves P is (n + 1)-avoidable. O
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In both Propositions L4 and [LH] when proving P was m-avoidable, we made no
use of the fact that g was definable. I conjecture that the omission of this condition
on g in Definition [T would not have any affect on the notion of m-avoidability.
See §3] for more on this conjecture.

2. CHARACTERIZING AVOIDABILITY

In this section Theorems [0.3] and will be proved. As previously noted,
Theorems and are consequences of these theorems.

For the proof of Theorem [0.3], we need a special case of the polarized partition
theorem of Erdés and Hajnal. Although this theorem is not explicitly stated in the
comprehensive book [5], similar results can be found there. A proof can be found
in [T1]. However, for the sake of completeness, the short proof of this result will
be given here. We state it first, in the conventional way, as Lemma 2] and then
restate it as Corollary in an equivalent way but one which is better suited for
our purposes.

Lemma 2.1. Suppose k,m < w,|A| > R,,, and F: A™ — w. Then there are
By, Bi,...,Bm—1 C A such that |By| = |B1| = -+ = |Bm-1| = k and F is constant
on Bgx By X -+ X B,_1.

Proof. The proof is by induction on m. When m = 0, the lemma is vacuously true,
and when m = 1, it is trivial. Assume that m > 1 and that the lemma is true for m.
Let F = A™™! — w, where |A| > R,,41. Let A9 C A be such that |4g| = X,,. By
the inductive hypothesis, for each a € A there is a cube By x By X ---x Bp,—1 C Af?,
where |By| = |B1| = -+ = |Bm—1| = k, and there is ¢ < w such that F' has the
constant value ¢ on By x By X -+ X By,,—1 X {a}. Since |A| > N, there is B,,, C Ap
such that |B,,| = k and there are ¢ < w and a cube By X By X -+ X Bp,_1 C Aj
such that F' has the constant value c on By x By X+ -+ X By,_1 x {a} for each a € B,,.

Then F is constant on By X By X -+ X By,. O
Corollary 2.2. Suppose k,m < w, and |Ao|, |41],...,|Am-1] = Ny, Let F': Ag X
Ay X - X Ap1 — w and eg,e1,...,ep1 € Ag X A1 X -+ X Ap—1. Then there is
a coordinately induced injection a: Ag X Ay X -+ X A1 — Ag X Ay X -+ - X Apq
such that Fa(eg) = Fa(e;) = -+ = Fa(eg—1).

Proof of Theorem Let p(xo,z1,...,25-1) € Rlxg,x1,...,25-1] be an avoid-
able (k,n)-ary polynomial, and let x: R® — w be a countable partition which
avoids it. With the intent of proving p(zo,z1,...,zk_1) is m-avoidable, consider
a definable function g: (0,1)" — R™ which is one-one in each coordinate. Also,
consider distinct eg, e1,...,ex—1 € (0,1)"™. Then xg: (0,1)™ — w is a partition.

Let F C R be a countable subfield such that g is F-definable. Let B C (0,1) be a
transcendence basis for R over F, and let B = By U By U---U B,,_1 be a partition
of B such that |By| = |Bi| = --+ = |Bpm_1| = 2% > R,,. By Corollary 2, there
is a coordinately induced injection «: (0,1)™ — By X By X -+ X By,—1 such that
xga(eo) = xga(er) = - = xgo(ex—1).

We next prove that ga: (0,1)™ — R™ is one-one. Let ag, 1,...,am—1: (0,1) —
B be such that a(xg,z1,...,Zm-1) = {ao(z0), a1(x1),...,0m—1(Tm-1)) for each
(x0,21,. .., Zm—1) € (0,1)™. Now suppose that

go(wo, 1,5 - -y Tin—1) = ga(Yo, Y15 - - Ym—1),



2486 JAMES H. SCHMERL

and, say, xo # yo. Clearly, each «; is one-one, so ap(xo) # ao(yo). Then

g(ao(zo), 1 (x1), .. am—1(zm-1)) = g(ao(yo), 1 (y1), - - -, tm—1(ym-1))-

Since g is one-one in each coordinate, ag(xo) is the unique b € (0,1) such that
gb,an(z1)y .. s am—1(zm-1)) = glao(yo),@1(y1), .- @m—1(Ym—1)), and therefore
ag(zo) is (FU{ai(z1), a2(@2), ..., am—1(zm—1), a0 (¥0), a1 (y1), - - - m—1(ym—1)})-
definable. But ap(zg) ¢ {ai(z1),a2(z2),...,am—1(Tm-1),a0(y0);c1(y1),.-.,
m—1(Ym—1)}, which is a contradiction. Thus, ga is one-one.

It follows that the coordinates ga(eg), ga(er),. .., ga(ex—1) are distinct. Since
X avoids p(xg,z1,...,2k—1), it must be that p(ga(ey), ga(er),...,galex—1)) # 0.
Thus, p(xg, x1,...,TEr—1) is m-avoidable. O

For the proof of Theorem 4] we will need a simple combinatorial lemma whose
use was suggested by Komjath [I2] for a similar purpose. The set of finite subsets
of X is denoted by [X]<¥. If (X, <) is a linearly ordered set and a € [X]<%, then
a; is the ith element of a in the given order.

Lemma 2.3. Suppose m < w and (X, <) is a linearly ordered set such that | X| <
N,,. Then there are functions G: [X|<% — w and H: [X]|~% — [X]|<% such that,
whenever a,b € [X|<%, the following hold:

(1) H(a) Ca and |H(a)| = min(ja|,m);

(2) if G(a) = G(b) and H(a) = H(b), then a =b;

(3) if G(a) = G(b), then |a| = |b| and for eachi < |H(a)|, a; € H(a) iff b; € H(b).

Proof. We first show how to get G and H satisfying just (1) and (2). Without loss
of generality we assume that X = w,,. (Keep in mind that for now only (1) and (2)
are being considered, so the ordering on X plays no role.) We will denote by gy,
and h,, the functions G and H for this m. For m = 0, just let go be any injection
and, of course, hg is the function which is constantly @. Now suppose we have g,
and h,,, and we want g,,4+1 and hy,4+1. For each o < wy,41, let Fy: a — w,, be a
one-one function. Consider a € [wy,]<“. If a = &, let gmr1(a) =0 and hpy1 = 9.
Supposing a # &, let &« = maxa. Then let

hmt1(a) = {a} U F (hn(Fala\{a}))),
and

gm+1(a) = gm(Fula\{a}]).
It is easy to see that these functions work.

Having G and H satisfying (1) and (2), we will modify G so that in addition
(3) is satisfied. We now are considering (X, <) as a linearly ordered set. Let
T w X [w]<Y X [w]<Y — w be an injection. Let F: [X]<* — [w]<“ be such that
for a € [X|<¥, i € F(a) iff a; € H(a). Now replace G with the function a
(G(a),|H(a)|,F(a)). Tt is easy to see that H and this new G satisfy (1)-(3). O

We will need another lemma which is a very slight modification of Lemma 7 in
[16]. Since the proof is essentially unchanged from [16], we omit it here.

Lemma 2.4. LetF C R be a subfield and T a transcendence basis for R over F. Let
D = (qo,70) % (q1,71) X -+ - X (qr—1,7k—1) C R¥ be an F-definable open k-boz, and let
h: D — R be an F-definable analytic function. Suppose that (to,t1,...,tk—1) € TFN
D is such that h(to,t1,...,tk—1) = 0. Further, suppose 3: {to,t1,...,tp—1} — R is
such that q; < B(t;) < r; for each i < k. Then h(B(to), B(t1),...,B(tk—1)) =0. O
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Proof of Theorem [07} Let G: [R|<* — w and H: [R]<¥ — [R]<“ be as in Lemma
2.3, where we let X = R with the usual ordering on R.

We can assume that F is a real-closed subfield of R (which is equivalent to its
being relatively algebraically closed in R). Let T be a transcendence basis for R
over F. Following [16], for each a = {(ag, a1,...,an—1) € R™, we define the support
of a, and denote it by supp(a), to be the unique smallest subset of T such that
{ap,a1,...,an—1} is (F Usupp(a))-definable. Equivalently, supp(a) is the smallest
subset of T such that {a} is (F' Usupp(a))-definable.

We next define a countable partition of R™”. Actually, we will define a function
x on R™ having a countable range, and then identify x with the countable parti-
tion of R™ which it induces. Let a = (ag,a1,...,a,—1) € R™, and let supp(a) =
{to,t1,...,ts—1}, where tgp <1 < -+ <ts—1. Let qo,q1,---,qs—1,70,T1,--+,Ts—1 €
@ be such that

Go <to<rg<q1<t1 <11 << (Qs—1 <ls—1<7Trs_q

and (as in [16]) such that there is an F-definable, analytic function f: (qo,r0) X
(g1,71) X -+ X (gs—1,7s—1) — R™ which is one-one in each coordinate and is such
that f(to,tl, . ,tsfl) = a.

We briefly indicate how such a function f is obtained. For each i < n, let
pi(Yo, Y1, -, Ys—1,2) € Flyo, y1,- - ., Ys—1, 2] be a polynomial such that a; is a sim-
ple root of the polynomial p;(to,t1,...,ts—1,2) in F(to,t1,...,ts—1)[z]. By the
Implicit Function Theorem there is an analytic function f;: U; — V; for some open
neighborhoods U; of (tg,t1,...,ts—1) and V; of a; such that if (yo,y1,...,ys—1) € U;
and z € V;, then fi(yo,vy1,...,ys—1) = = iff p;(yo,y1,...,ys—1,2) = 0. We arrange
that Uy =Uy =+ = Un—1 = (q0,70) X (q1,71) X -+ X (gs—1,7s—1) for some appro-
priate qo, q1,...,qs—1,70,71,---,7s—1 € Q and that each V; is Q-definable. Hence,
each f; is F-definable. We can also arrange that f; is one-one in the jth coordinate
for those j < s for which t; € supp(a;). Now let f = (fo, f1,..., fan—1). Clearly, f
is as required. Let D be the domain of f.

To complete the definition of x, let x(a) = {f, G({to,t1,...,ts—1}),N), where
H({to,t1,...,ts—1}) = {t;: j € N}. Clearly, x has a countable range.

We now consider a (k, n)-ary polynomial p(xq, 21, ...,2k-1) € Flzo, 1, ..., Tk_1]
which is not avoided by y. We will show that p(xg,x1,...,2x—1) is not m-avoidable.
Let ag, a1, ...,ax—1 € R™ be distinct such that p(ag, ai,...,ar—1) = 0 and x(ag) =
X(al) == X(akfl) = <f7 da N> Let N = {jOajla"'?j'ufl}v where jO < jl <

+ < Jy—1 < s and v = min(s,m). Let (go,70) X (q1,71) X --+ X (gs—1,7s—1)

be the domain of f. For each ¢ < k, let supp(a;) = {tio0,ti1,--.,tis—1}, where
tij € (g;,7;). (Since k > 2, it must be that s > 1.) Therefore, by conditions
(1)*(4) of Lemma m G({tiyo, ti71, NN ,tiysfl}) =d and H({tiyo, ti71, ey tiysfl}) =
{ti’ji jE N}

It was remarked after Definition [LTI(1) that the open cube (0,1)™ that occurs
in that definition could be replaced by any other open m-box. For this proof, we
will use the open v-box B = (¢jy,Tjo) X (@j1,7j:) X -+ X (¢j,_1+Tj,_1)- Thus, we
will show that p(zg,z1,...,2k_1) is not v-avoidable; but then Proposition [[Z will
imply that it is not m-~avoidable.

Let g: B — R™ be defined by g(zo,x1,...,2y—1) = f(Y0,¥1,--.,Ys—1), where

7 to; ifj € N.
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For each ¢ < k, let e; = (tijo.tiji,---,tij,_,) € B. By Lemma 23 the e;’s
are distinct. We need to show that for each coordinately induced o: B — B,
p(ga(eo), ga(el)7 s aga(ek—l)) =0.

Consider an arbitrary coordinately induced a: B — B, where a(xq, 1, ..., Zy—1)
= {ao(z0), a1 (1), ..., @p—1(zy—1)). Let B: D — D be the coordinately induced
function where B(yo, y1,...,¥s—1) = (Bo(y0), B1(¥1), - -+, Bs—1(ys—1)) and

ooy Jealyy) i g =i,
P3 () {toj ifj&N.
Consider the F-definable analytic function h: D* — R, where
P(Y0,05 90,15+ + - Y0,5—15 -+ + s Yk—1,05 Yk—1,15 - - » Yk—1,5—1)
= p(f(yoyo’ Yo,15-- -, yO,Sfl)a ceey f(ykfl,O; Yk—1,15--- 7yk*1,5*1))'

Then h(to,ovto,la ce 7t0,571; ce 7tk71,07tk71,1; ce 7tk71,571) = p(aO; Ay, ... 7asfl) =
0. Then Lemma [Z.4] implies that

p(fB(to,0,t0,15- -+ to,s—1), -5 fBE—1,0otk—1,15- s tk—1,5-1)) = 0.
To complete this proof, we see that
plgaleo), galer), ..., goler—1))
plg(ao(togo)s - - > w—1(toj,—1))s -5 glao(te—1,0)s - - -y w—1(tk-1,5,-1)))
P9(Bjo (togo)s -+ Bjus (t0.5u—1))s - -+ 9(Bjo (=130 )5 - - -+ Bjos (Be=1,5u-1)))
p(f(Bo(to,0)s s Bs—1(to,s=1)),- -+, f(Bo(tr=1,0)s - - - s Bs—1(th—1,5-1)))
=p(fBtoo,---st0,5=1)s-- -, f[Btr=1,05---,tk—1,5—1)) =0. O

Proof of Theorem This is just like the proof of Theorem[0.4], only easier because
we do not need Lemma Proceed as in the proof of Theorem 0.4, but now define
the partition so that x(a) = f. O

3. A CONJECTURE

A consequence of a proof of the conjecture presented in this section would be
an improvement to Theorem We would then have that the set of avoidable
polynomials over Q is recursive.

Definition 3.1. Let s be a cardinal number (either finite or infinite) and let
k,n,m < w. Then the (k,n)-ary polynomial p(zo,x1,...,2k—1) over R is (k,m)-
irreflexive if, whenever |X| > k, g: X™ — R™ is one-one in each coordinate and
€0,€1,-..,€x—1 € w™ are distinct, then there is a coordinately induced a: w™ —
X such that p(gale), gale), .. galex_1)) # 0.

Some simple consequences of this definition are contained in the next proposition.

Proposition 3.2. (1) If A < k, then each (A, m)-irreflexive polynomial is (k,m)-
irreflexive.
(2) A polynomial is irreflexive iff it is (1, m)-irreflexive iff it is (1, 1)-irreflezive.
3) If r < m, then each (K, m)-irreflexive polynomial is (k,r)-irreflexive.
4) Every polynomial is ((2%0)%, m)-irreflexive.
5) No polynomial is (0, m)-irreflexive.
6) Every (2%, m)-irreflerive polynomial is m-avoidable.

(
(
(
(

The conjecture is stronger than the converse of Proposition Bz2(6).
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Conjecture 3.3. For each (k,n)-ary polynomial p(xg,x1,...,2x_1) there exists
N < w such that if p(xg, x1,...,2r_1) is m-avoidable, then it is (N, m)-irreflexive.

It would follow from Conjecture B3], by the decidability of Th(R,+,-, <,0,1),
that the set of m-avoidable polynomials is recursively enumerable (uniformly in
m). Thus, irrespective of the cardinality of the continuum, it would follow from
Corollaries and and Proposition [I.3] that the set of avoidable polynomials
over Q is recursive. It would also follow that the requirement in Definition [[LT]1)
that g be definable could be dropped.
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