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My deep thanks to Ryan Williams for making the time, during what clearly was a tremendously
busy (and successful) year, to write this guest article for the column, and warmest congratulations
to him on his faculty position at Stanford.

Please stay tuned for coming issues, which will feature columns by Xi Chen, Dana Moshkovitz,
and Bill Gasarch. The article by Bill Gasarch will be something quite unusual: his compilation of
the results and input, from many people, of a poll he is currently doing on the state and future of
the P versus NP problem. Rather than describe this myself, let me please include here Bill’s full
Call for Poll Responses.

From: William Gasarch <gasarch@cs.umd.edu>
. . .
In 2002 I (Bill Gasarch) did a poll that appeared as SIGACT News Com-
plexity Theory Column 36 on what people thought of P vs NP. See
http://www.cs.umd.edu/˜gasarch/papers/poll.pdf for that article.

That article is now linked to on Wikipedia and (much to my surprise) has come to be
the AUTHORITY on what people were thinking then.

TEN years have passed! It is time to take the pulse of the community again. Hence I
will ONCE AGAIN (!) be conducting a poll to appear in a SIGACT News Complexity
Column.

SO- I would like you to email gasarch@cs.umd.edu (in LATEX or plaintext) the answers
to the following questions:

1) Do you think P=NP or not? You may give other answers as well.

2) When do you think it will be resolved?

3) What kinds of techniques do you think will be used?



4) Will the problem still be relevant given advances in algorithms and in SAT Solvers?

5) Feel free to comment on anything else: Graph Isomorphism, Factoring, Derandom-
ization, Quantum computers, and/or your own favorite problem.

6) Do I have your permission to print your response? I will do this for some people—how
many depends on how many answer the poll.

7) What is your highest degree in and where is it from? This information will be used
for statistics only.

Bill is running the above Call for Poll Responses in his blog and is also asking many people
directly by email. But Bill very much wants input from the entire community (and far beyond),
so please consider the text above your warm invitation to send email to Bill and to convey to him
your thoughts about P versus NP, and in particular your answers to his set of questions (that can
be found below). In fact, even as you read this, Bill may be sitting by his computer, wondering
whether his call will draw a flood of replies or be greeted by a disquieting silence. Do you remember
this moment in Peter Pan: “I do believe in fairies, I do! I do!”? Please, whatever your answers are
to the above questions, take a few moments to share your views with Bill and, through him, the
community. (Myself, I may write to Bill saying, I do believe in the importance of P versus NP, I
do! I do! )

Finally, turning from that forthcoming poll to another way that people share their views and
visions with the community: I probably don’t mention this nearly as often as I should, but let
me please commend to all readers of this column (and please tell this to two friends, asking them
to in turn... well, you get the idea!) the sister column to the SIGACT News Complexity Theory
Column, namely the Bulletin of the EATCS ’s Computational Complexity Column, which is an
ongoing treat.

Guest Column:
A Casual Tour Around a Circuit Complexity Bound1

Ryan Williams2

Abstract

I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential
time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the
perspective of someone trying to discover it.

1 c©R. R. Williams, 2011.
2Computer Science Department, Stanford University, Stanford, CA, USA. rrwilliams@gmail.com. At the time

of writing, the author was supported by the Josef Raviv Memorial Fellowship at IBM Research – Almaden.



1 Background

Recently, a new type of circuit size lower bound was proved [Wil10, Wil11]. The proof is a formal
arrangement of many pieces. This article will not present the proof. It will not present a series
of technical lemmas, each lemma following from careful logical arguments involving the previous
ones, culminating in the final result. This article is a discussion about how to discover the proof
– a casual tour around it. Not all details will be given, but you will see where all the pieces came
from, and how they fit together. The path will be littered with my own intuitions about complexity
theory – what I think should and shouldn’t be true, and why. Much of this intuition may well be
wrong; however I can say it has led me in a productive direction on at least one occasion. I hope
this article will stimulate the reader to think more about proving lower bounds in complexity.

The remainder of this section briefly recalls some (but not all of the) basics that we’ll use.

1.1 Uniform Complexity: Algorithms

Recall that NTIME[t(n)] denotes the class of languages (decision problems) solvable by nondeter-
ministic algorithms running in time t(n) on inputs of length n. So L ∈ NTIME[t(n)] provided that
there is a nondeterministic algorithm such that for all strings x ∈ L, there is a computation path of
t(|x|) steps that results in acceptance of x, and for x /∈ L, every possible computation path of t(|x|)

steps results in rejection of x. We define NEXP =
⋃

k>0NTIME[2n
k
]. NEXP informally corresponds

to problems with exponentially long solutions which are verifiable in exponential time. This class
encompasses everything considered feasibly computable (and more): NP, PSPACE, EXP, etc.

The nondeterministic time hierarchy [SFM78, Zak83] says that, as one permits longer solutions
to problems and longer verification time for those solutions, one can always find strictly more
problems with verifiable solutions, under the constraints. In notation, NTIME[t(n)] ( NTIME[T (n)]
for t(n+1) ≤ o(T (n)). One consequence of the nondeterministic time hierarchy is that NEXP 6= NP.3

1.2 Nonuniform Complexity: Circuits

With the usual uniform models of computation (Turing machines, lambda calculus, µ-recursive
functions, etc.), a function only counts as computable provided we can find a single algorithm in
the model that computes the function on all possible finite inputs. Similarly, in complexity theory,
a function is only efficiently computable if a single algorithm runs efficiently on all finite inputs.

Suppose I allow you to run a different algorithm An for every distinct input length n. This
amounts to having a countably infinite set of algorithms, which looks unrealistic.4 But by permitting
the length of a program to grow with the input length, we can more accurately model algorithms
in practice that exploit the fact that there is an upper bound on the inputs they receive. Could
there be a program for 3SAT with a billion lines of code that rapidly solves 3SAT on all formulas
with less than a billion clauses? Nonuniform complexity can address questions of this form.

We will imagine an infinite family of algorithms {An} as a family of logical circuits, where
An takes n bits of input and returns a bit. (We’ll work exclusively over the binary alphabet, for

3Actually, the usual deterministic time hierarchy suffices to prove this, using a padding/translation argument.
4Indeed, one can solve undecidable problems using an infinite number of algorithms: let An(1

n) output 1 iff the
nth Turing machine halts on blank tape. This is a fact that is either true or false for a given n, so for each n we can
make a very short efficient program An that captures this behavior.



simplicity.) The classes of circuits considered in this article are, in increasing order of expressiveness:

• AC
0, the class of circuits with constant depth and polynomial size, having unbounded fan-in

AND, OR, and NOT gates,

• AC
0[m], the class of circuits with constant depth and polynomial size, having unbounded

fan-in MODm, AND, OR, and NOT gates (where a MODm gate outputs 1 iff the sum of its
inputs is divisible by m),

• ACC, the union over all m of the classes AC0[m],5 and

• P/poly, the class consisting of arbitrary polynomial size Boolean circuits with bounded fan-in
AND and OR gates, and NOT gates.

(One can take the “size” of a circuit to be either the number of gates or the number of wires;
for us, the choice won’t matter.) We will identify the circuit classes above with their corresponding
language classes, which consists of all decision problems solvable with an infinite family of such
circuits. So, “NP ⊆ P/poly” states that every problem in NP can be solved with an infinite circuit
family {Cn} drawn from P/poly, where each Cn is run on inputs of length n.

A routine fact is that P ⊆ P/poly: problems solvable in polynomial time by some algorithm can
be solved by an infinite family of polynomial size circuits. Therefore, our restriction to considering
circuits rather than arbitrary “growing” programs is actually without loss of generality: a poly(n)-
time program with poly(n) lines of code can be simulated by a poly(n)-size circuit on all n-bit
inputs, although the underlying polynomials may not have the same degrees.6

1.3 Ruling Out Polynomial Size Circuits for Uniform Complexity Classes

What uniform computations can be simulated in P/poly? This is largely open. Randomized com-
plexity classes like RP and BPP are in P/poly, but we do not believe that NP-complete problems
can be solved with polynomial size circuit families. However, proving NP 6⊆ P/poly is only stronger
than P 6= NP. The “smallest” uniform complexity class that we know is not contained in P/poly
is MAEXP, the exponential-time version of Merlin-Arthur games [BFT98]. Kabanets and Impagli-
azzo [KI04] “almost” proved that the slightly smaller class NEXPRP (nondeterministic exponential
time with an RP oracle) isn’t in P/poly: either NEXP

RP doesn’t have arithmetic polysize circuits,
or it doesn’t have (the usual Boolean) polysize circuits. Both MAEXP and NEXP

RP are enormous
classes, containing NEXP and more.

So while we can show that certain functions cannot have polynomial size circuits, those functions
are extremely difficult for uniform algorithms to compute. But it could still be true that EXPNP ⊆
P/poly. This looks crazy; if true, it would not only mean that every problem with exponentially
long solutions can be solved with polynomial size circuits, but that every problem in EXP

NP has
“highly compressible” solutions, representable with polynomial size circuits! Moreover, we will see
in Section 5 that a similar result holds assuming NEXP ⊆ P/poly.

5Note that an ACC circuit family doesn’t necessarily have to be polynomial sized. By default, a circuit’s size
should be assumed polynomial unless otherwise specified.

6We use the notation poly(n) to denote expressions of the form nk for some fixed k independent of n.



1.4 ACC: The Frontier

Can we make progress on P/poly lower bounds, by considering more restricted classes of circuits?
In the space of this article we can only give a condensed history; much more can be found in
the surveys [All96, Vio09]. Furst, Saxe, and Sipser [FSS81] and Ajtai [Ajt83] proved that simple
functions such as the parity of n bits cannot be computed by polynomial size AC

0 circuits. (These
results were later strengthened to exponential size [Yao85, H̊as86].) A natural next step was to
grant AC0 the parity function for free – resulting in the study of AC0[2]. Razborov [Raz87] proved
an exponential size lower bound for computing the majority of n bits in AC

0[2]. Smolensky [Smo87]
proved exponential lower bounds for computing MODq with AC

0[p], for distinct primes p and q.
Barrington [Bar89] suggested the next step would be to prove lower bounds for the class ACC which
allows for MODm gates where m can be an arbitrary constant.

Although it was conjectured over 20 years ago that the majority of n bits cannot be computed
with ACC, strong ACC lower bounds have escaped proof. Suppose we grant AC

0 both the MOD2

and the MOD3 function for free; this is equivalent to studying AC
0[6], as seen by the equations

MOD6(x1, . . . , xn) = MOD3(x1, . . . , xn) ∧MOD2(x1, . . . , xn),

MOD2(x1, . . . , xn) = MOD6(x1, x1, x1, . . . , xn, xn, xn),

MOD3(x1, . . . , xn) = MOD6(x1, x1, . . . , xn, xn).

Even for this class, it was still possible that EXPNP ⊆ AC
0[6]! Given that AC0[p] was known to be

very weak for every prime p, this was an extremely frustrating open problem – how could MOD6

be so much more powerful than MOD7?

The recent paper [Wil11] finally rules out this ludicrous possibility. For example, we can prove

that AC0[6] circuits for EXPNP must necessarily have at least 2n
δ
size, for some δ > 0 that depends

on the circuit depth. The proof extends to the (smaller) class NEXP as well, although there is some
loss in the size lower bound. Nevertheless we can still rule out polynomial size ACC circuits for
NEXP (even quasipolynomial size). The basic framework behind the proof is generic enough that it
is reasonable to believe it can be extended to prove much stronger results: perhaps NEXP 6⊆ P/poly,
or NP 6⊆ ACC, or more.

2 Acquiring The Target

Suppose we’ve set ourselves to finding a problem in NEXP that cannot be in ACC. What is a good
NEXP problem to choose? The “hardest” possible candidates should be NEXP-complete ones – if
there’s a problem in NEXP \ACC, then the complete ones are there! However, NEXP-completeness
hasn’t been studied nearly as much as NP-completeness, so the list of NEXP-complete problems
doesn’t appear to be terribly long. Nevertheless there is a natural way to construct NEXP problems
out of NP problems, by focusing on the highly compressible instances of NP-complete problems.

Given a problem Π, we define the Succinct Π problem as follows. Let C be the set of all
Boolean circuits with a single output gate over the gate basis AND/OR/NOT. For every C ∈ C, let
T (C) be the truth table of the function represented by C. More formally, letting n be the number
of inputs to C, T (C) is the 2n bit string where T (C)[i] = C(si), where si is the ith n-bit string (in
lexicographical order, say).



Problem: Succinct Π
Given: A circuit C from C with n inputs and poly(n) size.
Task: Determine whether T (C) is a yes-instance of Π, i.e., T (C) ∈ Π.

So in Succinct Π, we only wish to solve the “highly compressible” instances of Π: those 2n bit
instances which are compressible to poly(n)-bit representations as circuits.

The definition may look odd at first, but studying succinct problems is something that many of
us already do. Consider the OR problem: given a bit string x, does x contain a 1? This problem
is trivial from the time complexity perspective, but still interesting on the circuit complexity level,
as it is not known whether constant-depth circuits made entirely of MOD6 gates can compute
OR efficiently [HK09]. However, the Succinct-OR problem is exactly the NP-complete Circuit
Satisfiability problem: given a circuit, does its truth table contain a 1? So even the succinct versions
of trivial problems are already interesting.7

What if Π is an NP-complete problem? How hard is Succinct Π? There are nondeterministic
exponential time algorithms for solving such problems:

Proposition 1 Let Π be a NP-complete problem that admits proofs of length ℓ(n) for n-bit in-
stances, with a verifier that runs in t(ℓ) time on proofs of length ℓ. Succinct Π can be solved in
t(ℓ(2n)) + 2npoly(s) nondeterministic time, on circuits of size s with n inputs.

Proof. Evaluate the given circuit on all of its possible inputs in 2npoly(s) time, producing an
instance of Π of length 2n. By assumption, the instance has a proof (if one exists) of length ℓ(2n),
and the proof can be verified in t(ℓ(2n)). Nondeterministically guessing the ℓ(2n)-bit proof and
verifying that proof yields the running time. �

As an example, consider the succinct version of 3SAT:

Corollary 2.1 Succinct 3SAT can be solved in nondeterministic 2n · (poly(s)+ poly(n)) time on
circuits of n inputs and s size.

Proof. Apply the above proposition. Here the proofs are satisfying assignments, which do not
exceed the length of a formula, so ℓ(n) ≤ n. Verifying a satisfying assignment for a 2n-size 3-CNF
can be done in O(2n · poly(n)) time. �

Papadimitriou and Yannakakis [PY86] showed that for all known NP-complete problems Π,
Succinct Π is NEXP-complete. We state their result informally:

Theorem 2.1 ([PY86]) If Π is NP-complete under “ultra-efficient reductions” then Succinct Π
is NEXP-complete.

7Encyclopedias could be written on succinct representations of problems in computer science. In complexity theory,
succinctly represented problems are closely related to the structural notion of sparse sets; this is best illustrated
by Hartmanis, Immerman, and Sewelson’s theorem that TIME[2O(n)] 6= NTIME[2O(n)] iff there is a sparse set in
NP \P [HIS85]. Implicit representations of graphs have been widely studied, and solving problems on them amounts
to solving the succinct version of a graph problem. In other communities, BDDs (Binary Decision Diagrams) are the
standard means for representing functions; many problems studied in that arena can be seen as succinct problems
where the underlying circuit class C has been replaced with the set of BDDs. The Wikipedia articles on these
(particular) topics are good starting points for further references.



Essentially what is needed in an “ultra-efficient reduction” is that each bit of the reduction’s
output can be computed from a polylogarithmic number of bits of the input, in polylogarithmic
time. Now we have our pick of candidate NEXP problems: the succinct versions of NP-complete
problems are fair game.

What NP-complete problem could be more natural than 3SAT? It has been studied to death;
the literature is filled with theorems on it. An attractive property of Succinct 3SAT is that it’s
very NEXP-complete: there are super-ultra-efficient reductions from arbitrary languages in NEXP

to Succinct 3SAT instances. So there is little loss of generality in focusing on Succinct 3SAT.

Theorem 2.2 (Efficient Cook-Levin for NEXP) Succinct 3SAT is NEXP-complete under
polynomial time reductions. Moreover, there is a polynomial time reduction R from arbitrary
L ∈ NTIME[2n] to Succinct 3SAT with the properties:

• x ∈ L ⇐⇒ R(x) ∈ Succinct 3SAT; i.e., R(x) is a circuit such that T (R(x)) encodes a
satisfiable 3-CNF formula.

• R(x) is a circuit with poly(|x|) gates.

• For all sufficiently long x, the number of inputs to the circuit R(x) is at most |x|+ 4 log |x|.

The first two properties could be met rather straightforwardly, if the circuit R(x) were allowed
to have up to O(|x|) inputs. One of the many textbook proofs that 3SAT is NP-complete would
suffice. We can convert a nondeterministic time t computation A(x) into a tc+1 size 3-CNF formula,
by first translating the computation of A(x) into a nondeterministic one-tape Turing machine M(x)
running in time tc and using space t, then building a tc×tmatrix Tx where Tx(i, j) holds the content
of the jth cell of M(x) at step i of its execution. (And if the head is reading cell j at step i, then
Tx(i, j) also holds the state of M(x) at step i.) Note Tx is often called a tableau. (The particular
value of c depends on the original computational model: if the model is multitape Turing machines,
then c = 2 suffices.)

Observing that every entry in Tx can be determined from at most three other entries, we can
generate constant size 3-CNF formulas, one for each entry of Tx, such that their conjunction is
satisfiable if and only if A(x) accepts. This 3-CNF formula generated is extremely regular, in that
essentially the same group of clauses is produced repeatedly (with only minor changes in the variable
indices). It follows that the clauses corresponding to entry T (i, j) can be efficiently produced with
a poly(log t)-size circuit that is given (i, j) ∈ [tc] × [t] as a (c + 1) log t + O(1)-bit string. When
t = 2n, we obtain a poly(n)-size circuit with about (c+ 1)n inputs.

However, more efficient proofs of the Cook-Levin theorem exist, and the formulas obtained
there have high redundancy too. Even for random access machines, there is a reduction from time-
t computation to O(t log4 t) size formulas where the ith bit of the formula can be computed (given
the integer i as an input) in poly(log t) time [Coo88, Rob91, FLvMV05]. This corresponds to a
reduction in the number of inputs to the circuit R(x), from (c+1)|x| down to |x|+4 log |x|. There
are several ways to achieve this kind of reduction, but unfortunately we do not have the space to
include intuition for them; please consult the references above.

We saw earlier that Succinct 3SAT can be solved nondeterministically in 2nsO(1) time, on
circuits with s gates and n inputs. Theorem 2.2 implies a time lower bound on how efficiently
Succinct 3SAT can be solved nondeterministically.



Theorem 2.3 (Time Lower Bound for Succinct 3SAT) Succinct 3SAT cannot be solved
in 2n−ω(logn) time (even with nondeterminism) on circuits with n inputs and poly(n) gates.

Proof. Assume Succinct 3SAT had a nondeterministic algorithm with the above run-
ning time. By the Cook-Levin Theorem for NEXP (Theorem 2.2), every n-bit instance of every
L ∈ NTIME[2n] can be reduced in poly(n) time to a Succinct 3SAT circuit C with n + 4 log n
inputs and poly(n) size. By assumption, the “succinct satisfiability” of C can be determined
in 2(n+O(logn))−ω(log n)poly(n) ≤ o(2n) time, with a nondeterministic algorithm. Therefore ev-
ery L ∈ NTIME[2n] is contained in the class NTIME[o(2n)], i.e., NTIME[2n] ⊆ NTIME[o(2n)].
But this contradicts the nondeterministic time hierarchy theorem [SFM78, Zak83] which says
NTIME[o(2n)] ( NTIME[2n]. �

So there is a concrete limitation on how efficiently Succinct 3SAT can be solved, and it looks
pretty strong. Could this result on the time complexity of Succinct 3SAT be translated into
a limitation on the circuit complexity? Let’s think back to why we believe that separations like
NEXP 6⊆ ACC are true. We believe that problems in nondeterministic exponential time cannot be
solved with polynomial size circuits, simply because exponentials grow much faster than polynomi-
als. This is the main reason why we can diagonalize and prove NEXP 6= NP, but this observation
is not at all enough to prove a nonuniform lower bound against NEXP. We have to show that even
if one were allowed infinite time to rig up infinitely many polynomial size circuits, each devoted to
a separate input length n, one still cannot solve Succinct 3SAT with this model. The diagonal-
ization argument used in the proof of NEXP 6= NP won’t work here, and this is “provably” true.
(More formally, the diagonalization argument works relative to every oracle, but there are oracles
relative to which NEXP ⊆ P/poly.)

Still, it is hard to let go of a strong feeling that polynomial size circuits simply contain too little
information to carry out a full simulation of an exponential time computation. Although you are
given a separate circuit for each input length, that little circuit is completely representative of some
time-intensive function’s behavior on an exponential number of inputs. A polynomial size circuit
for a function means that the function’s truth table is highly compressible and regular. In that
sense, polynomial size circuits seem much closer to polynomial time algorithms than to exponential
time algorithms. We’d like to say that, if there were small circuit families for a problem like
Succinct 3SAT, then there may as well be time efficient algorithms for Succinct 3SAT. That is,
if Succinct 3SAT had polynomial size circuits, then these “short representatives” of exponential
time computation may be discovered algorithmically in an efficient way. More generally, the mere
existence of these short representatives should mean that Succinct 3SAT has so much problem
structure that this structure can also be exploited algorithmically.

At this point we have reached a degree of handwaving so exuberant, one may fear we are about
to fly away. Surprisingly, this handwaving has a completely formal theorem behind it:

Theorem 2.4 (Spinning Circuits Into Algorithms [Wil11]) If Succinct 3SAT can be
solved with polynomial size ACC circuits, there is an ε > 0 such that Succinct 3SAT can be
solved by a nondeterministic algorithm running in O(2n−nε

) time, on all circuits with n inputs and
poly(n) size.

The contrapositive says that time lower bounds can be spun into circuit lower bounds. From
Theorem 2.4 it follows readily that Succinct 3SAT cannot have polynomial size ACC circuits, since
the consequence of Theorem 2.4 contradicts Theorem 2.3, the time lower bound for Succinct3SAT.



Corollary 2.2 Succinct 3SAT does not have polynomial size ACC circuits, i.e., NEXP 6⊆ ACC.

So Theorem 2.4 is now our primary target. Why might it be true? How can we spin nonuniform
circuits for Succinct 3SAT into a single uniform algorithm which beats 2n time? Since we can
allow nondeterminism in the algorithm, we could guess a polynomial size ACC circuit C that solves
Succinct 3SAT, then run C on our input. But how could we check that C correctly solves
Succinct 3SAT? Naively, we would need to check that on all 2n inputs x, C(x) = 1 iff T (x) is an
exponentially long satisfiable 3-CNF formula. The time lower bound (Theorem 2.3) suggests this
is impossible to do in less-than-2n time.

3 Program Checking?

We may try draw ideas from program checking, a topic introduced by Blum and Kannan [BK95].
In program checking, one has a desired problem Π in mind, and one is given a program P as a
black box along with an input x. One wishes to efficiently determine if the output of P (x) equals
Π(x), i.e. if P reports a correct answer on x, by asking questions to P . More formally:

Definition 3.1 A program checker C for a problem Π and input x is a probabilistic polynomial
time algorithm which is given black-box access to a program P and has the following properties for
every P and x:

• If P correctly computes Π on all inputs, then CP (x) outputs the correct answer, with high
probability.8

• If P (x) 6= Π(x) then CP (x) outputs “fail” or the correct answer, with high probability.

What problems Π can be checked in this way? There has been extensive work on this question;
cf. [GGHKR08] for a survey and recent results. Succinct 3SAT doesn’t seem to have a program
checker, but there is another way in which Succinct 3SAT can be efficiently checked. In a very
influential paper, Babai, Fortnow, and Lund [BFL91] proved that every NEXP problem Π can be
recognized by a probabilistic polynomial time (PPT) algorithm with access to an arbitrary oracle
which is trying to “prove” that a given instance is in Π. More precisely, for every NEXP problem
Π there is a PPT algorithm A such that

• if x ∈ Π then there is an oracle O such that Pr[AO(x) accepts] ≥ 2/3, and

• if x /∈ Π then for all oracles O, Pr[AO(x) rejects] ≥ 2/3.

Informally, every Π ∈ NEXP has some PPT verifier A with exponentially long proofs that can
be efficiently checked. Since the oracle O could only be asked exp(|x|k) different queries over all
possible runs of AO(x), it follows that for every x of length n, the corresponding oracle O can
be represented by an exp(nk)-bit string encoding all the possible queries and answers of AO(x).
Hence this proof verification model characterizes NEXP. This is encapsulated by the equation
NEXP = MIP. (The class MIP stands for Multiple Interactive Provers, an equivalent model to the
PPT algorithm with oracle access.)

8The notation CP denotes C with black-box access (i.e., oracle access) to P .



Let’s see what happens when we try to apply the NEXP = MIP theorem directly to our situation.
Recall we want to derive a Succinct 3SAT algorithm that is nondeterministic and runs in less
than 2n time. Consider the algorithm:

SatAlg(x):
Nondeterministically guess a poly(|x|)-size circuit C.
Run a PPT algorithm A for checking Succinct 3SAT on x,

treating C as the oracle.
If AC(x) accepts then accept else reject.

Unfortunately, SatAlg is not a correct nondeterministic algorithm: it takes a nondeterministic
guess followed by a randomized computation A which could err when it rejects. So SatAlg(x)
could have an accepting computation path, when x is in fact a no-instance of Succinct 3SAT.
Moreover, it is not known how to convert arbitrary (two-sided error) PPT algorithms into efficient
nondeterministic ones. (Indeed, it is open whether BPP = NEXP; that is, probabilistic polynomial
time could be as strong as nondeterministic exponential time!) Could we possibly remove the use
of randomness in the checker? The NEXP = MIP result no longer holds when you replace PPT
algorithms with nondeterministic algorithms: a nondeterministic polynomial time algorithm that
consults an oracle could be only as powerful as NP itself!9

We seem to have failed to progress towards Theorem 2.4, but here’s a thought. Program checking
has an inherently black-box aspect: we only study the input/output behavior of a program (or
proof oracle, in the case of NEXP = MIP). But our particular box of interest (Succinct3Sat) is
very special; by assumption, it can be modeled with a small ACC circuit. In a nondeterministic
algorithm, we could guess this circuit and dissect its insides. Surely this extra information is useful.

4 Black Boxes Versus Circuits

What distinguishes a black box from a small circuit? If we could analyze circuits in a way which is
provably better than analyzing black boxes, perhaps we could improve on what boxes can offer in the
above. We can approach this improvement from two directions: try to find “easy” circuit-analysis
problems, or try to find “hard” black-box-analysis problems. Or we could try both.

Consider a black box that takes n inputs and prints a bit; we can query it repeatedly, and we
have to determine some property of it. What is the hardest simple black-box problem? I would
say that it is determining if the box will output a 1 on some input. If I want to determine this,
an annoying adversary could simply answer “0” to all my queries until the last one. So this simple
problem already requires 2n queries to solve – a hard black-box problem.

Can we solve the problem more efficiently if we put circuits in place of black boxes? Replacing
the black box with a circuit is precisely the Circuit Satisfiability problem. And if one were to define
“more efficiently” to be “polynomial time” then this is the P versus NP question. We should tread
lightly in this area of the jungle. Before proceeding further, let’s do a sanity check on our line of

9One can simulate a nondeterministic algorithm-with-oracle in NP, by simply guessing an accepting computation
path for the algorithm (along with prospective answers for the oracle queries along the way), then checking that the
oracle answers are consistent with each other. If there is no oracle that makes the nondeterministic algorithm accept,
then no accepting path can exist. However, if we considered co-nondeterministic algorithms with oracles, then we
recover NEXP again. This point will be revisited in Section 5.



thought, and assume the strongest “separation” between black-box hardness and circuit hardness.
Let’s assume Circuit SAT can be solved really efficiently, P = NP. Could we then prove our desired
circuit lower bound? Yes.

Theorem 4.1 (Karp-Lipton [KL80], attributed to Meyer) Suppose Circuit Satisfiability is
in P. If Succinct 3SAT were solvable with polynomial size circuits, then all problems solvable in
2n time would be solvable in polynomial time (therefore, Succinct 3SAT does not have polynomial
size circuits, by the time hierarchy theorem).

In fact, Meyer proves a stronger implication: if P = NP then EXP 6⊆ P/poly. That is, assuming
Circuit Satisfiability is in P, there is an exponential time computable function that doesn’t have
polynomial size circuits.

The idea of the proof is to set up a fast (contradictory) simulation of every 2n time algorithm
A, assuming both P = NP and EXP ⊆ P/poly. For simplicity let us assume A is a one-tape Turing
machine; the argument can be generalized for other models. On an input x, nondeterministically
guess a polynomial size circuit C that encodes the (exponentially long) computation history of
A; that is, the truth table T (C) of C is a valid computation history of A(x). Such a C exists if
EXP ⊆ P/poly. To verify C works correctly, we can universally (using co-nondeterminism) try all
steps i and all tape cells j, and verify that C makes consistent claims about the content of cell j
at step i, by comparing the claimed content at step i − 1 of cells j − 1, j, and j + 1. (As A is a
one-tape machine, the content of cell j can only be affected by that of j − 1, j, and j + 1 in the
previous step.) This only requires evaluating C at four different pairs of indices: (i, j), (i−1, j−1),
(i − 1, j), and (i − 1, j + 1), which can be done in polynomial time. If C makes consistent claims
about (i, j) for every i and j, then our simulation accepts iff C claims that A(x) accepts. This is
a Σ2P computation, where we start with a nondeterministic guess and then universally verify our
guess. But if P = NP then Σ2P = P, so we have simulated every 2n time algorithm A in polynomial
time, a contradiction to the time hierarchy theorem.

So the idea of using a circuit-analysis algorithm to prove a circuit lower bound has merit. But
ugh... P = NP? Do we really need such a strong (probably false) algorithmic assumption? One
can get away with a slower algorithm for Circuit SAT. We say that a function f : N → N is
“half-exponential” if f(f(nk)k) ≤ 2n/2 for all k > 1. Examples of half-exponential functions are

f(n) = npoly(logn) and f(n) = 22
poly(log log n)

. Carefully following the above argument, one can prove:

Theorem 4.2 (Karp-Lipton [KL80], attributed to Meyer) Assume Circuit Satisfiability is
in half-exponential time. Then EXP 6⊆ P/poly.

Now how plausible is this assumption? Unfortunately, it looks quite hard to find even a 2n
ε
time

algorithm for Circuit SAT for some ε < 1. (Note, 2n
ε
is much larger than half-exponential.) The

state of the art in satisfiability algorithms far from half-exponential time, although steady progress
has been made since Monien and Speckenmeyer [MS85]. They showed that for every k, there is an
αk < 1 such that k-SAT is solvable in 2αkn time, but limk→∞ αk = 1. Many improvements on the
values of αk have been found over the years (e.g., [Sch92, Sch02, PPSZ05, MS11, Her11]), but no
one has found an algorithm for 3SAT that runs in 2αn time for every α > 0. The Exponential Time
Hypothesis of Impagliazzo and Paturi [IP01] states that 3-SAT (and hence, Circuit SAT) requires
2αn time for some α > 0, and a majority of researchers believe this hypothesis.



5 Backtrack

We have reached an impasse, so let’s review how we got here. We wanted to prove that, if Succinct
3SAT can be solved in ACC, then we can design a faster-than-2n nondeterministic algorithm for
Succinct 3SAT (a contradiction). We started by imagining a nondeterministic algorithm which
guesses a polynomial size circuit for Succinct 3SAT and checks correctness of that circuit, but
that seemed impossible to efficiently implement directly. Using the ideas behind NEXP = MIP, we
proposed an algorithm SatAlg that guesses an “oracle circuit” and verifies that, but the verification
doesn’t seem to be implementable nondeterministically. We concluded that the black-box nature
of NEXP = MIP made it insufficient for our purposes, so we began looking for circuit-analysis
problems that are easier than the corresponding black-box problems. Examining an argument of
Karp-Lipton-Meyer, we found that a half-exponential algorithm for Circuit Satisfiability would
imply circuit size lower bounds. But such an algorithm may not exist. Here are two observations:

1. If we assume NEXP has small circuits, then all sorts of expensive computations can be captured
with small circuits. So with a nondeterministic algorithm, we could always guess more circuits
encoding additional information that may help verify other circuits.

2. We have not yet used any particular properties of ACC circuits: all of our considerations
would apply equally well for P/poly.

Let’s focus on the first point; the second will be handled later. Impagliazzo, Kabanets, and
Wigderson [IKW02] proved that if NEXP ⊆ P/poly, then not only does Succinct 3SAT have
polynomial size circuits, but in fact for every circuit succinctly representing a satisfiable 3-CNF
formula, there is another circuit succinctly representing a satisfying assignment for that formula.

Let T (x) be the truth table of a string x, provided x is encoded as a circuit. (If x does not

encode a valid circuit, let T (x) = 02
|x|
.) For a circuit x, let Fx be the 3-CNF formula encoded by

T (x). (If T (x) does not encode a 3-CNF, let Fx be the trivially false formula.)

Theorem 5.1 ([IKW02]) Suppose NEXP ⊆ P/poly. Then for every x ∈ Succinct 3SAT, there
is a circuit Wx of poly(|x|) size and O(|x|) inputs such that T (Wx) is a satisfying assignment to
the formula Fx.

The proof is an ingenious mixture of results on “hardness versus randomness” and good old-
fashioned diagonalization; we do not have space to describe it here, but encourage the reader to
take a look. It is not hard to show that if NEXP ⊆ ACC, then these “satisfying assignment circuits”
can be assumed to also be ACC:

Corollary 5.1 Suppose NEXP ⊆ ACC. Then for every x ∈ Succinct 3SAT, there is an ACC

circuit Wx of poly(|x|) size and O(|x|) inputs such that T (Wx) is a satisfying assignment to the
formula Fx.

Proof. NEXP ⊆ ACC implies NEXP ⊆ P/poly, so every x ∈ Succinct 3SAT has a succinct
satisfying assignment represented by a circuit, Wx. Since P ⊆ ACC, it follows that the Circuit

Value Problem has polynomial size ACC circuits.10 Therefore fromWx, there exists an equivalent

10Recall the Circuit Value Problem is: given a circuit C and input x, does C(x) = 1?



ACC circuit W ′

x, obtained by simply plugging in an encoding of Wx into the inputs of an ACC circuit
for the Circuit Value Problem. �

(Notice again that we still have not used specific properties of ACC in the above proof.) Hence
if NEXP were solvable with small ACC circuits, then every problem with an extremely long solution
would always have some solution with an extremely efficient ACC representation.

This prompts the idea: rather than guessing a circuit for Succinct 3SAT, or an oracle circuit
that’s verifiable with randomness, why not guess a circuit encoding a satisfying assignment for our
given instance? Perhaps this is easier to check. We are immediately led to:

SatAlg2(x):
Nondeterministically guess a poly(|x|)-size circuit Wx.
If T (Wx) encodes a satisfying assignment to Fx = T (x), then accept else reject.

Verifying that Wx encodes a satisfying assignment to Fx can be done in exponential time, by
evaluating Wx on all inputs obtaining T (Wx), evaluating x on all inputs obtaining Fx, then checking
that T (Wx) satisfies Fx. Provided NEXP ⊆ P/poly, SatAlg2 will correctly solve Succinct 3SAT,
by Theorem 5.1. Now the interesting question is, can SatAlg2 be implemented to run in 2n−ω(log n)

time, assuming NEXP ⊆ P/poly? If yes, we will have finally contradicted Theorem 2.3, the time
lower bound for Succinct 3SAT.

Checking that a variable assignment satisfies a 3-CNF formula can be done using an amount
of workspace that is only logarithmic in the size of the formula and assignment. Hence SatAlg2

can be implemented to run in only polynomial space. Try all possible polynomial size circuits Wx,
and for each Wx, run a logspace algorithm A for checking satisfiability as follows: when A needs a
bit of Fx, evaluate the circuit x on the appropriate index; when A needs a bit of the assignment,
evaluate Wx on the appropriate index. This way, we do not have to hold the entire formula or
assignment in memory at once, and we’ll take only polynomial space. So if we could solve this
polynomial space problem faster than 2n, we could solve Succinct 3SAT in less than 2n time,
getting a contradiction.

This still looks algorithmically difficult to implement in faster than 2n time; can the complexity
of checking be reduced even further? To verify that an assignment satisfies a 3-CNF formula, one
checks for all clauses that the assignment satisfies at least one of three literals in the clause. We can
“iterate over all clauses” by feeding different inputs into the circuit x. We can compute the three
literals of a particular clause of Fx by evaluating x at O(|x|) inputs. We can compute the values
of those three literals, under the assignment T (Wx), by feeding three appropriate inputs into Wx.
The picture of how to determine whether the ith clause of Fx is satisfied by T (Wx) looks like this:

x

i

(¬z1 ∨ z2 ∨ ¬z3)
Wx Wx Wx

∨
D:



In this picture, the ith clause of Fx is (¬z1 ∨ z2 ∨¬z3), and D(i) = 1 iff the variable assignment
encoded by Wx satisfies the ith clause of the formula encoded by x. But for every i, x can be rigged
to print the ith clause of Fx, which can then be checked against Wx. It follows that the circuit ¬D
is unsatisfiable if and only if the variable assignment encoded by Wx satisfies the 3CNF formula
encoded by x. We have reduced the exponential time check of SatAlg2 to Circuit Satisfiability!
Let’s give a revised version of our Succinct 3SAT algorithm:

SatAlg3(x):
Nondeterministically guess a poly(|x|)-size circuit Wx.
Construct the circuit D made up of x and Wx.
Accept iff ¬D is unsatisfiable.

If Circuit SAT is solvable in 2n−ω(logn) time for poly(n)-size circuits, then SatAlg3 can be
implemented to run in 2n−ω(logn) time. But SatAlg3 solves Succinct 3SAT, contradicting
Theorem 2.3. We have established:

Theorem 5.2 ([Wil10]) Assume Circuit SAT on circuits with n inputs and poly(n) size is solvable
in 2n−ω(logn) time. Then NEXP is not in P/poly.

This assumption appears to be more plausible. The best known algorithms for general CNF-
SAT [Sch05, DH08, CIP06] run faster than 2n−ω(log n); there are even AC

0-SAT algorithms that beat
this running time [CIP06, IMP11]. However it does not look easy to generalize these algorithms to
unrestricted polysize circuits.

6 Enter ACC

We are now ready to think about how to incorporate ACC into our arguments. We have found
that faster Circuit SAT (an algorithmic upper bound) implies Succinct 3SAT is not in P/poly
(a circuit lower bound). Informally, this is because “Succinct 3SAT has small circuits” implies
that we can guess small representations of exponentially long information, and a faster Circuit SAT
algorithm can help verify the correctness of the small representations. Together, the two result in a
faster nondeterministic algorithm for Succinct 3SAT, contradicting a known time lower bound.

Ideally, one would hope that this upper bound / lower bound connection can be extended to
other circuit classes, not just P/poly. For each circuit class C, we may define a corresponding C-SAT
problem: given a generic circuit from the class C, is it satisfiable? As mentioned above, very little
is known about the worst-case time complexity of this problem.

If we could design a faster-than-2n algorithm for C-SAT, that should intuitively help prove a
lower bound against circuits from C: we have determined a property of circuits from C that is
quantitatively easier than the corresponding property for black boxes.

6.1 Spinning restricted Circuit SAT into restricted circuit lower bounds

What goes wrong in SatAlg3 when we assume that only ACC-SAT can be solved in less than 2n

time? Applying Corollary 5.1, if NEXP ⊆ ACC then every satisfiable Succinct 3SAT instance
x (construed as a circuit) has a polynomial size ACC circuit W ′

x such that T (W ′

x) is a satisfying



assignment for Fx = T (x), the formula encoded by x. This means we could guess an ACC circuit
W ′

x instead of Wx in SatAlg3. But what about the circuit x itself? There is no restriction on
x, because the definition of Succinct 3SAT lets x be arbitrary. So the resulting circuit D that
we produce to check x and W ′

x will be unrestricted as well. Hence an ACC-SAT algorithm won’t
necessarily run correctly on D.

However, assuming P ⊆ ACC, Corollary 5.1 tells us that for every polysize circuit x, there exists
an equivalent, polynomial size ACC circuit x′. Again, this is because the Circuit Value Problem

is in ACC, hence we can simulate the behavior of all unrestricted circuits using ACC circuits. So we
could try to guess this ACC circuit x′, and use that in place of x in the construction of the circuit
D. Then, the circuit D will have an ACC circuit x′ composed with three copies of an ACC circuit
W ′

x, which will altogether be an ACC circuit. That is, we are proposing the following modification
to SatAlg3:

SatAlg4(x):
Nondeterministically guess a poly(|x|)-size ACC circuit W ′

x.
Nondeterministically guess a poly(|x|)-size ACC circuit x′.
Verify that x and x′ are equivalent (???)
Construct the ACC circuit D made up of x′ and W ′.
Accept iff ¬D is unsatisfiable.

SatAlg4 now checks the satisfiability of an ACC circuit, rather than an unrestricted circuit.
By an argument analogous to what we gave for SatAlg3, a 2n−ω(log n) algorithm for ACC Circuit
SAT for n-input poly(n)-size circuits would appear to give our desired nondeterministic algorithm
for Succinct 3SAT.

However, as the (???) indicates, there remains a hole to be filled in. We have to verify that
the input x and our guess x′ are really computing the same function. Can that be done with a
faster ACC-SAT algorithm? The usual way of checking equivalence of x and x′ would be to set up
a Circuit SAT instance of the form

E(i) = (x(i) ∨ x′(i)) ∧ (¬x(i) ∨ ¬x′(i)),

and check if E is satisfiable. But this E contains a copy of the unrestricted circuit x, so E is
also unrestricted! It seems hopeless to turn E into an ACC satisfiability question. We could guess
an equivalent ACC circuit E′, but that wouldn’t seem to help; we’d then have to verify that E is
equivalent to E′, and E,E′ are only larger than x, x′.

This is an annoying and impossible-looking problem. The key to solving it is to use the as-
sumption that NEXP has small circuits, and guess small “helper” circuits in the Succinct 3SAT

algorithm. If NEXP ⊆ ACC then many types of functionality could be guessed in ACC form; if
we choose the right functionality, our ACC circuit SAT algorithm can help verify the functionality.
We must also avoid an infinite regress: eventually we must have some guessed circuits that can be
directly checked for correctness.

What else can we guess? We want to obtain an ACC x′ that’s provably equivalent to the input
x, in the sense that both circuits produce the same outputs. But the output of a circuit is only one
bit of information. Why not guess an ACC circuit that captures even more information about x?
When we construe x as a circuit and evaluate it on input i, many bits of information are produced:
on an input i, bit values are carried along every wire in x. Assuming P ⊆ ACC, these bits can



be produced in ACC: there are poly(n)-size ACC circuits C which take as input an (unrestricted)
circuit x described in n bits, an input i to x, and an integer j, such that

C(x, i, j) prints the value output by the jth gate of the circuit x, when x is evaluated on input i.

(Determining this value can be done in polynomial time given (x, i, j), so if P ⊆ ACC then there
are ACC circuits that can determine the value.) Provided we have a circuit C meeting the above
specification, then for every i we have x(i) = C(x, i, j⋆), where j⋆ is the index of the output gate
of x. By setting x′ = C(x, ·, j⋆), we have an ACC circuit equivalent to x.

Supposing we guess this circuit C, we have to verify it is correct on our input x. At this point,
it appears we have made our job only harder, since C takes strictly more inputs than our original
guess x′ did! But by forcing the guessed circuit to print more valid information about x, we can
more easily verify that all the information is correct.11 For instance, if we find an AND gate j in
x where the values output by C(x, i, ·) imply that j receives the inputs 1 and 0, but C(x, i, j) = 0,
then we have detected an error in C. Conversely, if C(x, i, ·) manages to make consistent claims
about the inputs and outputs of every gate of x on input i (that is, OR gates always output the
OR of their inputs, ANDs always output the AND of their inputs, NOTs always negate), then we
know that C’s claim about the final output of x(i) must also be correct.

We can think of C as encoding a satisfying assignment to an exponentially large constraint
satisfaction problem: for every input i to the circuit x and every gate j of x, the (i, j) constraint is
that C’s claimed inputs to gate j in the evaluation of x(i) are consistent with C’s claimed output
of gate j. This constraint satisfaction problem has a succinct description – namely, the circuit x
itself. Every circuit x with s gates can be represented as a set of tuples

Sx = {〈j, j1, j2, g〉 | j = 1, . . . , s; j1, j2 < j; g ∈ {AND, OR, NOT, INPUT}} .

The tuple 〈j, j1, j2, g〉 says that the jth gate of x takes its inputs from the output of gate j1, the
output of gate j2, and j has gate type g.12 (For j = 1, . . . , n, we use the convention that gate j
corresponds to the jth bit of input, so the integers j1 and j2 equal 0, and g = INPUT.) From the
set Sx, we can define a function Gx which takes j as input and prints the rest of the tuple 〈j1, j2, g〉
from Sx. Since the number of all possible inputs to Gx is only s (the number of gates in x), Gx

can be implemented in Boolean logic with an O(log |x|)-size collection of CNF formulas, each with
O(log |x|) variables and O(|x|) clauses.

So to check that a guessed ACC circuit C is correct, we can use the following ACC circuit:

11There is a similar principle behind error-correcting codes: by appending a message with more information about
the message, one can still verify the content of the original message if some bits get flipped. The principle can also
be seen in the technique of algebrization, where in order to better manipulate a Boolean function f(x1, . . . , xn), one
“lifts” f to a low-degree multivariate polynomial p which is equivalent to f on the set {0, 1}n. Querying p on points
outside of the set {0, 1}n, one can often gain considerable advantages in verifying and manipulating f .

12Without loss of generality, we may assume every gate of the circuit has at most two inputs.
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The O(1)-size circuit t takes bits b1, b2 (from j1, j2) a bit b (from j), and a gate type g;
t(b1, b2, b, g) = 1 iff g(b1, b2) = b. For example, t(1, 0, 1, OR) = 1, since OR(1, 0) = 1.

For a given i, E(i, j) = 1 for all j iff C outputs the correct value of every wire in x(i). Now
define

E′(i) =
n
∧

j=1

[C(x, i, j) ⇔ xj] ∧
s
∧

j=n+1

E(i, j).

(The first group of ANDs check that C represents the input gates correctly.) The circuit E′ is
also ACC, has exactly the same number of inputs as the circuit x, and ¬E′ is unsatisfiable iff C is
correct on all inputs i to x. Our modified algorithm now looks like:

SatAlg5(x):
Nondeterministically guess a poly(|x|)-size ACC circuit W ′.
Nondeterministically guess a poly(|x|)-size ACC circuit C.
Construct the collection of CNFs representing Gx.
Construct the ACC circuit ¬E′ made up of C and Gx.
If ¬E′ is satisfiable then reject
/⋆ at this point, C must be correct ⋆/
Define x′ = C(x, ·, j⋆) where j⋆ corresponds to the output gate of x.
Construct the ACC circuit D made up of x′ and W ′.
Accept iff ¬D is unsatisfiable.

We have finally reached a correct algorithm for Succinct 3SAT (under the assumption that
NEXP ⊂ ACC) with the property that if ACC satisfiability can be solved faster than 2n, then
SatAlg5 can be implemented to run faster than 2n, yielding our desired lower bound.

Theorem 6.1 ([Wil11]) If ACC Circuit SAT can be solved on circuits with n inputs and nk size
in 2n−ω(logn) time for every k, then NEXP is not contained in ACC.

We only needed a few basic closure properties of ACC in the above argument: if you take a
polynomially large AND of different ACC circuits, then the result is still an ACC circuit; given two
ACC circuit families {Cn} and {Dn}, if you define a circuit family {En} by the rule En(x1, . . . , xn) =
Cnk(Dn(x1, . . . , xn), . . . ,Dn(x1, . . . , xn)) for some fixed k, this “composition” of {Cn} and {Dn} is
also an ACC circuit family. Most well-studied circuit classes satisfy these composition properties,



so the above considerations apply to them as well: faster circuit satisfiability for a restricted class
C entails lower bounds for solving problems in C. Intuitively, the difficulty faced by researchers
who design fast algorithms for verification of certain kinds of circuits is related to the difficulty of
proving that certain problems can’t be efficiently solved with these kinds of circuits.

6.2 ACC Circuit Satisfiability

It remains to prove that ACC circuit satisfiability really does have a faster algorithm. We can dis-
cover this algorithm by studying a known decomposition result for ACC circuits, from work initiated
by Yao [Yao90], continued by Beigel and Tarui [BT94], Allender and Gore [AG94], and Green et
al. [GKRST95]. The decomposition result says that every ACC circuit family can be expressed as
a family of functions {gn(hn(x1, . . . , xn))}, where hn is a “sparse” multilinear polynomial, and gn
is a “sparse” lookup table.

Lemma 6.1 ([Yao90, BT94, AG94]) There is an algorithm and function f : N × N → N such
that given an ACC circuit C with MODm gates of n inputs, depth d, and size s, the algorithm outputs
a function g : {0, . . . ,K} → {0, 1} and a multilinear polynomial h(x1, . . . , xn) with K monomials,

such that C ≡ g ◦ h, where K = 2O(logf(d,m) s). The algorithm takes at most Õ(K) time.

Call this transformation the polynomial decomposition for ACC. The function f(d,m) is esti-
mated to be no more than mO(d). The high-level idea behind the decomposition is to first convert
every OR and AND gate in the ACC circuit to low-degree polynomials (i.e., low fan-in ANDs of
MOD2 gates) using randomness, “push” these low fan-in ANDs down to the bottom of the circuit,
derandomize the construction using pairwise independence and a MAJORITY gate at the top, then
use more sophisticated polynomial tricks to “push” the remaining layers of MOD gates into the
top gate, which remains a symmetric function throughout the transformation. At the end, what
remains is a symmetric function of a quasipolynomial number of ANDs, which can be represented
by a g of h in the above manner. Of course this is a very rough description; the reader should check
the references for more details.

What does this polynomial decomposition algorithm say about solving satisfiability for ACC?
Razborov and Smolensky’s lower bounds on AC

0[p] can be seen as “approximations by polynomi-
als” – they show that small AC0[p] circuits can be approximated on many points by low-degree
polynomials, so limitations on representing functions with low-degree polynomials can be ported
over to limitations on AC

0[p]. Lemma 6.1 allows the polynomial h to output a number of possible
values; those values are then filtered down to a single bit by another function g. While we may not
approximate an ACC circuit very well with a polynomial, we can still simulate a great deal of the
computation in an ACC circuit with a polynomial: after the evaluation of the polynomial h, we are
only a g-evaluation away from the ACC circuit’s output. (In fact, Green et al. [GKRST95] prove
that g can be made a specific, simple function: the “middle bit” function.)

Polynomials are nice, but what good do they serve for satisfiability algorithms? The short
answer is: the Fast Fourier Transform. Less ambiguously, if we are given a multilinear polynomial
in its coefficient representation (we are told the coefficients of the 2n possible monomials), then
we can determine that polynomial’s value on all points in {0, 1}n, in only O(2n · poly(n)) time.
That is, from the coefficient representation of the polynomial we can quickly compute the point
representation. This is very nice; we are spending only poly(n) time per evaluation point, even
though our original polynomial could have been arbitrary – it could have 2n different coefficients!



There are several ways to derive a Coefficient-To-Point algorithm. Perhaps the most nat-
ural one is a recursive strategy. We are given a multilinear polynomial p(x1, . . . , xn), and wish to
compute a table T of 2n entries such that

T = [p(0, . . . , 0, 0), p(0, . . . , 0, 1), . . . . . . , p(1, . . . , 1, 0), p(1, . . . , 1, 1)] .

If n = 1, we can return T = [p(0), p(1)] in unit time. When n > 1, because p is multilinear we can
write it as

p(x1, . . . , xn) = x1q1(x2, . . . , xn) + q2(x2, . . . , xn).

That is, we can split p into sums of monomials which include x1, and sums of monomials which
do not include x1. Recursively calling our algorithm on q1 and q2, we receive two tables T1 and
T2 of 2n−1 numbers each. Notice that p(0, x2, . . . , xn) = q2(x2, . . . , xn), and p(1, x2, . . . , xn) =
q1(x2, . . . , xn) + q2(x2, . . . , xn). Therefore the corresponding 2n size table for p is

T =
[

T2[1], . . . , T2[2
n−1], T1[1] + T2[1], . . . , T1[2

n−1] + T2[2
n−1]

]

.

The merging of tables can be done in O(2n · poly(n)) time, so the running time recurrence is

R(2n) = 2 ·R(2n−1) +O(2n · poly(n)),

which solves to O(2n · poly(n)).13

How can a Coefficient-To-Point algorithm lead to a faster ACC SAT algorithm? There
seem to be two sticking points.

1. The above works directly on a multilinear polynomial h, but we need an algorithm that works
for a g of an h.

2. The above runs in 2n time, but we need a SAT algorithm that runs faster than 2n.

Addressing the first point is straightforward. We can evaluate h on all 2n points, and after we
have produced the 2n table, we can determine all the distinct numbers in the table and check if
some number makes g output 1. Since h is a “sparse” polynomial, the total number of different
numbers in T is “sparse” so this can be done in less-than-2n time.

The second point looks more difficult to overcome. To apply Coefficient-To-Point and get
less-than-2n time, we need to work with a polynomial that has fewer than n variables. This would
seem to require that our original ACC circuit has fewer than n inputs – something we are not willing
to concede.

There is a trick to circumvent this problem, and it exploits two observations. First, note the
circuit satisfiability problem amounts to asking if the OR of some 2n circuits (with no free variables)
evaluates to 1. Second, if we take an OR of many copies of an ACC circuit of depth d, the result is
an ACC circuit of depth d+ 1, because ACC circuits allow for OR gates of unbounded fan-in.

Suppose we take a subset of k of the n inputs to an ACC circuit C, evaluate C on all 2k possible
values of this subset, then take the OR of these 2k circuit copies induced by the different evaluations.
The resulting circuit C ′ has the properties:

13Here we are assuming that the sizes of coefficients in the polynomial p are negligible, so the bit-complexity of
arithmetic does not play a significant role in the running time. This assumption is valid for the polynomials we are
considering.



• C ′ has only n− k free inputs.

• If C had size s, then C ′ has size at most 2k · s.

• C ′ is still an ACC circuit.

• C is satisfiable iff C ′ is satisfiable.

Call this transformation the k-blowup of the circuit C. Basically, we have “brute-forced” the SAT
problem for C on a k-subset of the inputs to C. This blows up the size, but it decreases the number
of input variables, something we are interested in doing, but with polynomials. However, because
C ′ is an ACC circuit, we can still perform a polynomial decomposition on the circuit C ′, then work
with the underlying (n− k)-variate polynomial.

Now we are ready to stitch together the ACC satisfiability algorithm, which is given a circuit C
with n inputs and s size.

ACCSat(C):

Let k = n1/(2f(d,m)).
Compute C ′, the k-blowup of C, which has size ≤ 2ks.
Decompose C ′ into g ◦ h,

where h has n− k variables and K = 2O(kf(d,m)+logf(d,m) s) monomials.
Evaluate h on all 2n−k points in O(2n−kpoly(n) +K) time.
Output satisfiable iff g ◦ h equals 1 on at least one point.

When s ≤ 2n
o(1)

, we have K = 2n
1/2+o(1)

and ACCSat runs in about 2n−n1/(2f(d,m))
time.

Theorem 6.2 ([Wil11]) ACC Circuit Satisfiability for subexponential size circuits can be com-
puted in 2n−nε

time, for some ε > 0 which depends on the depth and modulo gates of the input
circuit.

Combining this with Theorem 6.1, we conclude that Succinct 3SAT is not in ACC.

7 Further Directions

There are two obvious directions to continue in:

• Find an easier problem that is not in ACC. It is possible the ideas here may be extended
to find an EXP problem (not just NEXP) which isn’t in ACC. More precisely, faster C-SAT
for a circuit class C ought to lead to EXP 6⊆ C. Here is my extremely hand-wavy argument for
this. Intuitively, a faster C-SAT algorithm reveals a weakness in representing computations
with C circuits. The class C is not like a set of black boxes: these circuits cannot hide a
satisfying input so easily. Moreover, a faster SAT algorithm for C highlights a strength of
algorithms that run in less-than-2n time: they can solve nontrivial satisfiability problems on
circuits from C. That is, my intuition is that a faster C-SAT algorithm shows “less-than-2n

algorithms are strong” and “C-circuits are weak” – so perhaps 2n time can be separated from
C-circuits using satisfiability algorithms alone.



• Prove stronger circuit lower bounds for Succinct 3SAT. In order to separate NEXP

from a circuit class C, we need only design faster satisfiability algorithms for C-circuits. In
fact, it suffices to find a faster algorithm for the problem: given a circuit C ∈ C where you are
promised that either C is unsatisfiable or C accepts 1/2 of its inputs, determine which is the
case.14 Hence we only need to derandomize certain promise problems to establish the lower
bounds. So far I have personally found it convenient to think about satisfiability directly, but
eventually we will probably find the promise problem to be an easier chore.

There are several other not-so-obvious directions. One possibility is to prove almost-everywhere
ACC circuit lower bounds. Right now we can only say that ACC circuits can’t solve Succinct 3SAT

on infinitely many input lengths. But we don’t believe that some input lengths are inherently easier
than others, so our lower bound ought to be extendable to all but finitely many input lengths.

Another angle is to try proving new separations of uniform complexity classes. Can we prove
NP is not equal to uniform ACC, where a single efficient algorithm given input 0n can construct
the nth circuit in the family? Can some of the ideas here be used to finally prove NEXP 6= BPP?

Finally, much of our analysis centered around specific properties of Succinct 3SAT. Might it
be the case that other “Succinct” problems are useful for lower bounds, too?

Acknowledgments. I thank Anup Rao for an inspiring discussion, and Virginia for her patience
while I was finishing this article.
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[GKRST95] F. Green, J. Köbler, K. W. Regan, T. Schwentick, and J. Torán. The power of the
middle bit of a #P function. J. Computer and System Sciences 50(3):456–467, 1995.

[GGHKR08] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Rothblum. A
(de)constructive approach to program checking. In STOC, 143–152, 2008. Full version: ECCC
TR07-047, 2007.
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