
Algorithms for Maximal Ind. Set

Exposition by William Gasarch



Credit Where Credit is Due

This talk is based on parts of the AWESOME book

Exact Exponential Algorithms
by

Fedor Formin and Dieter Kratsch



What is Maximum Ind Set?

Definition: If G = (V ,E ) is a graph then I ⊆ V is an Ind. Set if
(∀x , y ∈ V )[(x , y) /∈ E ]. The set I is a MAXIMUM IND SET if it
is an Ind Set and there is NO ind set that is bigger.

Goal: Given a graph G we want the SIZE of the Maximum Ind.
Set. Obtaining the set itself will be an easy modification of the
algorithms which we will omit.
Abbreviation: MIS is the Maximum Ind Set problem.

BILL - Do examples and counterexamples on the board.



Why Do We Care About MIS?

1. MIS is NP-complete.

2. MIS comes up in applications (so my friends in systems tell
me).



OUR GOAL

1. Will we show that MIS is in P?

NO.

Too bad.

If we had $1,000,000 then we wouldn’t have to worry about
whether the REU grant gets renewed.

2. We will show algorithms for MIS that

2.1 Run in time O(αn) for various α < 1. NOTE: By O(αn) we
really mean O(p(n)αn) where p is a poly. We ignore such
factors.

2.2 Quite likely run even better in practice.
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2MIS

If all of the degrees are ≤ 2 then the problem is EASY.
BILL- HAVE THEM DO THIS.



IMPORTANT DEFINITION

If G = (V ,E ) is a graph and v ∈ V then

N[v ] = {v} ∪ {u | (v , u) ∈ E}.

The NEIGHBORS of v AND v itself.



MIN DEG ALGORITHM

ALG(G = (V ,E ): A Graph)

v = v e r t e x o f min d e g r e e
f o r u ∈ N[v ]

mu = ALG (G − N[mu])
m = min{mu | u ∈ N[v ]} .
RETURN(1 + m )

BILL: TELL CLASS TO FIGURE OUT WHY WORKS.



Analysis

Let N[v ] = {v , x1, . . . , xd(v)}.

T (n) ≤ 1 + T (n − d(v)− 1) +
∑d(v)

i=1 T (n − d(xi )− 1)

≤ 1 + T (n − d(v)− 1) +
∑d(v)

i=1 T (n − d(v)− 1)
≤ 1 + (d(v) + 1)T (n − (d(v) + 1))

BILL: HAVE CLASS ANALYSE T (n) = 1 + sT (N − s). THEN DO
ON BOARD.



HOW GOOD?

1. Runs in T (n) = O((31/3)n) ≤ O((1.42)n).

2. Works well on high degree graphs until they become low
degree graphs.

3. Upshot: Would not use in practice.

4. Makes more sense to take High degree nodes.



MAX DEG ALG

ALG(G )

1. If (∃v)[d(v) = 0] then RETURN(1 + ALG (G − v).

2. If (∃v)[d(v) = 1] then RETURN(1 + ALG (G − N[v ]).

3. If (∀v)[d(v) ≤ 2] then CALL 2-MIS ALG.

4. If (∃v)]d(v) ≥ 3] then

4.1 Let v∗ be of max degree
4.2 Return MAX of 1 + ALG (G − N[v∗]), ALG (G − v∗).

BILL- HAVE CLASS DISCUSS WHY WORKS.



ANALYSIS

T (n) ≤ T (n − d(v)− 1) + T (n − 1)
T (n) ≤ T (n − 4) + T (n − 1)

Guess T (n) = αn

αn = αn−4 + αn−1

α4 = 1 + α

α4 − α− 1 = 0

α ∼ 1.38.



HOW GOOD?

1. Runs in T (n) = O((1.38)n).

2. Works well on high degree graphs until they become low
degree graphs. But better than Min-Degree alg.

3. WORKS really well in practice.

It works in practice— can we make it work in theory?
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BETTER ANALYSIS

Need to MEASURE progress better.

1. We measure a node of degree ≤ 1 as having weight ZERO.

2. We measure a node of degree 2 as having weight 1
2 .

3. We measure a node of degree ≥ 3 as having weight ONE.

SO we view |V | as

1

2
(number of verts of degree 2) + (number of verts of degree 3)

We still refer to this as n.



BETTER ANALYSIS

Have picked v∗.

1. Assume there are no vertices of degree ≤ 1 (else would not be
in v∗ case)

2. Assume v∗ has d2 vertices of degree 2.

3. Assume v∗ has d3 vertices of degree 3.

4. Assume v∗ has d≥4 vertices of degree ≥ 4.



BETTER ANALYSIS OF G − N[v ] CASE

G − N[v∗]:

1. Loss of v∗ is loss of 1.

2. Loss of d2 vertices of degree 2: Loss is d2
2 .

3. Loss of d3 vertices of degree 3: Loss is d3.

4. Loss of d≥4 vertices of degree ≥ 4: Loss is d≥4.

Total Loss: 1 + d2
2 + d3 + d≥4.

Work to do:

T (n − (1 +
d2
2

+ d3 + d≥4))



BETTER ANALYSIS OF G − v CASE

G − v∗:

1. Loss of v∗ is loss of 1.

2. The d2 verts of deg 2 become d2 verts of deg ≤ 1. Loss is d2
2 .

3. The d3 verts of deg 3 become d3 verts of deg ≤ 2. Loss is d3
2 .

4. The d≥4 verts of deg ≥ 4. No Loss.

Total Loss: 1 + d2
2 + d3

2 .
Work to do:

T (n − (1 +
d2
2

+
d3
2

))



TOTAL ANALYSIS

T (n) ≤ T (n − (1 + d2
2 + d3 + d≥4)) + T (n − (1 + d2

2 + d3
2 ))

≤ T (n − 1) + T (n − (1 + d2 + 3d3
2 + d≥4))

≤ T (n − 1) + T (n − (d(v∗) + 1))

1. If d(v∗) ≥ 4 then get

T (n) ≤ T (n − 1) + T (n − 5)

BILL- HAVE STUDENTS DO.

2. If d(v∗) = 3 then BILL- HAVE STUDENTS DO.



HOW GOOD?

1. Runs in T (n) ≤ O((1.3248)n).

2. Using cleverer choice of weights can get O((1.2905)n). (Deg2
nodes weigh 0.596601, Deg3 nodes weigh 0.928643, Deg4
nodes weigh 1.)

3. Works well on high degree graphs until they become low
degree graphs. But better than Min-Degree alg.

4. WORKS really well in practice, and this analysis may say why.



BEST KNOWN

Best known runs in time

O((1.2109)n).

1. Order constant is REASONABLE.

2. LOTS of cases depending on degree.

3. Sophisticated analysis.

4. Good in practice? A project for NEXT YEARS REU!!!!


