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1. Introduction 

There has been a great deal of interest lately in cryptographic protocols. Vaguely, a 
cryptographic protocol is a mean whereby two or more people can interact in such a 
manner as to exchange a certain amount of information, while keeping other information 
secret (either from one of the participants or from another party). 

One interesting task for which one would like a protocol is the "oblivious transfer" 
introduced by Rabin in [4]. This involves two parties A and B; A would like to send a 
message of some sort to B, with the constraint that B has a 50% chance of receiving 
the message, and the other half of the time B receives no information at all about the 
message. The additional constraint is that A has no idea whether or not B received the 
message. Oblivious transfer can be viewed as a special type of coin tossing. Although 
it is not useful in and of itself, it appears to be very useful as a means towards other 
ends, and in fact has been used in a number of other protocols by a number of different 
researchers [1]-[3]. 

In [4], Rabin proposed a protocol for the oblivious transfer. It was intended that 
the protocol be correct, assuming only that it is hard to factor certain large composite 
numbers. However, as described below, there is a potential flaw in his protocol; it is 
possible that B can cheat and obtain extra information from A, even if the assumption 
about the difficulty of factoring is true. Although we cannot prove that B can cheat in 
this way, no one has yet been able to prove that B cannot. In Section 4 we present a new 
protocol for the oblivious transfer. It is similar to Rabin's, but we fix the potential flaw so 
that it is possible to prove that our protocol works, subject only to the assumption about 
the difficulty of factoring. 
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2. An Informal Discussion of  the Oblivious Transfer, and Rabin's Protocol 

Although it could be defined more generally, our definition of  the oblivious transfer will 
assume the message to be sent is the factorization of  a number m. 

Let m be an (at most) n bit number which is the product of  two (at most) n/2  bit odd 
primes. Say that A knows the factorization of m but B only knows the number m. A 
and B do not trust each other, but wish to interact in such a way that with probabili ty 
1/2 B learns the factorization of  m, and with probabili ty 1/2 B is not able to factor m. 
In addition, A should have no idea which of  the two cases hold. Before expressing this 
more rigorously, we describe Rabin 's  proposed protocol. 

Rabin's proposed protocol for the oblivious transfer 

We assume that A and B both know the number m, and that A knows the factorization. 

step 1. B chooses a r a n d o m x  6 {xll < x < m, a n d x  andm are relatively prime} = 
Z,~. B then computes y = x 2 mod m and sends y to A. 

step 2. A computes a random square root (modm)  z of y, and sends z to B. (If no 
square root exists, then A does nothing.) 

step 3. B checks that z 2 = y mod m, and if  not output "c" for cheating. (See the 
formal definition in Section 3.) Let us assume that z 2 = y mod m. Now it 
is well known that y has 4 square roots mod m, which can be written as 
{x, - x ,  w, - w } ,  where B knows x. With probabili ty 1/2, z will be x or - x ,  
and hence B receives no information. (In this case, B outputs "?" in order 
to conform with the formal definition in Section 3.) With probabili ty 1/2, 
however, z will be w or - w ,  and in this case gcd(m, x - z) will be a factor of 
m, allowing B to output the factorization of  m. 

Discussion of Rabin's protocol 

A cannot cheat by sending back some cleverly chosen square root z of  y: no matter what 
A does, z 6 {x, - x }  with probabili ty 1/2, and z 6 {w, - w }  with probabili ty 1/2, and 
A can have no idea which is the case. 

Is it clear, however that B cannot cheat? We wish it to be the case that B cannot factor 
m with probabili ty (much) bigger than 1/2, even if B cheats, and we wish to prove this 
assuming only that factoring is difficult. What  if B chooses to send a y which is not a 
square residue m o d m ?  In this case A will not respond, and B only learns the one bit 
of  information that y is not a square residue, which can not help B to factor m. What  
if instead of  sending A the square y of  a randomly chosen x, B sends the square of  a 
particular cleverly chosen x?  This cannot help B, since with probabili ty 1/2, B will still 
receive z ~ { x , - x } .  

However, what if B doesn ' t  square any x at all, but instead picks a particular cleverly 
chosen square residue y to send? Perhaps knowing any square root mod m of  y will 
allow B to factor m. That is, perhaps there is a polynomial  time algorithm which given 
m produces (with high probability) a square residue y, and another algorithm which 
given m, y, and any square root of y mod m factors m (with high probability). The point 
is not that we have such algorithms, but that no one has shown that they do not exist. 
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Hence, the proof that Rabin's protocol is correct relys not only on an assumption about 
the difficulty of factoring, but on an additional complicated and unnatural assumption 
(saying, essentially, that the above algorithms do not exist). 

In Section 4 we show how to fix Rabin's protocol so that it can be proven correct, 
assuming only that factoring is difficult. 

3. A Rigorous Statement of the Problem 

We first formalize what we mean for factoring to be hard. Let 

bin = {mlm has _< n bits, and is the product of two distinct odd primes, 
each with _< n/2 bits.} 

The factoring assumption is that any polynomial time, probabilistic algorithm has the 
property that for each k and sufficiently large n, if the algorithm is given a random 
member m of Hn, then the probability it outputs the factors of m is _< 1/n k. 

We now define what we mean by a protocol for the oblivious transfer. Note that in our 
definition B has 3 possible outputs: either B outputs the factors of m, or B outputs "?" 
indicating it doesn't know the factors, or B outputs "c" (for cheating) indicating that it has 
detected that A hasn't followed its protocol correctly. When reading this definition for 
the first time, the reader can ignore the possibility that B outputs "c", and just assume that 
A will never do anything so blatantly dishonest that it will be caught (since in practice, 
in the known protocols, this is a reasonable assumption). 

We define an oblivious transfer protocol to be a pair of probabilistic, interacting Turing 
machines A and B; A and B will both see the same composite number m, and A will 
also be given the factorization of m; A and B will both halt in time polynomial in the 
length of m, and B will either output "c", "?", or the factorization of m. In addition, if 
m is a randomly chosen member of H~, then the following hold 

l) If A and B properly follow the protocol, then for each k and sufficiently large 
n, B outputs the factorization of m with probability _> (1/2) - (1/nk), "?" with 
probability >_ (1/2) - (1/ng), and "c" with probability < l /n  ~. 

2) Say that A is replaced by any other machine A', and B still follows its protocol 
correctly. A' has an output representing its guess at the output of B. Then the 
probability that A' outputs the same thing as B, given that B doesn't output "c", is 
_< ( l /2) + ( 1 / n k) for all k and sufficiently large n. (This implies that the probability 
that B outputs the factorization is within l /n  k of the probability that B outputs 
,,.9,,.) 

3) Say that B is replaced by any other machine B', and A still follows its protocol 
correctly. Then the probability that B' outputs the factorization of m is _< (1/2) + 
(I /n k) for each k and sufficiently large n. 

4. Our  Protocol 

Our goal is to fix Rabin's protocol so that it can be proven correct, assuming only the 
factoring assumption. Recall that the problem is that in step 1, when B sends y to A, it 
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is possible that B does not know a square root of  y mod m. We therefore add step 1.5 to 
the protocol: 

step 1.5. B proves to A that B knows a square root of  y mod m, without giving A any 
ideas which square root B knows. 

Step 1.5 requires a (sub)protocol to be performed which is very interesting in its own 
right. We now describe that protocol. The properties possessed by the subprotocol will 
become more clear in the discussion that follows it. 

(Sub)protocol for  B to prove to A that B knows a square root o f  y modm, without 
giving A any idea which square root B knows 

(Assume B knows x, a square root of  y modm.)  

step I. B chooses n random numbers rl, r2 . . . . .  rn ~ Z~, and computes Yl = Yr 2, 
Y2 = Y r2 . . . . .  Yn -= yr~, and sends S = {yl, Y2 . . . . .  Yn} to A. 

step II. A chooses a random subset Sl ___ S of size n /2  and sends it to B. 
step IlL B checks that $1 c S and is of  size n / 2  (and otherwise outputs "c"). For 

each Yi E S I ,  B sends ri to A. For each yi E S - -  S I ,  B sends zi = xr~ (a 
square root of  Yi) to A. 

step IV. A checks that for each Yi E S I ,  Yi = Yr 2, and for each Yi E S --  S I ,  Yi = 7. 2. 
(Intuitive remark: in this case, it is very likely that for some i, B knows ri and 
zi such that Yi = Yr 2 and Yi = Z~; in this case, B "knows" a square root of  y, 
namely zi/r~ mod m.) If so, A is "convinced"; if not, A is "not convinced". 

Discussion o f  the (sub)protocol 

A gets no information about which square root of  y B knows. The reason for this is that 
if ri is randomly chosen, then xr  i is a random square root of  yr 2. 

It remains to show that B cannot, even by cheating, convince A that B knows a square 
root of  y if B does not. More precisely, let B'  be any machine replacing B in the protocol. 
Say that B'  has flipped some coins in order to determine all its random choices, including 
the values ofy~, Y2 . . . . .  Yn. For some of  the i, B'  will be able to give a square root zi of 
Yi and for some of  the i, B' will be able to give ri such that yi = Yr 2. If for some i, B'  
can do both, then B can find a square root of  y, namely z i / r i .  If for no i can B' do both, 
then there is at most one choice for $1 which will allow B'  to convince A; in this case 

n the probability A will be convinced is < 1/(n/2) < l / n  k for all k. 
A more complete definition of  this protocol, and a proof of  correctness, will appear 

in the final paper. 

Discussion o f  the new protocol for  oblivious transfer 

The complete formal proof that the new protocol is correct assuming the factoring as- 
sumption, will not be given in this extended abstract, but all the necessary ideas have 
been presented here. The proof is constructive in the following sense: there is no A' 
which violates condition 2 in the definition of  oblivious transfer, and if there is any B' 
which violates condition 3, then this B'  can be used as a subroutine in an algorithm 
which factors numbers so welt as to violate the factoring assumption. 
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