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MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 111, JULY, 1970 

Consecutive Power Residues or Nonresidues 

By J. R. Rabung and J. H. Jordan 

Abstract. For any positive integers k and 1, A. Brauer [1] has shown that there exists a 
number z(k, 1) such that, for any prime number p > z(k, [), a sequence of I consecutive 
numbers occurs in at least one kth-power class modulo p. For particular k and 1, one is 
sometimes able to find a least bound, A*(k, 1), before, or at which, the first member of such 
a sequence must appear. In this paper, we describe a method used to compute A*(8, 2) and 
A*(3, 3). 

Introduction. A. Brauer [1] showed in 1928 that, for any positive integers k and 
1, there exists a constant z(k, 0, such that, for each prime p with p _ z(k, 1), any kth- 
power character x modulo p has the property that 

(1) x(a) = x(a + 1)-x(a + 2) -x(a + I- 1), 

for some integer a. We shall refer to the sequence a, a + 1, a + 2, * * , a + 1 - 1, 
in (1), as a sequence of 1 kth-power residues or nonresidues according as x(a) is or is 
not unity. Also, for a given kth-power character x modulo p, we shall say that an 
integer a belongs to kth-power class i if x(a)- p, where p is a fixed primitive kth 
root of unity. Since the structure of the kth-power classes modulo p is unaffected by 
the choice of x or p, we may speak of integers as belonging to the same kth-power 
class modulo p without prior mention of a particular character or root of unity. 

Let us consider the particular case of Brauer's result with k = 4 and 1 = 2. We 
have that, for all sufficiently large primes p, there must exist two consecutive integers 
belonging to the same fourth-power class modulo p. We ask, now, where the first 
such pair will occur. Since 1 is a quartic residue for any prime, the pair (1, 2) will 
consist of consecutive quartic residues if 2 is a quartic residue modulo p. So, we 
assume that 2 is a quartic nonresidue modulo p; that is, 2 belongs to quartic class 1, 
2, or 3, for any given quartic character x modulo p and a fixed primitive fourth root 
of unity p. Let us take the case x(2) = p, first. Then, if x(3) = p or x(3) = p2, we 
have the pair (2, 3) or (3, 4) in the same quartic class modulo p. Consider the case 
x(3) = 1. Here, we find that if 5 belongs to quartic class 0, 1, 2, or 3, modulo p (relative 
to the same x and p, of course), then the pair (15, 16), (5, 6), (4, 5), or (9, 10), respec- 
tively, will appear in one of the quartic classes modulo p. So we turn to the case x(3) = 
p3. Here, again, 5 being placed in class 0, 1, or 2, causes the consecutive pair (5, 6), 
(15, 16), or (4, 5) to appear in one quartic class. But x(5) = p' does not readily lead to 
such a pair. In this case, one need only observe that 7 cannot be found in any quartic 
class modulo p without causing the appearance of one of the pairs (6, 7), (14, 15), 
(20, 21), or (7, 8), in one quartic class. Thus, we see that, if 2 is in quartic class 0 or 1, a 
consecutive pair (a, a + 1), with a < 20, must occur in one class, The same applies if 2 
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belongs to quartic class 3, since this simply amounts to a renumbering of the cases 
discussed above with 2 in class 1. And, finally, if 2 is in quartic class 2 modulo p 
relative to some x and p, then 3's appearance in class 0, 1, 2, or 3 will cause (3, 4), 
(8, 9), (2, 3), or (8, 9), respectively, in one class. 

This discussion shows that, for any sufficiently large prime p, a pair of consecutive 
integers (a, a + 1), with a ? 20, must occur in at least one quartic class modulo p. 
And the only possible primes for which such a pair may not occur will be those in- 
volved in obtaining this bound; namely, 2, 3, 5, and 7. A quick investigation shows 
that 2, 3, and 5 are, indeed, exceptions to the result, but that the pair (1, 2) appears in 
the class of quartic residues modulo 7. Also, by a theorem of W. Mills [2], there exist 
infinitely many primes which have a kth-power character x assigning the values 

x(2)= p, x(3)= p3, x(5)= p3, x(7)= 2 

for a fixed primitive fourth root of unity p. This is the case which leads to the con- 
secutive pair (20, 21) in one class, and in which no earlier pair occurs. So, a ? 20 is 
best possible. 

Papers by M. Dunton [3] and by D. Lehmer, E. Lehmer, J. Selfridge, and W. Mills 
[4], and others (see [5]-[8]), first investigated this problem under the condition that 
x(a) = 1 in (1). In [4], the authors used the notation A(k, 1) to mean the greatest 
lower bound of the set of integers n, such that, for all but a finite numbers of primes, 
there is an a < n for which (1) holds, with x(a) = 1. Miss Dunton showed, for 
example, A(3, 2) = 77 with exceptional primes 2, 7, and 13. R. Graham [9] estab- 
lished that A(k, 1) = co for 1 > 4. 

J. Jordan [10] defined A*(k, 1) similarly to A(k, 1) except that he omitted the re- 
quirement that x(a) 1 in (1). That is, where the search in the above papers was for 
a sequence of 1 kth-power residues, the search in [10] was for a sequence of 1 kth-power 
residues or nonresidues. With this notation, the simple result displayed above is 
expressed A*(4, 2) = 20. In addition, Jordan found: 

A*(2, 2) = 3 except for 2; 

A*(3, 2) = 8 except for 2; 

A*(4, 2) = 20 except for 2, 3, and 5; 

A*(5, 2) = 44 except for 2; 

A*(6, 2) = 80 except for 2, 3, and 7; 

A*(7, 2) = 343 except for 2; 

A*(2, 3) = c; A*(k, 1) = o for I > 4. 

To this we are now able to add: 

A*(8, 2) = 399 except for 2; 

A*(3, 3) = 2499 except for 2, 3, 7, 13, and 19. 

These last two results are too cumbersome and hazardous to approach without the 
aid of a computer. They were accomplished on an IBM 360 model 67. We shall give 
a brief description of the program used. 
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Method. The program was designed to handle these problems in much the same 
way as the simple problem of A*(4, 2) was handled in our previous remarks. That is, 
in seeking A*(k, 1) the program placed successive prime numbers in the various 
kth-power classes and looked for sequences of 1 consecutive integers all of which 
occurred in the same kth-power class. If a prime could not be placed in any class 
without the finding of such a sequence, then a preceding prime would be placed in a 
class other than the one in which it had been placed. This was done until the first, 
say, n primes had each been placed in each of the k classes, and each placing had 
caused the appearance of a sequence of 1 consecutive integers in one class. To deter- 
mine in what class an integer was, the program found the prime factorization of that 
integer and, providing each prime in this factorization had been previously placed, 
the vector dot product idea used in [4] was employed to find the desired class. The 
integers tested in this way were those within the reasonable vicinity of multiples of 
the latest prime being placed. 

Once this program arrived at a bound, it attempted to place all primes up to that 
bound so that no sequence of 1 integers in the same class occurred before the bound. 
If this failed, the bound was lowered and the attempt was made again. Once all primes 
had been successfully placed up to such a bound, Mill's theorem on preassigning 
character values (see [2]) could be used to show the bound to be best possible, and 
the results were obtained. 

In arriving at the bound A*(8, 2) _ 399, the computer ran through some 971 
different placements of primes. This required about 90 seconds of computer time. 
Of course, the number of cases was greatly reduced by the simple observation that 
the prime 2 is always a quadratic residue modulo a prime p of the form 8m + 1. So, 
saying that the prime q lies in eighth power class i modulo p if x(q) = p1, where x is a 
fixed eighth power character modulo p and p is a fixed primitive eighth root of unity, 
2 can only appear in an even-numbered eighth power class. Other observations of 
symmetry between certain cases helped also in keeping the number of considerations 
low. Once the bound 399 was obtained, it was an easy matter to show without help 
from the computer that it was best possible simply by placing the remaining primes 
less than 399 and appealing to Mill's theorem. The following indicates how the 
primes were placed in order that no pair of consecutive integers <399 occurred in 
the same eighth power class: 

Class 1: 3, 89, 107, 113, 131, 149, 163, 167, 173, 197, 227, 229, 251, 257, 269, 293, 
307, 311, 317, 353. 

Class 2: 17, 53, 59, 71, 101, 137, 281, 389. 
Class 3: 83. 
Class 4: 2, 5, 11, 23, 41, 47. 
Class 5: 29. 
Class 7: 19. 

All other primes less than 399 were placed in class 0. 
Finding that A*(3, 3) = 2499 was a bit more difficult. The computer here ran 

through 1308 different placement vectors before arriving at a bound, A*(3, 3) _ 6726. 
This took about three minutes of computer time. The process of extending these 
original placements of primes to arrive at the best bound took another three minutes 
and ran through 1183 more cases. The vector which establishes our result makes the 
following placements of primes less than 2499: 

Class 1: 3, 5, 7, 11, 23, 37, 43, 53, 59, 97, 113, 131, 149, 157, 181, 199, 211, 223, 229, 
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233, 241, 293, 313, 317, 347, 353, 359, 373, 383, 421, 463, 487, 499, 523,541, 571, 601, 
641, 647, 683, 701, 743, 761, 773, 797, 821, 839, 857, 881, 887, 911, 941, 947, 991, 1063, 
1087, 1093, 1097, 1123, 1129, 1171, 1213, 1231, 1249, 1303, 1321, 1399, 1667, 1697, 
1709, 1723, 1787, 1811, 1847, 1871, 1877, 1889, 1901, 1913, 1949, 1979, 2029, 2063, 
2081, 2099 2153, 2237, 2371, 2393, 2437, 2447. 

Class2: 19,29,71,83,103, 109, 137,167,173, 191, 197,271,277,311,389,401,419, 
479, 547, 613, 673, 691, 809, 929, 971, 1153, 2351. 

The rest of the primes less than 2499 are placed in class 0. 
We are indebted to the computation centers at both Washington State University 

and Pennsylvania State University for the use of their facilities. 
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