
On the Size of Sharesfor Secret Sharing Schemes�R. M. Capocelli1, A. De Santis2, L. Gargano2, U. Vaccaro21 Dipartimento di Matematica, Universit�a di Roma, 00185 Roma, Italy2 Dipartimento di Informatica, Universit�a di Salerno, 84081 Baronissi (SA), ItalyAbstractA secret sharing scheme permits a secret to be shared among participants insuch a way that only quali�ed subsets of participants can recover the secret, butany non-quali�ed subset has absolutely no information on the secret. The set ofall quali�ed subsets de�nes the access structure to the secret. Sharing schemes areuseful in the management of cryptographic keys and in multy-party secure protocols.We analyze the relationships among the entropies of the sample spaces fromwhich the shares and the secret are chosen. We show that there are access structureswith 4 participants for which any secret sharing scheme must give to a participanta share at least 50% greater than the secret size. This is the �rst proof that thereexist access structures for which the best achievable information rate (i.e., the ratiobetween the size of the secret and that of the largest share) is bounded away from1. The bound is the best possible, as we construct a secret sharing scheme for theabove access structures that meets the bound with equality.
�This work was partially supported by \Algoritmi, Modelli di Calcolo e Sistemi Informativi" ofM.U.R.S.T. and by \Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo" of C.N.R. under grantn. 91.00939.PF69. 1



1 IntroductionSecret Sharing is an important tool in Security and Cryptography. In many cases there isa single master key that provides the access to important secret information. Therefore,it would be desirable to keep the master key in a safe place to avoid accidental andmalicious exposure. This scheme is unreliable: if the master key is lost or destroyed, thenall information accessed by the master key is no longer available. A possible solutionwould be that of storing copies of the key in di�erent safe places or giving copies totrusted people. In such a case the system becomes more vulnerable to security breachesor betrayal [15], [9]. A better solution would be breaking the master key into pieces insuch a way that only the concurrence of certain prede�ned trusted people can recover it.This has proven to be an important tool in the management of cryptographic keys andin multy-party secure protocols (see for example [11]).As a solution to this problem, Blakley [2] and Shamir [15] introduced (k; n) thresholdschemes. A (k; n) threshold scheme allows a secret to be shared among n participantsin such a way that any k of them can recover the secret, but any k � 1, or fewer, haveabsolutely no information on the secret (see [17] for a comprehensive bibliography on(k; n) threshold schemes).Ito, Saito, and Nishizeki [12] described a more general method of secret sharing. Anaccess structure is a speci�cation of all the subsets of participants who can recover thesecret and it is said to be monotone if any set which contains a subset that can recoverthe secret, can itself recover the secret. Ito, Saito, and Nishizeki gave a methodology torealize secret sharing schemes for arbitrary monotone access structures. Subsequently,Benaloh and Leichter [1] gave a simpler and more e�cient way to realize such schemes.An important issue in the implementation of secret sharing schemes is the size ofshares, since the security of a system degrades as the amount of the information thatmust be kept secret increases. Unfortunately, in all secret sharing schemes the size of theshares cannot be less than the size of the secret1. Moreover, there are access structuresfor which any corresponding secret sharing scheme must give to some participant a shareof size strictly bigger than the secret size. Indeed, Benaloh and Leichter [1] proved thatthere exists an access structure for which any secret sharing scheme must give to someparticipant a share which is from a domain larger than that of the secret. Recently, Brickelland Stinson [6] improved on [1] by showing that for the same access structure, the numberof elements in the domain of the shares must be at least 2jSj � 1 if the cardinality of thedomain of the secret is jSj. Ideal Secret Sharing schemes, that is sharing schemes wherethe shares are taken from the same domain as that of the secret were characterized byBrickell and Davenport [5] in terms of matroids.All above results regarding the size of the domain of the shares and that of the secret,can be interpreted as relations between the entropies of the corresponding sample spaces1This property holds since non-quali�ed subsets of participants have absolutely no information on thesecret. If we relax this requirement (as is done in ramp schemes [3] [7]) the size of the shares might beless than the size of the secret. 2



when only uniform probability distributions are involved. A more general approach hasbeen considered by Karnin, Greene, and Hellman [13] who initiated the analysis (limitedto threshold schemes) of secret sharing schemes when arbitrary probability distributionsare involved.We extend the approach of [13] to general access structures deriving several relationsamong the entropies of the secret and those of the shares even when partial informationsare taken into account. When we restrict probability distributions to be uniform, ourresults imply an improvement over the above mentioned results on the size of shares.In this paper we prove that for any secret sharing scheme, for any set A of participantswhich are not quali�ed to recover the secret, the average uncertainty on each share ofparticipants in another set B given that the shares of A are known (A and B are sets ofparticipants such that they can recover the secret by pooling together their shares) mustbe at least as great as the a priori uncertainty on the secret. This is a generalizationand also a sharpening of a result in [13]. We also analyze the relationships between thesize of the shares and that of the secret. We improve on the result of [6] proving thatthere are access structures with 4 participants for which any secret sharing scheme mustgive to some participant shares which are from a domain of size at least jSj1:5, jSj beingthe secret domain size. In other words, we show that the number of bits needed for asingle share is 50% bigger than those needed for the secret. This is the �rst proof thatthere exist access structures for which the best achievable information rate (i.e., the ratiobetween the size of the secret and that of the largest share) is bounded away from 1. Weconstruct a secret sharing scheme for the above access structures which meets the boundwith equality. Finally, the bound is generalized to access structures with any number ofparticipants.2 PreliminariesIn this section we shall review the information theoretic concepts we are going to use. Fora complete treatment of the subject the reader is advised to consult [8], [10], [16].Given a probability distribution fp(x)gx2X on a �nite set X, de�ne the entropy of X,H(X), as H(X) = �Xx2X p(x) log p(x)2:The entropy H(X) is a measure of the average information content of the elements in Xor, equivalently, a measure of the average uncertainty one has about which element of theset X has been chosen when the choices of the elements fromX are made according to theprobability distribution fp(x)gx2X. It is well known that H(X) is a good approximationto the average number of bits needed to faithfully represent the elements of X. The2All logarithms in this paper are of base 2 3



following useful property of H(X) will be used in the following:0 � H(X) � log jXj; (1)where H(X) = 0 if and only if there exists x0 2 X such that p(x0) = 1; H(X) = log jXjif and only if p(x) = 1=jXj, 8x 2 X.Given two sets X and Y and a joint probability distribution fp(x; y)gx2X;y2Y on theircartesian product, the conditional entropy H(XjY ) of X given Y , also called the equivo-cation of X given Y , is de�ned asH(XjY ) = �Xy2Y Xx2X p(y)p(xjy) log p(xjy):The conditional entropy can be written asH(XjY ) = Xy2Y p(y)H(XjY = y)where H(XjY = y) = �Px2X p(xjy) log p(xjy) can be interpreted as the average uncer-tainty one has about which element of X has been chosen when the choices are madeaccording to the probability distribution fp(xjy)gx2X,that is, when it is known that thevalue chosen from the set Y is y. From the de�nition of conditional entropy it is easy tosee that H(XjY ) � 0: (2)The entropy of the joint space XY satis�esH(XY ) = H(X) +H(Y jX) = H(Y ) +H(XjY ): (3)Analogously, the conditional entropy of XY given Z satis�esH(XY jZ) = H(XjZ) +H(Y jXZ) = H(Y jZ) +H(XjY Z): (4)The mutual information between X and Y is de�ned byI(X;Y ) = H(X)�H(XjY ) (5)and enjoys the following properties:I(X;Y ) = I(Y ;X); (6)and I(X;Y ) � 0; (7)with equality in (7) if and only if p(x; y) = p(x)p(y) for all x 2 X; y 2 Y . From inequality(7) one gets the following important relation between the entropy ofX and the conditionalentropy of X given Y H(X) � H(XjY ): (8)4



Inequality (8) formally prove the intuitive fact that the knowledge of Y , in the average,can only decrease the uncertainty one has on X and there is no decrease if and only if Xand Y are statistically independent. The conditional mutual information between X andY given Z is de�ned by I(X;Y jZ) = H(XjZ) �H(XjY Z): (9)Notice that H(XjZY ) = Py2Y p(y)H(XjZ; Y = y), whereH(XjZ; Y = y) = �Xx;z p(xzjy) log p(xjyz):When no ambiguity arises we will drop the comma in H(XjZ; Y = y). The conditionalmutual information I(X;Y jZ) satis�es three important propertiesI(X;Y jZ) � 0 (10)I(X;Y jZ) = I(Y ;XjZ) (11)and I(X;Y Z) = I(X;Z) + I(X;Y jZ);with equality in (10) if and only if 8z such that p(z) > 0 and 8x; y it holds p(x; yjz) =p(xjz)p(yjz). Formulae (9) and (10) imply the following generalization of inequality (8)H(XjZ) � H(XjY Z): (12)3 Secret Sharing SchemesA secret sharing scheme permits a secret to be shared among n participants in such a waythat only quali�ed subsets of them can recover the secret, but any non-quali�ed subsethas absolutely no information on the secret. Secret sharing schemes satisfying the abovetwo conditions are usually referred to as perfect as opposed to secret sharing schemes inwhich the concurrence of non quali�ed subset of participants can obtain some informationon the secret (e.g., ramp schemes of [3]).Given a set P , an access structure on P is a family of subsets A � 2P . The closureof a family of subsets A � 2P , is de�ned as closure(A) = fA0 : A 2 A; A � A0 � Pg. Anatural property for an access structureA is that of beingmonotone, i.e.,A = closure(A).Let P be a set of participants, A be a monotone access structure on P and S be theset of secrets. Following the information-theoretic approach of [13] and [14], we say thata Secret Sharing Scheme is a sharing of secrets among participants in P such that1. Any quali�ed subset can reconstruct the secret.For all A 2 A, H(SjA) = 0. 5



2. Any non-quali�ed subset has absolutely no information on the secret.For all A 62 A, H(SjA) = H(S).Remark 1. Notice that H(SjA) = 0 means that each set of values of the shares inA determines a unique value of the secret. In fact, by de�nition, H(SjA) = 0 impliesthat 8a 2 A with p(a) 6= 0 9s 2 S such that p(sja) = 1. Moreover, H(SjA) = H(S)means that S and A are statistically independent, i.e., 8a 2 A 8s 2 S; p(sja) = p(s) andtherefore the knowledge of any a in A gives no information about the secret. Notice thatthe condition H(SjA) = H(S) is equivalent to saying that 8a 2 A H(SjA = a) = H(S).Shares given to the participants are not necessarily taken from the same domain.For instance, let the set of participants be P = fA;B;C;Dg and consider the accessstructure AS consisting of the closure of the set nfA;Bg; fB;Cg; fC;Dgo: Let the secrets be a uniformly chosen n-bit string. A possible secret sharing scheme for AS consistsof uniformly chosing 3 pairs of strings whose XOR gives the secret s, that is such thats = a� b1 = b2� c1 = c2� d and giving shares a to A, b1; b2 to B, c1; c2 to C and d to D.The size of the shares given to B and C is twice the size of the shares to A and D, andthe size of the secret itself, that is we have H(B) = H(C) = 2H(A) = 2H(D) = 2H(S).Karnin, Greene, and Hellman [13] proved that in any threshold scheme any set Xifrom which the i-th share is taken satis�es H(Xi) � H(S). What is the uncertaintyon the shares for general access structures when other shares are known? Assume a setof participants Y cannot determine the secret, but they could if another participant (orgroup of participants) X would be willing to pool its own share. Intuitively, for generalaccess structures, the uncertainty on the shares given to X is at least as big as that onthe secret itself, from the point of view of Y . Otherwise, the set of participants Y wouldhave some information on the secret and could decrease their uncertainty on S. Thisis formally stated and proved in the next lemma which constitutes an extension and asharpening on Theorem 1 of Karnin, Greene and Hellman [13].Lemma 3.1 Let Y 62 A and X [ Y 2 A. Then H(XjY ) = H(S) +H(XjY S).Proof. Consider the conditional mutual information I(X;SjY ) that can be written eitheras H(XjY ) �H(XjSY ) or as H(SjY )�H(SjXY ): Hence,H(XjY ) = H(SjY ) +H(XjY S)�H(SjXY )= H(S) +H(XjY S)Note that the in the same way one can prove the slightly more general formulaH(XjY = y) = H(S) +H(XjSY = y) 8y 2 Y;for X and Y satisfying the same hypothesis of Lemma 3.1. From Lemma 3.1, (8) and (2)we also obtain H(X) � H(S), for each X � P , which is essentially Theorem 1 of [13]generalized to monotone access structures. 6



The next lemma implies that the uncertainty on the shares of participants, who cannotrecover the secret, cannot be decreased by the knowledge of the secret.Lemma 3.2 If either X [ Y 62 A or X 2 A then H(Y jX) = H(Y jXS):Proof. The conditional mutual information I(Y; SjX) between Y and S given X can bewritten either as H(Y jX) � H(Y jXS) or as H(SjX) � H(SjXY ). Hence, H(Y jX) =H(Y jXS)+H(SjX)�H(SjXY ). Because of H(SjXY ) = H(SjX), for either X [Y 62 Aor X 2 A, we have H(Y jX) = H(Y jXS).The proof of above lemma shows that condition 2. of perfect secret sharing schemes,namelyH(SjA) = H(S) 8A 62 A, is equivalent to the conditionH(AjS) = H(A); 8A 62 A.4 Bounds on the size of sharesBenaloh and Leichter [1] gave the �rst example of an access structure for which anysecret sharing scheme must give to some participant shares which are from a do-main larger than that of the secret. The access structure they considered is AS =closurenfA;Bg; fB;Cg; fC;Dgo. Recently, Brickell and Stinson [6] showed that there areonly two access structures with 4 participants which are the closure of a graph (i.e., the clo-sure of a family whose elements are pairs of participants), satisfying the above limitation.Such access structures are AS and AS2 = closurenfA;Bg; fB;Cg; fC;Dg; fB;Dgo: Inthis section we �rst give a lower bound on the entropy of the spaces from which the sharesfor the access structure AS are taken. Then, we use this result to prove an analogouslower bound for AS2 and more general access structures. To maintain simpler notation,we shall denote both the participants and the sets of possible values of their shares withthe same capital letter; therefore the letter A, for instance, will denote both the par-ticipant that can reconstruct the secret in coalition with B and the set from which thepossible shares for A are taken.A secret sharing scheme for AS satis�es1. H(SjAB) = H(SjBC) = H(SjCD) = 0.2. H(SjA) = H(SjB) = H(SjC) = H(SjD) = H(SjAC) = H(SjAD) = H(S).We also have H(SjBD) = H(S), but we will not make use of it.Theorem 4.1 Any secret sharing scheme for AS satis�esH(BC) � 3H(S):7



Proof. We haveH(S) � H(CjAD) (from Lemma 3.1 and (2))� H(CjA) (from (12))= H(CjAS) (from Lemma 3.2)� H(CBjAS) = H(BjAS) +H(CjABS) (from (4) and (2))� H(BjAS) +H(CjBS) (from (12))= H(BjA)�H(S) +H(CjB)�H(S) (from Lemma 3.1)� H(BC)� 2H(S) (from (8) and (3)):The following corollary to Theorem 4.1 is immediate from (3) and (8).Corollary 4.1 Any secret sharing scheme for AS satis�esH(B) +H(C) � 3H(S):A consequence of above corollary is that either B or C must have entropy at least1:5H(S), that is 50% bigger than that of the secret.Benaloh and Leichter [1] proved that for the access structure AS it must hold eitherjBj > jSj or jCj > jSj, where with jSj we denote the number of di�erent secrets and withjBj (jCj) the number of di�erent shares that can be given to B (C). Then, Brickell andStinson [6] improved on [1] proving that the number of possible shares either for B or forC must be at least 2jSj�1. Our Corollary 4.1 implies the following sharper lower bound.Corollary 4.2 Suppose the secret is uniformly chosen in S. Any secret sharing schemefor AS satis�es either jBj � jSj1:5 or jCj � jSj1:5.Proof. If the secret is uniformly chosen in S we have that H(S) = log jSj, and fromCorollary 4.1 it follows H(B) +H(C) � 3 log jSj. Hence, either B or C have entropy atleast 1:5 log jSj. Assume H(B) � 1:5 log jSj. From (1) we have jBj � 2H(B), and thus thenumber of di�erent shares for B must be greater than or equal to 21:5 log jSj, which impliesthat jBj � jSj1:5.Notice that Corollary 4.1 gives a more general result, since it takes into account theprobability distribution according to which the secret and the shares are chosen.Remark 2. The bound given by Corollary 4.2 is the best possible. Indeed, consider thefollowing secret sharing scheme for AS. For a binary secret s 2 S = f0; 1g, uniformlychoose 2 pairs of bits whose XOR give the secret s, that is such that s = a � b = c � dand give share a to the participant A, bd to B, c to C, and d to D. It can be easily seenthat this scheme meets all requirements for a secret sharing scheme, and moreover thatH(A) = H(C) = H(D) = H(S) = 1 while H(B) = 2 and H(BC) = 3H(S). If a 2-bitsecret s0s1 2 f0; 1g2 is to be shared, then the following scheme can be used. For i = 0; 1,8



uniformly choose bits ai; bi; ci; di, such that ai � bi = ci � di = si and give share a0a1 toA, b0d0b1 to B, c0c1a1 to C and d0d1 to D. This is a secret sharing scheme which satis�esH(A) = H(D) = H(S) = 2 and H(B) = H(C) = 1:5H(S) = 3. The generalization ton-bit secrets, as well as to non-binary cases, is straightforward. In general, if jSj = q2, qan integer greater than 2, the above procedure yields a scheme for which jAj = jDj = q2and jBj = jCj = q3 = (q2)1:5.Assume that all shares for participants are chosen from the same space K. As a conse-quence of Corollary 4.2 we get that the information rate log jSj= log jKj (as de�ned in [6])for any secret sharing scheme for AS is at most 2=3. The scheme above described has aninformation rate of exactly 2=3 when jSj = q2. Thus, the bound of 2=3 is optimal for ASand settles a problem by [6].In case S = f0; 1g the bound given by Corollary 4.1 is the best possible for non-uniformdistributions as well. Let Pr(S = 0) = p and Pr(S = 1) = 1 � p, p � 1=2. We �rstconstruct a (2; 2) threshold scheme for A and B that satis�es H(A) = H(B) = H(S).The shares are given to A and B according to the following probability distribution:Pr(A = 0; B = 0jS = 0) = 1=2Pr(A = 1; B = 1jS = 0) = 1=2Pr(A = 0; B = 1jS = 1) = p2(1 � p)Pr(A = 1; B = 0jS = 1) = 1� p2(1 � p)It is clear that Pr(A = 0) = p and Pr(B = 0) = 1� p. Therefore H(A) = H(B) = H(S)and it is trivial to check that both H(SjA) = H(SjB) = H(S) and H(SjAB) = 0 hold.Independently, apply the same threshold scheme to C and D and give a copy of the sharethat has been given to D also to B. It is easily seen that the constructed secret sharingscheme satisfy all required properties and that H(B) +H(C) = 3H(S).Our lower bound also holds for AS2 which is the closure of the familynfA;Bg; fB;Cg; fC;Dg; fB;Dgo: It is easily seen that Theorem 4.1 also applies, sincein the proof we did not make any use of the relation H(SjBD) = H(S) (for AS2 it holdsH(SjBD) = 0). Hencefrom, the following theorem holds.Theorem 4.2 Any secret sharing scheme for AS2 satis�esH(BC) � 3H(S) and H(BD) � 3H(S):Remark 3. The bound given by Theorem 4.2 is best possible for uniform distributions.Indeed, consider the following secret sharing scheme for AS2. For a binary secret s 2S = f0; 1g, uniformly choose 2 pairs of bits whose XOR give the secret s 2 S, that is suchthat s = a� b = c � d and give share a to participant A, b to B, ac to C, and ad to D.This is a secret sharing scheme which satis�es H(BC) = H(BD) = 3H(S). The schemecan be easily generalized to any non-binary space.An immediate consequence of Theorem 4.2 is the following corollary.9



Corollary 4.3 If the secret is uniformly chosen in S then any secret sharing scheme forAS2 satis�es either jBj � jSj1:5;or jCj � jSj1:5 and jDj � jSj1:5:Remark 4. A close look to the proof of Theorem 4.1 reveals that exactly the same bound(i.e, H(BC) � 3H(S)) holds for any access structure � for 4 participants A;B;C; andD, satisfying fABg; fBCg; fACDg 2 � and fACg; fBg; fADg 62 �. The minimal suchstructure is the closure of ffABg; fBCg; fACDgg, which has jclosure(�)j = 7.The reader may wonder why to prove lower bounds on the entropy of sample spaces fromwhich the shares are drawn we consider pairs of participants with the consequence ofbeeing forced to assertions like \...either the entropy of ... or the entropy of ... is biggerthan 1.5H(S)". It would be certainly more desirable to prove results which would implythat the entropy of a given participant is bigger than �H(S); � > 1 (say). Actually, thiscannot be achieved. Indeed, given an access structure A � 2P and a �xed participantX one cannot prove a bound on H(X) better than the trivial one H(X) � H(S) as thefollowing result shows.Theorem 4.3 Let an access structure A � 2P and a participant X 2 P be �xed. Thenthere exists a secret sharing scheme for A such that H(X) = H(S).Proof. Let A1; : : : ; Ar be all subsets of P such that X 2 Ai; i = 1; : : : ; r and supposethat the secrets s are chosen from the set S according to the probability distributionfp(s)gs2S. Let S = f0; 1; : : : ; q � 1g and jAij = ni; i = 1; : : : ; r. Shares given toparticipant X are chosen from S according to the probability distribution fp(s)gs2S.Therefore H(X) = H(S). Now, if a given value x has been given to X, let y be such thatx�y = s, where � is now the addition modulo q. Divide the value y among the remainingparticipants in Ai; i = 1; : : : ; r, giving randomly chosen values yi1; : : : ; yni�1 such thatyi1 � : : :� yni�1 = y. The rest of the secret sharing scheme is completed according to anyprotocol which assures perfect secrecy.Note that the above construction, even though it achieves the optimal value of H(X),does not prevent the entropy of other participants from becoming very large.The same proof can be applied, mutatis mutandis, to show that in any access structurewhich is the closure of the edge set of some graph, if one �xes two participants X and Ythen no better bound than 3H(S) on the joint entropy H(XY ) can be proved.In some cases it is also useful to know the total amount of secret information thatmust be given to the participants of a secret sharing scheme. The following result showsthat there are acces structures in which the sum of the shares sizes is equal to 1:5jP jjSj.Thus, \in average", any participant must have a share of size at least 1.5 times the sizeof the secret. 10



Theorem 4.4 There is an access structure of n � 5 participants, for which any schemerequires a total entropy of nXi=1H(Xi) � (3n=2)H(S):Proof. Consider the `circular' access structure de�ned as the closure of the following setnfX1;X2g; fX2;X3g; :::; fXn�1;Xng; fXn;X1go:For each pair of set of shares Xi and Xi+1, we haveH(Xi)+H(Xi+1) � 3H(S). Moreover,H(X1)+H(Xn) � 3H(S). Summing over all pairs we get H(X1)+H(Xn)+Pn�1i=1 H(Xi)+H(Xi+1) � 3nH(S). Hence, Pni=1H(Xi) � (3n=2)H(S):AcknowledgmentsThe authors would like to express their thanks to C. Blundo, A. Orlitsky and D. R.Stinson for useful discussions and comments.
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