
Verifiable Secret Sharing and 
Multiparty Protocols with Honest Majority 

(Extended Abstract) 

Tal Rabin Michael Ben-Or* 
Institute of Mathematics and Computer Science 

The Hebrew University, Jerusalem, Israel 

Abstract 

Under the assumption that each participant can 
broadcast a message to all other participants and that 
each pair of participants can communicate secretly, 
we present a verifiable secret sharing protocol, and 
show that any multiparty protocol, or game with in- 
complete information, can be achieved if a majority 
of the players are honest. The secrecy achieved is 
unconditional and does not rely on any assumption 
about computational intractability. Applications of 
these results to Byzantine Agreement are also pre- 
sented. 

Underlying our results is a new tool of Informa- 
tion Checking which provides authentication without 
cryptographic assumptions and may have wide appli- 
cations elsewhere. 

Introduction 

Comparing the recent unconditional results on multi- 
party protocols of Ben-Or, Goldwasser and Wigder- 
son [BGW] and of Chaum, Crepeau and Damgard 
[CCD], to the previous cryptographic results of 
Goldriech, Micali and Wigderson [GMW], based on 
the existence of secure Trapdoor functions, we find 
the following: On the one hand, the cryptographic 
results are stronger since they require only a major- 
ity of the n participating players to be honest, while 
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the unconditional results require that more than gn 
of the players be honest. On the other hand, the 
unconditional results are both simpler and stronger 
since their security is “Information Theoretic” and 
does not depend on any assumptions about computa- 
tional intractability. Moreover, the results of [BGW] 
with up to t < n/3 faulty players guarantee abss 
lute correctness of the results, and do not allow even 
an exponentially small probability of error. Such ex- 
ponentially small errors are inherent to any crypto- 
graphic result based on Trapdoor functions. 

The one third limit on the number of unreliable 
participants in the unconditional results mentioned 
above is necessary since otherwise even Byzantine 
agreement is impossible. It is natural to ask, how- 
ever, what can be done if we ensure agreement by 
assuming the existence of a broadcast channel? Like- 
wise, by [D], Byzantine agreement is still possible in 
incomplete networks with 2t + 1 connectivity, and we 
can ask what multiparty protocols can be achieved 
under these conditions. 

To understand why a broadcast channel doesn’t 
seem to help that much, we note a theorem of [BGW] 
stating that the absolutely errorless results cannot be 
extended to tolerate t >_ n/3 faulty players even with 
a broadcast channel. Moreover, as stated informally 
in [CCD], th e b roadcast channel does not allow an ab- 
solutely errorless solution even to the Verifiable Secret 
Sharing problem (VSS) with t 2 n/3 faulty players. 
We formally prove here that any solution must allow 
some error probability c > 0, though E may be only 
exponentially small (deleted from this extended ab- 
stract). Since the VSS protocol is an essential compo- 
nent of any secure multiparty protocol these negative 
results led many researchers to conjecture that some 
cryptographic assumptions are indeed needed to han- 
dle t faulty players for n/3 2 t < n/2, even with a 
broadcast channel. 

In a similar way, the VSS protocols of [CCD] 
and [BGW] were used by Feldman and Micali [FM] 
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and Feldman [F] to achieve constant expected time 
non cryptographic Byzantine agreement protocols in 
the synchronous and asynchronous cases respectively. 
Here again there are some intriguing gaps. In the 
synchronous case assuming a complete communica- 
tion network, the protocols of [FM] can tolerate up to 
t < n/3 faulty players, but leave the general network 
case to cryptographic protocols. In the asynchronous 
case the non-cryptographic solution of [F] allows only 
t < n/4 faulty players, and relies on cryptographic 
VSS protocols to handle up to t < n/3 faults. Feld- 
man has also raised the conjecture that t < n/4 is the 
limit for any unconditional asynchronous VSS proto- 
col. 

The main results of this paper close most of these 
gaps. We show 
Main Theorem: Assunzing the existence ofa broad- 
cast channel and private communication channels be- 
tween each pair of n players, there exists a (poly- 
time) Verifiable Secret Sharing protocol tolerating up 
to t < n/2 faulty players. The secrecy achieved is 
unconditional, and the probability of error is expo- 
nentially small. 

A new and very practical idea of Information 
Checking is introduced in this paper. Informa- 
tion Checking is what enables our solution, and it 
may have wide applications elsewhere. It is a non- 
cryptographic weaker version of Digital Signatures. 
Weaker in the sense that not all securities provided 
by Digital Signatures are supplied by Information 
Checking, but it gives exactly the right amount of 
authentication power we need. 

As a simple application of our information check- 
ing technique we show, (Compare Tompa and Woll 

PWI)~ 
Theorem 1: (VSS with Honest Dealer) Let n 2 
2t+l. Assuming only sec’ure communication channels 
between each pair of n players (without broadcast), an 
honest dealer can distribute a secret such that (a) no 
set oft players has any information about the secret, 
and (b) any set of players containing at least t + 1 
honest players will be able to reveal the correct secret, 

with only an exponentially small probability of error. 

We mention some further applications of these re- 
sults to incomplete communication networks (without 
broadcast capability). Let G be a synchronous com- 
munication network of n processors. In [D], Dolev 
established necessary and sufficient, conditions for the 
existence of non-cryptographic Byzantine Agreement 
protocols tolerating up to t Byzantine faults on G. 
Namely, t,hat n 2 3t + 1 and that the connectivity of 
G is at least 2t -l- 1. The following theorem extends 
the fast Byzantine agreement protocols of [FM] to 

incomplete synchronous networks satisfying Dolev’s 
conditions. 
Theorem 2: Let G be a synchronous network of 
n 1 3t+ 1 processors, with connectivily at least 2t+ 1, 
and diameter d = d(G), that provides ptivate and se- 
cure communication links between processors that are 
directly connected by G, then there is an O(d) ex- 
pected time randomized Byzantine agreement protocol 
on G tolerating up to t Byzantine faults. 

Similarly, Dolev’s conditions are sufficient for gen- 
eral multiparty protocols. Extending the complete 
network results of [BGW] and [CCD] we have1 
Theorem 3: Let G be a communication network be- 
tween n players satisfying the conditions of theorem 
2, then any multiparty protocol can be achieved on G 
if at most t of the players are faulty. Here again, the 
secrecy achieved is unconditional, and the probability 
of error is exponentially small. 

Our main theorem on VSS using the broadcast 
channel provides the necessary building block for gen- 
eral multiparty protocols under the same conditions. 
The next theorem provides the most important appli- 
cation of the main theorem, and it provides a strictly 
stronger result than the previous cryptographic re- 
sul ts. 
Theorem 4: Assumming that each participant can 
broadcast a message to all other participants and that 
each pair of participants can communicate secretly, 
any multiparty protocol, or game with incomplete in- 
formation, can be achieved if a majority of-the players 
are honest. 

Remark: It is important to note that Theorem 4 
only guarantees that a set of up to t < n/2 faulty 
players cannot gain any additional information or dis- 
rupt the computation. As in all the previous results, 
it cannot prevent the bad players from sending all the 
information they are holding to some honest player. 
Likewise, if among three players one of the players is 
faulty and stops sending messages, no further secrecy 
conditions are imposed on the other two honest play- 
ers left. Therefore, they can exchange all their input 
information between them and complete the compu- 
tation. This last example may seem quite puzzling. 
It is therefore natural to add to the requirements on 
our protocols that any honest player alone will not 
hold any additional information (not following from 
the information in his hands together with the faulty 
players). This last condition can easily be guaranteed 
if n > 2(t + 1) + 1 by protecting our computation from 
coalitions of size t + 1 instead of t. 

lSee the section on Incomplete Networks for a discussion of 
stronger results then stated here. 
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Our results demonstrate the importance of the “In- 
formation Checking” idea and we expect this idea 
to have wide applications. One such possible ap- 
plication is a l/3-resilient non-cryptographic Asyn- 
chronous Byzantine Agreement protocol. Using our 
information checking we can present such a solution 
only under a weaker model of adversary, leaving this 
important question open. 

This extended abstract is a combination of two sep- 
arate papers. The Main Theorem, Theorem 1, and 
the Information Checking protocol are the main re- 
sults of Tal Rabin’s Master Thesis written under the 
supervision of Michael Ben-Or [RT]. The other results 
mentioned above are from [B]. 

The Model of Computation 

In our model of computation we assume a complete 
synchronous network together with a broadcast chan- 
nel. The pairwise communication channels between 
participants are secure, that is, they cannot be read 
or tampered with by other participants. The broad- 
cast channel enables each participant to send the 
same message to all the participants, it identifies the 
sender, and it is completely reliable. In particular, 
if any participant receives a message via the broad- 
cast channel all other players will receive the same 
message. 

We assume two types of players: knights - Honest 
players or dealers who do not disclose any of the in- 
formation in their hands, and follow all protocols and, 
knaves - Faulty players or dealers who do as they 
wish. They may pass incorrect information, or de- 
cide to withhold. It is also assumed that all knaves 
may collaborate and pool their information together. 
Knaves may have unlimited computing capabilities. 

We postulate a dynamic adversary who, at any 
time during a protocol, and having seen all public 
information and all information possessed by knaves, 
may choose which additional players will turn into 
knaves. The total number of players who are knaves 
is bounded by t. In addition, the dealer may also be 
a knave. 

We choose a security parameter k, so that 2-” is 
deemed a small enough error margin for our needs. 
Our protocols will be randomized in the sense that no 
matter what the adversary and the knaves will do, the 
probability of an error, i.e., improper outcome, will be 
smaller than 2-“. All of our protocols and algorithms 
will be polynomial in the number of players n, and in 
k. 

The Information Checking Protocol 

We now proceed to describe a simple process, which 
wil1 be used later on to solve the Verifiable Secret 
Sharing Problem. This process enables us to carry 
out authentication of information. It is not as pow- 
erful as Digital Signatures, but on the other hand it 
needs no cryptographic assumptions. 

There are 3 participants in the process: (1) D - 
dealer, who holds a data s, (2) INT - an intermediary, 
who is to receive s from D, and who at a later time 
may wish to pass it on to, (3) R - the recipient. 
The player R is said to accepts, if he believes that this 
value originated with D. We wish that the protocol 
of acceptance will have the following properties: 

1. If D and R are knights, then R will always accept 
s if it actually originated with D, and will reject 
with probability 1 1 - & any other value s’. 

2. Regardless if D is a knight or a knave, 1NT will 
know, with probability of mistake < $, whether 
R will accept the s that he holds. 

For this, a new tool called Information Checking 
is proposed. Information Checking has two major 
parts called (1) check vectors (2) verification of check 
vectors 

Information Checking is carried out by the three 
participants in the following way: 
We assume that a large enough prime, p > 2k , has 
been decided upon for all the computations. Without 
loss of generality s E 2,. 

Check Vectors: 

The dealer D chooses two random numbers b # 0 
and y both in Z,, and hands to IiVT the pair (s,y). 
The dealer D computes s + by = c. Then the dealer 
hands to R the vector (b, c) which will be known as 
the Check Vector. 

Later, when INT will transmit (s, y) to the receiver 
R, the receiver will compute s + by and will accept 
only if it equals c. It is easily seen that this check 
vector method essentially disarms a knave INT from 
the ability to pass to R a false value, s’, which R will 
accept. 

Lemma 1 (1) The probability that INT will deceive 
R, when the dealer D, is a knight is & < 8, 

(2) The receiver R, has no information about s from 
his check vector. 

Proof of Lemma 1: 
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1. If INT chooses a new value s’, which he would 
like R to accept he must find the y’, which will 
solve the equation 

s’ -I- byl’ =: c 

Only one y’ will solve the equation for the 6 held 
in R’s hand. Thus the probability 

1 
Pr(R will accept s’ # s ) D is a knight) = - 

P-l 

2. The receiver R, has no information about s from 
the check vector that he holds, because all values 
of s are still possible, with equal probability, due 
to the fact that for each s there is a single y which 
satisfies the equation. 

Remark Information checking immediately general- 
izes to the case of several receivers. Let us assume 
the case where there is one dealer D, one intermedi- 
ary INT, and receivers RI, . . . . R,,. The dealer hands 
to INT the secret s and random values a, . . . . yn , 
yi will eventually be handed to Ri to authenticate 
s. Each Ri receives from D a check vector (b;,ci) 
created in the way described above. Even if all Ri’s 
pool their data together , they sti.11 have no informa- 
tion about the secret, and for the intermediary who 
holds the yi’s the probability of deceiving one of the 
players is p&. 

Thus the check vector assures the property l., that 
if D is a knight, then R accepts the original s trans- 
mitted, and rejects substitutes. 

Verification of Check Vectors: 

To secure property 2 we use the “zero-knowledge” 
proof technique of [R2]. FVe modify the above pro- 
cedure as follows: The dealer transfers to INT an 
ordered set of pairs (s, yr), . . . . (s, yi!k) and to R an or- 
dered set of check vectors (b, cl), . . . . (bzk, c~k), where 
the yj and bi are chosen by D as before and hence 

s + biy; = ci for 1 5 i < 2k 

The intermediary INT chooses rE distinct random in- 
dices dl, . . . . dk 1 6 di < 2h. He then asks R to reveal 
(bdl,Cdl),.-.,(bd*,Cdl,). For each one of these check 
vectors, INT computes 

S + bd;Ydi = cd, 

If all k check vectors satisfy the equation, then IN’T 
concludes that R will accept the value s that INT 
holds. Otherwise he concludes that R will reject his 
value. 

We stipulate that R will accept a value s handed 
over to him by INT, if any one of the unrevealed 
check vectors, which he holds for s, satisfies the nec- 
essary equation. 

Lemma 2 The probability that the intermediary 
INT will assume that R will accept s when in fact 

R will reject it is at most < l/ 
( > 

y M G/2% 

Proof of Lemma 2: If the dealer is a knight then 
R will never reject s. In order for the error stated 
in the Lemma to occur, it must be that INT has 
received k check vectors which are good, and R holds 
k unrevealed check vectors which are all faulty. Thus, 
the probability that INT will choose all the k good 
check vectors is: 

Pr(I assumes R will accept s ( R rejects s) 5 

Thus using the protocol of Information Checking as 
a primitive, we achieve the required 1. and 2. 

Secret Sharing when the Dealer is a 
Knight 

In the following protocol we have a group of n players, 
including at most t knaves, where IZ 2 2t + 1. We as- 
sume that the dealer is a knight. He owns a secret S, 
which he wishes to share among the n players. With- 
out loss of generality we may assume that the secret 
s E Z,, for some prime number p > n. (The reader 
should not confuse this new prime p which can be 
a small prime with the large prime number used for 
the generation and verification of the check vectors 
described above.) We want to achieve that any set 
of fewer than t + 1 players will have no information 
about the secret s, and any set of-t + 1 or more play- 
ers, which contains at least t + 1 knights, will be able 
to compute the secret. When the secret is revealed we 
want that all knights will agree on the same value and 
that it will be the original secret the dealer shared. 
This gives a new, simple, polynomial-time, solution 
for the problem treated in [‘IV]. 
Phase 1 - Sharing the secret 

1. We fix a prime p > n , and n distinct points, 
Ql, “‘> (Y, E Z,, known to all players. 

2. The dealer chooses randomly al, . . ..at E Z, and 
defines f(x) = atx’ -t- . . . + a12 + s 

3. Ke computes f(~~i) for all i. 

4. For each f(c~i) h e chooses random bil # 

0, Yil, “‘, bin # O,yin and creates the check vec- 
tors as described above. 
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5. The dealer hands over to Pi the data: 

l f(oi) - Pi’s value on the graph of f(z). 

l yir, . . ..yin - Pi will hand yij to Pj, so Pj can 
authenticate Pi’s piece. 

l (bli, qp), . . . . (b,i, c,;) - check vectors, where 
(bji, cji) is Pi’s check vector for 3’s piece. 

This completes the dealer’s part. 
Phase 2 - Revealing the secret When the secret 
is to be revealed: 

1. Every P; hands to every Pi, j # i, the pair 
(f(Qi), Yij). 
(Knaves may, of course, give false values.) 

2. For all the pairs that Pi received he checks, using 
(bji,cji), that f(aj) + bjiyji = cji and accepts 
when appropriate. (Each P; who is himself a 
knight, will accept at least t + 1 pieces from the 
knights, and by Lemma 1 will reject, with high 
probability, all false pieces from the knaves.) 

3. Say Pi accepted f(ai,), . . . . f(oi,), T > t + 1. He 
can now take t + 1 pieces and compute f(x) by 
interpolation. Since the dea.ler was a knight all 
the accepted points lie on the graph of f(x). The 
reconstructed secret s is uniquely defined as the 
constant term of f(z), and equals the one ini- 
tially distributed. 

It is easy to see that the above algorithm provides 
us with the possibility for a knight dealer to share 
a secret, so that the knaves can not interfere in the 
computations, and that all knights will compute the 
same value s. This completes the proof of Theorem 1. 

The Weak Secret Sharing - WSS 

For the next two problems we add to our model the 
option of broadcasting. Each player can announce a 
message which will be heard by all others. This is 
necessary for 2t + 1 5 n 5 3t, otherwise Byzantine 
Agreement can be used. 

Definition 1: It will be said that players 
PI, . . . . P,., T 2 t $1, holding pieces given by a deaIer, 
define a secret 5, if (1) every player Pi has a distinct 
evaluation point. (2) for every subset Pi,, . . . . Pi,+l, 
the polynomial f(z) of degree t, interpolated through 
the pieces pi,, . . . . &, which they hold, is the same, 
and its free term is s. 
Note: Checking whether a set of players PI, .., P,. 
define a secret s, is polynomial. 

Under this model with broadcast, we shall define 
the following properties for Weak Secret Sharing: 

1. The properties of the previous secret sharing pro- 
tocol, when the dealer is a knight. 

2. If D is a knave then after it has been decided, (in 
a sense to be explained later on), that a secret 
has been distributed, either 

l All knights will agree upon a secret s which 
they define (Definition 1) and which is the 
one shared to them by the dealer, or 

l All knights decide to disqualify the dealer. 

WSS-Theorem: Assume n 2 2t + 1. For a dealer 
D, who is present until the end of the protocol, there 
is a protocol which achieves the Weak Secret Sharing. 
Moreover, the protocol is of polynomial complexity in 
both n and the security parameterk, with any desired 
probability of success. 

Weak Secret Sharing Protocol. This protocol 
is executed in three phases. The first two phases are 
the ones which ensure that when the secret will be 
revealed, the desired properties will be achieved. The 
last phase is the one in which the secret is revealed. 
Phase 1 : Sharing the secret 

1. Following steps l-4 above, the dealer shares the 
secret using a random polynomial and creates 
check vectors to all the pieces, 

2. He hands over to Pi the data: 

l pi = f(oi) - Pi’s point on the graph of f(x). 

l Ydl, “.> Yin - P; will hand yij over to Pj, so 
Pj can authenticate ,Oi, 

l (bli, cli), . . . . (bnd, c,i) - check vectors, where 
(bji, cji) is Pj’s check vector for pi. 

This is precisely the protocol executed by a 
dealer who is a knight. But when D is a 
knave he can hand over to Pi arbitrary values for 
Pi,Yil, .-., yin, (hi, cd, . . . . (Li, cni). 

Note, whenever a check vector (bji,cji) for the 
value pj, is mentioned in the above, it is not a single 
check vector but a set of 2k check vectors for /$. The 
yij is also a set of 2/c random values for authentica- 
tion of ,&. All these are required for the verification of 
check vectors as described in Information Checking. 
Phase 2: Modified verification of the check 
vectors 
The following protocol is carried out by each Pi with 
respect to every other player Pi, The player Pi is 
to be the intermediary as defined in the Information 
Checking Protocol, and Pj will be the receiver. The 
dealer is the dealer who shared the secret. pi wants 
to verify the check vectors held by all other players 
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for his piece ,f?i. The modification is that if P; is not 
satisfied that all players will accept his piece, he will 
take measures to ensure that they will. 

1. 

2. 

3. 

4. 

The intermediary I’i, chooses Ic check vectors in 
the manner described. in Information Checking, 
which he then asks Pi to broadcast. 

The receiver Pj broadcasts the requested k check 
vet tors. 

The dealer may: (1) broadcast an approval of 
these check vectors, or (2) create a new check 
vector for ,8i in the usual manner, hand over to 
the intermediary Pi the number yij, and broad- 
cast (bij,cij). This broadcasted check vector is 
now taken to be Pj’s check vector for pi. 

If the first instance in 3. has occurred, Pi will 
continue the verification of check vectors as de- 
scribed above. If he knows that Pj will accept his 
point he moves on to the next player to carry out 
this protocol wifh him. If he decides that Pj will 
reject ,&, he broadcasts a request that the dealer 
D broadcast his piece on the graph f(z). After 
Pi’s piece has been broadcasted he will stop the 
verification of check vectors. 
If the second instance in 3. has occurred, Pi 
checks the single check vector, broadcasted by 
the dealer, and according to the result takes the 
same measures as defined before. 

Lemma 3 In this modified verification of check wec- 
tom, data unknown to knaves is never exposed. 

Proof of Lemma 3: Data unknown to knaves 
is data which is transferred between two knights. If 
the dealer exposes Pj’s check vectors it is because D 
and/or Pj are knaves, otherwise D will be content 
with what Pj had broadcasted. If INT is a knight 
and he requests the disclosure of his piece, then it 
must be that D is a knave. This is because the dealer 
has the last say about the check vectors and if after 
that they are still faulty, then he rnust be a knave - 
so the information broadcasted is the dealer’s infor- 
mation which is already known to the knaves. 

Remark The above verification scheme assures a 
knight Pi, acting as intermediary, that his piece will 
be accepted by Pj, the receiver, or that the piece as- 
sociated with him has been made public by the dealer 
during the process. 
It is not important if the piece yi exposed by D dif- 
fers from ,&, the piece held by Pi, because pi is now 
a value to which D has committed himself, as being 
Pi’s point on the graph f(x). 

At this point is is useful to introduce the following 
Definition 2: A coalition is a subset C 5 

{Pl, -.., P,} of the set of all players, for which at the 
end of Phase 2: each Pi E C knows that every other 
player Pj E C will accept his piece of the shared se- 
cret. 

Note that there may be many coalitions among 
players, and that one player may be a member in sev- 
eral coalitions. However, the following lemma holds 

Lemma 4 At the end ofthe verification of check vec- 
tors (Phase 21 the set of players who are knights is a 
coalition. 

Proof: If player Pi is a knight, he was either satis- 
fied that all players will accept his point, including 
all knights, or if he thought that one player will not 
accept his point ,then he requested that it be broad- 
casted. In the latter case his piece will definitely be 
accepted by all players. We see that Pi’s piece will in 
fact be accepted by all players. This is true for every 
player Pj who is a knight - thus the knights form a 
coalition. 
Phase 3 - Revealing the secret 

1. 

2. 

3. 

4. 

5. 

6. 

The dealer D broadcasts his polynomial f(z), 
which defines the secret s. 

Each Pi hands to Pj his piece pi and the corre- 
sponding yij’s. 

Pi checks, by use of his check vectors, for ev- 
ery pair (,Bj, gji) if he accepts the piece, and 
creates the list ,Bdl, . . . . ,&, of all pieces which he 
has accepted. (For each knight it is known that 
r 2 t + 1 because of the fact that the set of all 
knights is a coalition). 

For each piece ,Oi that Pi accepted, he checks to 
see if it is on the graph f(z). If some piece does 
not fit f(z), Pi b roadcasts his vote to disqualify 
the dealer D. 

The dealer is disqualified if at least t + 1 players 
so voted. 

If the dealer was not disqualified, s, the free term 
of f(z), is taken to be D’s secret. 

Proof of the WSS Theorem: 

1. When the dealer is a knight - 
We need to show that he wiI1 not be disqualified, 
and that all knights will agree on the same secret 
s, results immediately from the properties of the 
Information Checking. 
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2 When the dealer is a knave - 
It is left to show that if he was not disqualified, 
then the secret s, decided upon is the secret de- 
fined by all knights. 
Step 4 of Phase 3, and the coalition of the knights 
ensures this. Let us say Pi is a knight and 
his piece is not on f(z), then he casts his vote 
against the dealer. Because all other knights ac- 
cept his piece, due to the coalition among them, 
they will also cast the same vote, and the knave 
dealer will be disqualified. Now if they agree on 
f(z), it must be that they define it, (see Defini- 
tion l), thus it is proper to take s, the free term 
of f(z), to be the secret. 

The Verifiable Secret Sharing - VSS 

We now turn to the proof of the main theorem of this 
paper. 

Main Theorem: (Verifiable Secret Sharing) 
Assume n 2 2t + 1, at most t players who are knaves, 
and a dealer D, who may be a knight or a knave. 
There exists a protocol which achieves the Verifiable 
Secret Sharing. Moreover, the protocol is of polyno- 

mial complexity in both n and the security parameter 
k, and guarantees any desired probability of success 
by an appropriate choice ofk. 

We start by stating the protocol. The protocol has 
4 phases: sharing the secret by the dealer; a second- 
level secret sharing by the Pi’s; zero knowledge proof; 
and computing the secret. At the end of the third 
phase it will be said that a proper secret has been 
shared by D. 
Phase 1 - Sharing the secret 

1. The dealer chooses randomly al, . . ..al E Z, and 
defines f(z) = atzt + . . . + urz + s 

2. He also picks random polynomials, 
gl(x), . . . . gk.n(z), each of degree t. 

3. He computes f(cri), 9j (Qi) for 1 _< i _< 
12, l<j<k.n 

4. He hands over to Pi the data: 

0 ,Bi = f(O!j) - Pi ‘s point on the graph of f(z). 

l yji = gj(cri) for all j’s - Pi’s points on the 
polynomials gj (z). 

This is the protocol executed by a dealer who is a 
knight. But when D is a knave he may of course hand 
over to P; arbitrary values for ,&, Eli, . . . . ok.,+ 
Phase 2 - Second level secret sharing 
Each Pi shares by WSS, each piece received from the 
dealer D, i.e., the pieces ,&, yii, . . . . ok.,+ Let us say 

that P; shares ,& using hi(c), and yii using hji(z). 
Player Pi also computes 

and creates and distributes check vectors for these 
values. He does not share the value Sji by a separate, 
independent, random, polynomial, because the sum 
of the two polynomials hi(z) + hid(z) which shared 
,f3i and ^/j; respectively, has as its free term the value 
6ji. 

Phase 3 - Zero Knowledge Proof 
This phase will ensure that D has in fact shared a 
secret s, among the players. In this phase it is possible 
for players to be disqualified. The player P; can be 
disqualified if: 

1. the secret he shared using the WSS disqualifies 
him, or 

2. a vote of at least t + 1 players is cast against him. 

The protocol for this phase: 
For each gj(z), player Pjmodn, 1 < j < k. n, decides 
whether D will expose gj(z) or f(x) + gj(z). (This 
procedure of choosing the polynomial ensures that at 
least k(t+l) of the alternatives are randomly chosen). 
In the j-th round we set H(z) to be gj(z) or f(z) + 
gj (z) depending on the player’s decision. This version 
of zero-knowledge proof in the context of VSS was 
used in [CCD], when n 1 3t + 1. 

1. 

2. 

3. 

4. 

The dealer broadcasts H(z). 

Each Pi checks if his piece ~ji, or the sum of his 
two pieces Sji = fl;+~yj~, as the case may be, is on 
H(z). If Pi is not satisfied then he requests that 
the dealer D expose all the information which he 
had handed to Pi in Phase 1. 

If the dealer D, does not broadcast the required 
information, the knights decide that no secret 
was shared. 

Every Pi whose pieces were not broadcasted by 
D in 2, now broadcasts his piece (7ji or Sji, as 
the case may be) and the polynomial by which 
he shared his piece using the WSS. Because Pi 
used the WSS protocol he may now 

l Be disqualified, or 

l Expose a piece (^/ji OT Sj,) on which all 
knights agree. 

All players check if this piece is on H(X), if yes 
then OK. Otherwise Pi is disqualified, because at 
least t + 1 knights will cast a vote against him. 
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5. If at, any time t+ 1 pieces of the secret, have been 
made public, the polynomia.1 which they define 
is taken as the dealer’s secret s. At each stage of 
the computation the validity of all public points 
is checked. If one does not match a certain poly- 
nomial publicized by D, then it is decided that 
120 secret was shared. 

Lemma 5 ,In step 2 data unknown to the knaves is 
never revealed. 

Proof of Lemma 5: If Pi is a. knave - trivial. 
If Pi is a knight then the only instance in which his 
piece Tji or 6ji does not fit H(Z) (and hence causes 
him to request disclosure), is when D is a knave, be- 
cause D is the one who handed 1% the pieces p; and 
Yji+ 

Lemma 6 A knight player can never be disquali&ed. 

Proof of Lemma 6: A knight can not be disqual- 
ified by his WSS as proven in Theorem 1. And he 
will not be disqualified if his piece is not on H(z), 
because he would have complained about it in step 2. 

Lemma 7 At the end of Phase 3 with probability 
2-k.(t+1), all pieces held by non-disqualified players 
and all public pieces deJn,e the same polynomial of 
degree t. 

Proof of Lemma 7: If a pla.yer Pi has shared 
a piece /3i # j(ai), then for all j only one of the 
following can be true: 

1. Yji = Sj(@i) 

2. bji = f(Cri) + gj(Oi) 

If 1. is true, pi + yji = Sji # f(&i) + yji. 

If 2. holds then /3i + yji = Sji = f(ai) + gj(ai) but 
Pi # f(ai) implying that yj; # gj(ai). 
Because the decision whether to disclose sj(z) or 
f(t) + gj (3) is made randomly (by the t + 1 knights) 
at least k + (t + 1) times, we achieve the desired prob- 
ability of being correct. 
Phase 4 - Computing the dealer’s secret 

1. All non-disqualified Pi’s broadcast their piece ,& 
and the polynomial hi(x), which was used in the 
WSS for that piece. 

2. The pa’s and all public pieces form a set - S. 

3. For each piece pi in S (excluding public pieces), 
the non disqualified players check that it was in 
fact the one shared by hi(x) in the WSS. If a 
player Pi who holds the piece /3i is disqualified 
due to the WSS, then the piece pi is taken out 

of S. A.fter this it, holds that ISI 2 t + 1, because 
at least all the knights’ pieces are in S, due to 
Secret Sharing when the Dealer is a Knight. 

4. Each player may take any t + 1 pieces from S 
and interpolate the polynomial f(z). The secret 
.s, will be the free term of the polynomial f(z). 

Proof of the Main Theorem: The proof will be 
divided into two parts: 

1. We will prove that if the dealer is a knight then it 
will never be decided that no secret was shared. 

2. For any dealer, ifPhase 3 ended with the decision 
that a secret has been shared, then all knights 
will agree to the same secret s, and it will be the 
one defined by the pieces which they hold and 
the public pieces. 

We now proceed to prove the above: 

The decision that no secret was shared arises if 

l the dealer refuses to broadcast information 
requested by one of the players, or 

l public pieces which he broadcasted do not 
fit on a polynomial which he broadcasted 

Since the dealer is a knight, both instances are 
impossible. 

At the end of Phase 3, when all knights know 
that a proper secret has been shared, it is also 
known, by Lemma 7, that all pieces held by non- 
disqualified players, and all public pieces define 
the same polynomial. Due to the fact that each 
one of the unpublicized pieces is shared using 
WSS, in Phase 4 it must be either revealed prop- 
erly or the dealer of that piece will be disquali- 
fied. But a knave will not be able to introduce 
a new piece into the computations, which will 
be accepted by the knights, (Theorem 3.1). All 
points revealed by knights will be accepted (Se- 
cret Sharing when the Dealer is a Knight). So 
we will have at least t + 1 pieces which define the 
same polynomial. Thus the desired properties 
are achieved. 

Remark: Instead of revealing the secret to all the 
players we can reveal the secret to only one of the 
players by having all the information sent only to this 
player. 

I 
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Incomplete Networks 

Let G be a synchronous network of n 2 3t+ 1 proces- 
sors, with connectivity at least 2t + 1, and diameter 
d = d(G), that provides private and secure communi- 
cation links between processors that are directly con- 
nected by G. To prove both Theorems 2 and 3, it is 
enough to show how to simulate in our partial net- 
work a secure communication line between any two 
honest players given that they are connected by 2t $1 
vertex disjoint paths in O(d) steps. Having such a 
scheme we can simulate on the network G the con- 
stant expected time Byzantine Agreement protocol 
of Feldman and Micali [FM] in O(d) expected time, 
proving Theorem 2, or simulate the secure computa- 
tion protocol of [BGW], proving Theorem 3. 

We can therefore assume that the sender of the 
message D is honest, and so we are in a case where 
Theorem 1 applies. To send a message to R, D en- 
codes the message using a polynomial of degree t into 
2t+l pieces, and sends each piece together with check 
vectors for all the other pieces along a separate route 
to R. To read the message, R tests each piece with 
all the check vectors arriving from all the routes and 
discards any piece that does not match with at least 
t + 1 such vectors. Having collected t + 1 such pieces, 
R computes the interpolation polynomial and takes 
its free term as D’s message. It is easy to see this sim- 
ple one phase protocol has all the properties needed 
to prove Theorem 2 and Theorem 3. 

After submitting this abstract, the authors have 
learned that Dolev, Dwork and Yung [DDY] have 
shown how to simulate in a 22 + l-connected network 
a secure communication line between any two honest 
players in a completely error free manner. There- 
fore our Theorem 3 is not the best possible, as under 
the conditions of Theorem 3, any multiparty protocol 
can be achieved with absolutely no error at all (see 
[DDYI). We note that in the “error-free” simulation, 
the faulty players can delay the message between two 
honest players for O(td) steps. Therefore their sim- 
ulation does not provide a proof of Theorem 2. We 
briefly sketch below how to combine both results and 
obtain an absolutely error free secure transmission in 
O(d) expected time. 

Error Free transmission 
Assume D and R are 2t+l connected, and D wants 

to transmit the message M to R. D randomly writes 
M = Ml + M2, and sends using the scheme described 
above MI to R. R collects all the verified messages 

( i.e. at least t + 1 verifications), and if there is a 
polynomial of degree t that interpolates through all 
the points, R takes the free coefficient as Ml. In 

this case R broadcasts an acknowledgement on all 
the 2t + 1 lines to D, and D tries to send Mz. 

On the other hand, if R cannot complete the in- 
terpolation through all the points, R broadcasts back 
to D (along the 2t + 1 lines) all the information he 
received from all lines. This step does not relay any 
information because this will be done either for Mi 
or for M2 but never for both, and clearly Ml (M2) 
alone contains no information. 

At this stage, D compares the broadcast of R to 
its original messages. D marks all the miss-matchs as 
“bad”, and broadcasts the “bad” list to R. Concur- 
rently, D breaks up the message M into new random 
pieces M = Ni + Nz, and begins the whole procedure 
again, but now R will ignore the shares of the secret 
coming from connections on the bad list. 

We continue (using on each retry a new breakup of 
M) until either: 
(a) Both pieces arrive in a good shape at R, or 
(b) The “bad” list is longer than t + 1, or 
(c) after a bad transmission the bad list doesn’t grow. 

Clearly, after at most t + 1 retrys, a pair of good 
D and R will be able to transmit their value securely 
with no errors at all. Furthermore if only one of D 
and R is bad, the good player will never wait for more 
than t+l rounds. Moreover, because of the check vec- 
tors, only with exponentially small probability there 
will be any need for retransmission. 

Note: The procedure described above, without the 
check vectors, is only a slight variation of the trans- 
mission scheme of [DDY]. It is clear that this pro- 
cedure works as well without the check vectors, but 
there is a clear advantage in using the check vectors 
during this procedure. Without the check vectors, 
the t bad players can cause a delay of O(t . d) steps 
in the communication between good players, where as 
using the check vectors, only with exponentially small 
probability there will be any need for retransmission. 

It is clear that if D and R are both good, the ex- 
pected number of communication rounds to get an 
error free transmission is constant (O(d)). A slightly 
more complicated problem is to handle the case of 
a bad D sending a message to a good R. In this 
case using the scheme described above, the bad D 
can easily cause a delay of O(td) time till R will be 
able to continue. Thus unless we are willing to give 
up the synchrony of our simulated protocol a single 
bad player can cause a delay of O(td) steps. 

To avoid this problem we make D the dealer of the 
secret in our VSS protocol. Assuming R is good we 
get a broadcast channel simulation between all the 
2t + 1 connections and the dealer D as follows: 
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l A broadcast of one of the 2t + 1 is sent to R 
who sends it on all 2t + 1 connections, and they 
transmit the message also to D (who gets the 
message by a simple majority rule). 

l A broadcast from D to all the players is done 
by having D send the message on all lines to .R. 
R gets the message (by majority) and sends the 
value he got to all the 21-t I connections. This 
value, coming from R is taken as the value of D’s 
broadcast. 

l The private line between two connections can go 
through R. 

Since the VSS uses a constant number of rounds so 
will this simulation. Since the VSS guarantees with 
exponentially small probability of error that there will 
be a t-degree polynomial interpolating through all the 
accepted points, R will get a message (or realize that 
D is faulty) in constant number of rounds with onIy 
an exponentially small probability of not being able 
to decide what happened. In this case we can go back 
to the previous scheme, and continue for at most 0(t) 
more rounds. Since this happens only with exponen- 
tially small probability, we get an O(d) expected time 
transmission even from a bad D to a good R. (The 
case of faulty R and good D is not needed at all). 

From this constant expected time error-free trans- 
mission we can prove a stronger version of Theorem 3. 

Theorem 3*: Let G be a synchronous network of 
n 2 3t+ 1 processors, with connectividy at least 2t+ 1, 
and diameter d = d(G), that provides private and se- 
cure communication links between processors that are 
directly connected by G, then any multiparty protocol 
P can be achieved on G if at most t of the players are 
faulty. As in [DDY], the computation is completely 
error-he, and the secrecy achieved is unconditional. 
Moreover, the expected computation time is only O(d) 
times the best secure and error-fme protocolfor P on 
a complete network. 

Multi Party Computations 

In this section, all computations are carried out in a 
small finite field, for example Z, where n < p < 2n. 
Our VSS protocol can be easily modified to work in 
a small finite field or by using a separate large prime 
for the check vectors. 

We say that a group of players P:L, . . . . P,, will have 
computed a function f(q, . . . . urn) == u by a protocol 
PR, where ~1, . . ..u.,, were entered into the computa- 
tion using VSS, if at the end of the protocol, u is a 

verified shared secret. 

The problem of multiparty computations can be 
reduced, (see [GMW]) to the problem of multiparty 
function computations. We will produce protocols for 
addition and multiplication of shared secrets and for 
multiplication by a publicly known constant, which 
can be carried out in a fault tolerant and secrecy pre- 
serving manner. Thus we achieve that a group of n 
players can secretly and with fault tolerance compute 
any function. 

Definition - A group of n players holds a verified 
secret (data) s, shared using the polynomial f(z), so 
that f(0) = s, and satisfying the conditions of VSS 
if: 

1. 

2. 

The polynomial f(z) is of degree t. 

Each player, Pi, holds a share of the secret ,& = 
f(N). 

3. Every piece ,Bi was shared by Pi, using WSS 

Note - A result of using our VSS protocol to share a 
secret s (Theorem ), is that s will be a verified secret. 

Now, all we need to show, in order to prove The- 
orem number, is that we can produce protocols for 
addition and multiplication, of verifiable shared se- 
crets u and v, which maintain the situation that all 
data in the computation, including the end result, is 
verified data. 

Let us look at two secrets u and v, which are verified 
secrets. Thus, it is known that: 

1. 

2. 

They were shared by f”(z) and f” (CC) respec- 
tively, both polynomials of degree t. 

Each Pi holds: 

A piece f”(ai) = ,By, which he further 
shared using the polynomial h:(z) and the 
wss protocol. 

A piece f”(cui) = pi”, which he further 
shared using the polynomial h;(z) and the 
WSS protocol. 

The pieces /$‘(cx’(cu~) = ,Bj”; and hy(cri) = &‘,, 
which are his shares of the other players’ 
pieces. (The player Pi received them as a 
result of WSS). 

Addition Protocol 

We would like to compute u + v, and to achieve that 
the sum will be a verified secret. 
The polynomial fU(z) + fV(z) = fU+U(z) has as its 
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constant term the desired value u + v, and this poly- 
nomial is of degree t. If each Pi adds his pieces 
/jy +pi” = p;+fJ, then he will have a share of u + v by 
the polynomial f“+“(z). Therefore, conditions 1 and 
2 for a verified secret hold immediately. 

To achieve condition 3, we need that &‘+’ will be 
shared using WSS. 
Note that the value fl+” is already shared by the 
polynomial h:+“(z), which is the sum of the polync+ 
mials which shared ,f?F and By, that is hy(t)+hj(~) = 
&‘+“(z). Thus all we need are the appropriate check 
vectors. This is achieved as follows: 

1. The player P; creates check vectors for Q‘(aj) + 
hy(oj) = h”+“(aj), and distributes them to the 
other players. 

2. All players verify these check vectors using the 
Modified Verification of Check Vectors Protocol 
(see Section ). 

During the computation of the addition, knaves 
may act as they wish, but if they don’t follow the 
protocol they are disqualified. (Their data can be 
reconstructed if needed in a manner which will be 
described later). 

Lemma 8 After the above addition protocol is car- 
ried out, the sum u + v is a verified secret. 

Note - The same protocol can be carried out for 
subtraction. 

Protocol for Multiplication by a Con- 
stant 

There is a publicly known constant d, and we would 
like to compute the value u * d so that this product 
will be a verified secret. This multiplication is trivial. 
All that P; needs to do is multiply his share py by the 
constant d. When at a later stage he receives the piece 
,q*d and the value yj”i from player Pi, he should use 
the check vector (b, c), which he holds for the original 
piece of the player Pj, by computing, /?y*’ + bdyyi = 
cd. 

Linear Computations 

The combination of the protocol for addition and the 
protocol for multiplication by a constant, provides us 
with the ability to compute any linear combination 
of verified secrets. 

Multiplication Protocol 

Before we proceed to show how to compute the prod- 
uct of two verified secrets, let us prove two lemmas 
which will be needed later. 

Lemma 9 A dealer can prove that two secrets, s1 
and ~2, which he shared using VSS, are equal. 

Proof: All players carry out the subtraction proto- 
col for s1 and $2, Based on the lemma for addi- 
tion/subtraction this new value is a verified secret, 
and can be reconstructed by the players. They re- 
construct the value $1 - ~2. Now, s1 - $2 = 0 iff 
Sl = s2. 

Lemma 10 Using the Zero Knowledge technique the 
dealer can prove that three secrets, a, b and c, satisfy 
a.b= c. 

Proofi Let f, g and h be the polynomials used to 
distribute a, b and c respectively. We recall that 
all our secrets are elements of a small finite field E, 
IE[ = p, and we can pick p to satisfy n < p < 2n. Let 
2 = {(~,Y,Z)bY = Z, for all z,y E E} be the multi- 
plication table of E. The dealer randomly permutes 
the members of 2 to a list {(~i,yi,zi)}. He then 
generates random polynomials of degree t, fi, gi and 
hi, i = l...p2, encoding this list, (e.g. fi(O) = 2iy 
etc.). The dealer prepares m = kn$ independent 
encoded copies of the multiplication table of E and 
distributes all the randomly chosen triples in these 
lists using our secret sharing protocol. At this point 
each player broadcasts a list of kp2 requests asking 
the dealer to either open completely one of the en- 
coded lists or to show, using the equality protocol of 
Lemma 9, that for some i on the list f(0) = fi(O), 
g(0) = gi(O) and h(0) = hi(O). It is easy to see that 
this procedure provides a zero knowledge proof to the 
fact that h(0) = f(O)g(O), with probability of failure 
at most 2-k. 

We now proceed to exhibit the multiplication proto- 
col. For the above u and w, we would like to compute 
u*v, and to ensure that the product will be a verified 
secret. 

The polynomial f”(x) *f”(x) = f?*“(s) has as its 
constant term the desired value u * v, but two prob- 
lems arise: (1) The polynomial is of degree 2t. (2) It 
is not a random polynomial. To overcome these prob- 
lems we will adapt the methods described in [BGW], 
and in combination with the VSS protocol we will re- 
turn to the state in which all data in the computation 
is verified data. The protocol is as follows: 
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1. The player Pi must extend his WSS of ,@’ and ,& 
to VSS. This is easily done: (the protocol given 
is for /3,“, and the same is done for 0,“). 

2. 

3. 

4. 

5. 

l Each Pj holds a piece 0%; which is a share 
of Pi’s @... Be shares /$$ using WSS. 

l Then Pi carries out the zero knowledge 
proof, as in our VSS protocol, to show that 
all shares held by the players lie on a poly- 
nomial h:(z) of degree t. 

If some player refuses to cooperate, or is disqual- 
ified in the above process, then his pieces are 
reconstructed by the other players, and become 
common knowledge. The players which partici- 
pate in this computation, are players who have 
extended their WSS to VSS, that is that they 
were not disqualified. Thus, their pieces 8, 
which are now shared by VSS, are points on the 
graph of the polynomial of the shared secret u. 
Assume that Pi didn’t follow the protocol, his 
piece pi” is computed in the following way: 

Since &’ is on a polynomial of degree t, we can 
represent @ as a linear combination with pub- 
licly known (and easily computable) c0efficient.s 
of any other t + 1 point on this polynomial. Since 
at least t + 1 players will extend the WSS of 
their points on this polynomial to a VSS, we can 
use this linear relation together with the Linear 
Computation Lemma to compute a verified se- 
cret of the missing p-s and make them public. 

Now it holds, that either py was shared using 
VSS, or it was made public. 

The player Pa computes # * ,@ = ,@*” , and 
distributes it with a new polynomial hy*V(z), 
using the VSS protocol. Then he proves that 
h;(O) * h;(O) = hy*V(0), as described above in 
Lemma 10. If he fails to do the above, his pieces 
are recons tiucted and exposed. 

In order to randomize the polynomial fr*v(x), 
each Pi shares t random polynomials gd,j(z), of 
degree t, and proves that he has done just this. 
Using the method described in [BGW], they gen- 
erate a random polynomial of degree 2t with a 
zero free coefficient. By adding this polynomial 
to f~‘v(t) we obtain a new random polynomial 
f;*v(x) with the same free coefficient. 

To preform the reduction of the degree of the 
polynomial, f$*w( ) d g x to e ree t, we carry out 
the linear computation described in [BGW]. If a 
player doesn’t cooperate, his piece is revealed us- 
ing the VSS for this piece. The result ofthis com- 
putation will be that each player holds a verified 

share of a piece of u * v, shared by the polynomial 
fU*“(x) of degree t, so that f”*“(O) = f?*“(O). 
Each player manages to compute his own, new 
piece, after all information held by the other 
players has been passed on to him. 

6. As a result of the above computation the follow- 
ing facts hold: 

b Each player holds a share fl*, of the secret 
u*v. 

l This piece is already shared using VSS. 

l Due to the VSS of ,&‘“, each player Pj 
holds a share @” of &‘*“. 

To achieve condition 3 of a verified secret for u*v, 
a~*v must be shared by WSS. To transform the 
i&s 

b 

l 

l 

of this piece to WSS the following is done: 

The player Pi creates and distributes check 
vectors for all &*“. 

All players execute the Modified Verifica- 
tion of Check Vectors. 

If Pi fails to cooperate his piece is exposed 
using the VSS for it. 

We therefore have 

Lemma 11 After the above multiplication protocol is 
carried out the product u * v is a verijied secret. 

And this completes the proof of Theorem 4. 
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