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Abstract. This paper presents a new construction of a lattice-based
verifiable secret sharing scheme. Our proposal is based on lattices and
the usage of linear hash functions to enable each participant to ver-
ify its received secret share. The security of this scheme relies on the
hardness of some well known approximation problems in lattices such as
nc-approximate SVP. Different to protocols proposed by Pedersen this
scheme uses efficient matrix vector operations instead of exponentiation
to verify the secret shares.
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1 Introduction

It is known from [12] that quantum algorithms could break most of number-
theory based cryptosystems used in practice (e.g., RSA, DL). Indeed, such algo-
rithms can solve both the factoring problem and the discrete log problem in finite
fields and on elliptic curves in polynomial time. It may therefore be desirable
to design new cryptographic primitives, such as public-key cryptosystems and
secret sharing schemes, whose security depends upon problems that are not vul-
nerable to quantum attacks. Lattice-based systems offer a promising alternative
to number-theoretic ones, and they are believed to be secure against quantum
attacks since their security is based on lattice problems that in their general
form are well-known NP-hard. In addition to post-quantum security, they are
easy to implement and utilize only basic operations.

Motivated by the need for protecting cryptographic keys by more than one
party, secret sharing schemes were first introduced independently in 1979 by
Shamir [11] and Blakley [3]. The Shamir’s proposal relies on polynomials with
n coefficients where n is the number of parties involved to reconstruct the coef-
ficients of polynomials with degrees at most n− 1. Blakley, instead, makes use
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of the fact that different hyperplanes can intersect in one point. And a certain
amount of these hyperplanes is only required to specify that point. Since then
several other secret sharing schemes have been developed, for example those that
are based on the Chinese Remainder Theorem ([7] and [2]) or hybrid construc-
tions [8] using the discrete logarithm problem for verification. Our construction
follows a new simple approach since it uses only simple operations from linear
algebra. Compared to the previous schemes it recovers a vector rather than a
single value. Furthermore, the verification of the secret shares as well as the
secret vector can be done via lattice-based hash functions whose security is re-
ducible to some NP-hard problems in lattices. Previous schemes, instead, rely
on the discrete logarithm problem for the verification. The main idea behind our
scheme is to recover a basismatrix at first which is then required to compute
the secret vector that in turn could be used as a secret key for the lattice-based
LWE encryption scheme [10]. Secret sharing systems can be found in many real
applications such as secure multi-party computations [4], e-voting [14], and sen-
sor networks [6]. In the basic model of secret sharing we differ at least two major
protocols: the distribution protocol in which the dealer forwards the secret shares
to the participants, and the combination or reconstruction protocol in which the
secret is recovered by pooling the shares of a qualified subset of the participants.

A system is called a (t, n) threshold secret sharing scheme with t ≤ n, when at
least t participants are required to recover the secret key, where n is the number
of participants obtaining a secret share from the dealer. We present a (n, n) secret
sharing scheme based on the difficulty to solve nc-approximate SVP in lattices
for some constant c.

2 Preliminaries

The following briefly introduces the definitions and notations used in the present
paper.

2.1 Notations

The following notations and definitions will be used throughout the rest of the
paper.

� |x| is the length in bits of a string x.
� The Hamming weight of a string x is the number of its non-null coordinates

and denoted by wt(x).
� [v1, ..., vn] is the matrix composed by the column vectors v1, v2, . . . , vn.
� By t1 = (t(1)1 , ..., t

(n)
1 ) we denote a vector consisting of n elements, where t

(i)
j

identifies the i-th element of the vector tj.
� For a finite set S, we denote by x

$←− S the experiment of uniformly choosing
an element x from S and assigning it to x.

� With �r� we round a real number r up to the next integer.
� x� is the transpose of a vector x.
� rot(x) cyclically rotates the vector x, e.g. rot((1, 2, 3, 4)) = (4, 1, 2, 3).
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2.2 Basics on Lattices

A lattice L is a discrete abelian subgroup of R
m. A basis B = [b1, .., bn] ∈ R

m×n

for the lattice L consists of d ≤ n linearly independent vectors bi with

L(B) =
{ n∑

i=1

tibi | t1, ..., tn ∈ Z

}
⊂ R

m, i.e. L is the set of all integer combina-

tions of the vectors in B. The minimum distance of a lattice L(B), denoted
λ(L(B)), is the minimum distance between any two distinct lattice points, and
equals the length of a nonzero shortest lattice vector.

λ(L(B)) = min{‖x‖ : x ∈ L(B)} (1)

Definition 1. (Shortest Vector Problem - SVP)
Let L(B) ⊂ R

n be a d-dimensional lattice and B ∈ Z
n×d the corresponding basis

matrix. An input to SVP is a lattice basis B and the goal is to find a vector x in
L(B) such that ‖x‖ = λ(L(B))

Definition 2. (Approximate Shortest Vector Problem - γ-SVP)
Let L(B) ⊂ R

n be a d-dimensional lattice and B ∈ Z
n×d the corresponding basis

matrix. An input to SVP is a lattice basis B and the goal is to find a vector x in
L(B) such that ‖x‖ = γ · λ(L(B))

3 Our Construction

In this section, we present a non-interactive verifiable lattice-based secret sharing
protocol that requires all parties to participate with their shares in order to
recover a secret, while at the same time enabling them to verify their secret
share. In this scheme, a dealer selects different vectors of length n and weight
m > 1 and produces secret shares of length n , where n is a positive integer. A
higher weight is chosen in order to prevent the participants to get information
about the basis vectors from their secret shares, because the secret share is a
linear combination of the private basis vectors.

3.1 Description

This scheme works in non-interactive manner, meaning that each participant
can verify its own secret share without communicating with other participants.
It consists of two steps: the distribution and combination phase. On the other
hand, its security relies on the hardness of solving SVP in lattices. Furthermore,
it is very fast as it uses only matrix-vector multiplication to recover the secret.

The principle of our proposal is the following: the dealer generates a private
lattice basis B ∈ Z

n×n with low orthogonal defect and selects linearly indepen-
dent vectors λi ∈ {x ∈ F

n
2 : wt(x) = m > 1} and publishes them together with the

hashed (encrypted) secret and basis vectors. The dealer also reveals the vector
v ∈ Z

n which is needed to compute the secret as s := B · v. Here a linear hash
function is used, such as Ajtai’s hash function [1] or more efficient ones proposed



An Efficient Lattice-Based Secret Sharing Construction 163

by Lyubashevsky and Micciancio [5] or Peikert and Rosen [9], to enable each
participant to verify its secret share in a non-interactive manner. It is also pos-
sible to take a semi-homomorphic lattice-based encryption scheme with additive
property to achieve the same results. As next step, the dealer secretly distributes
the vectors ci = B · λi to each participant Pi. By doing so, n participants would
be able to recover the private basis and compute the secret. In what follows, we
describe the distribution and combination phase in details.

Distribution Phase

1. D chooses a private lattice Basis B and selects linearly independent binary
vectors λi of length n and weight m > 1. Then he computes the secret shares
ci = B · λi and secretly forwards them to the participants.

2. Upon receipt of the own secret share, each participant P checks the hash
value, in particular he verifies whether the hash value of its secret share
can be written as a linear combination of the hashed basis vectors, i.e.,
H(ci)

?==
∑

λij · H(bj), since the λi and H(bj) as well as the secret generat-
ing vector v are public. If the hash value is valid, the participant sends its
acknowledgment to the dealer back.

Since many hash functions are fed with binary strings of a special length
we can hash each component of the received vector without losing the lin-
earity of the hash function. In this way we obtain for every input vector a
matrix as hash value.

Dealer D Participant Pi

Private Data: B ∈ Z
n×n, s = B · v Private Data: ci = B · λi

Public Data: v ∈ Z
n, H(s), H(bj), λk

with 1 ≤ j, k ≤ n

λi
$←− {0, 1}n s.t. wt(λi) = m > 1,

λi /∈ span(λ1, . . . , λi−1)

ci = B · λi
ci−−−−−−−−−−−−−−→

secure communication

H(ci)
?

==
n∑

j=1

λij · H(bj)

complain/ack←−−−−−−−−−−−−−−
secure communication

If Equals-condition is true
ACCEPT

else REJECT

Fig. 1. Distribution Phase
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Participants P Combiner C
Private Data: cki

, 1 ≤ i ≤ n Private Data: B ∈ Z
n×n, s

Public Data: v ∈ Z
n, Hash(s), Hash(bj), λk

with 1 ≤ j, k ≤ n

C = [ck1 , . . . , ckn ]
T = [λk1 , . . . , λkn ]

C, T−−−−−−−−−−−−−−→
secure communication

Solve:
ei = T · (a(i)

k1
, . . . , a

(i)
kn

)�,
∀1 ≤ i ≤ n

Compute:
B = [ck1 , . . . , ckn ] · [ak1 , . . . , akn]

�

t = B · v
t←−−−−−−−−−−−−−−

secure communication

If H(t)
?

== H(s)
ACCEPT: s = t

else REJECT

Fig. 2. Combination Phase

Combination Phase
The combination phase involves three steps to recover the secret:

1. n participants Pk1 , . . . , Pkn secretly send their received secret shares
ck1 , . . . , ckn to the combiner. These secret shares ck1 , . . . , ckn can be repre-
sented as square matrix of size n × n, i.e., C = [ck1 , . . . , ckn ] . Then the
combiner solves the following equations for the unkonwn vectors ak1 , . . . , akn ,
where ei denotes the i-th n-dimension unit vector:

ei = [λk1 , . . . , λkn ] · (a(i)
k1

, . . . , a
(i)
kn

)�, 1 ≤ i ≤ n (2)

We then obtain a matrix A = [ak1 , . . . , ak1 ] in order to compute the private
lattice basis B. The following equation shows that the private Basis can be
expressed as a function of the matrices C and A:

B= [ck1 , . . . , ckn ] · [ak1 , . . . , akn ]
�

= [b1, . . . , bn] · [λk1 , . . . , λkn ] · [ak1 , . . . , akn ]
�

= [b1, . . . , bn] · [e1, . . . , en]

(3)

2. The combiner computes the secret by simple matrix vector multiplication.

s = B · v, (4)

The secret is then sent via a secure communication channel to each partici-
pant back.
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3. The participants can then verify the secret produced by the combiner. To
this end, the participant compares the hash of the received value with the
hashed secret provided by the dealer which is also publicly available.

Example: n=4, wt = 3

[λ1, . . . , λ4] =

⎛
⎜⎜⎝

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

⎞
⎟⎟⎠, [b1, . . . , b4] =

⎛
⎜⎜⎝

7 9 8 4
6 3 3 0
5 9 0 5
4 4 2 3

⎞
⎟⎟⎠,

[c1, . . . , c4] =

⎛
⎜⎜⎝

15 22 10 12
17 16 13 7
18 21 11 9
15 16 5 8

⎞
⎟⎟⎠

3.2 Security and Performance

The security of our construction is based on the underlying hash function
which is used for hiding the basis vectors as well as the secret. It is also pos-
sible to use any encryption function instead, which however needs to satisfy
the additive property. The security of Ajtai’s hash function (see Algorithm
1) or more efficient ones constructed by Lyubashevsky and Micciancio [5] or
Peikert and Rosen [9] can be reduced to the hardness of solving approximate
nc-SVP.

Algorithm 1 Calculate A hash function following Ajtai’s construction
1. Parameters: integers n, k, p, d ≥ 1 with n > k·log(p)

log(d)

2. Key: a matrix B chosen uniformly from Z
k×n
p

3. Hash function: fA : {0, . . . , d − 1}n → Z
k
p given by fA(x) = A · x mod p

As already mentioned above many hash functions are fed with a binary input
string and produce a vector. Since we operate on n dimensional vector spaces
we would have to hash each component of a vector leading to a n× n-matrix as
a hash value without affecting the additive property. In the distribution phase
every participant verifies its secret share. The needed number of operations and
transferred bits of each protocol step are depicted in the following tables. When
Z

n is replaced by Z
n
q , the bit size of each vector component is bounded by log(q)

and the solution is unique if the determinant of [λk1 , . . . , λkn ] is coprime to q as
shown in [13].

In a (n, n) scheme the dealer can efficiently generate n linearly independent
vectors having length n by setting the weight to n− 1. If we use the vectors
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Table 1. Theoretical performance in the distribution phase

Dealer Participant

Computation (bops) n2m · log(q) n2·log(q)
log(p)

Communication (bits) n · log(q) 1

Table 2. Theoretical performance in the combination phase

Participants Combiner

Computation (bops) n2 · (n2 + n0.373 + log(q))

Communication (bits) n2 · (log(q) + 1) n · log(q)

λi = (
n∑

j=1

ej)− ei for 1 ≤ i ≤ n it can easily be shown that these vectors form a

base due to the fact that each vector represents a vertice in a n-dimensional
hypercube. These vertices are on different axial planes perpendicular to each
other. So any checks in terms of linearly independence can be neglected.

Example: n = 6, wt = 5

[λ1, . . . , λ6] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

From linear algebra we know that fewer than n participants cannot recover the
private basis and thus get no information about the secret s because the se-
cret satisfies equation (4). It is also possible to show that no unit vector can
be computed in the first step of the combination phase when the number of
participants is less than n. So any private basis vector remains hidden. This
advantageous side effect comes from the fact that n− 1 of the chosen vectors
λk span a (n− 1)-dimensional hyperplane connecting the n− 1 vertices and the
origin in a hypercube. So every unit vector is outside the hyperplane.

Our secret sharing scheme has been implemented on a 2.5 GHz Intel Core
i5-2520M, running Linux (Ubuntu 11.04) 32 Bit. The performance results of the
implementation are reported in Table 3.
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Table 3. Performance of the secret sharing scheme

Number of users Distribution Combination Verification
(dimension) timing (sec) timing (sec) timing (sec)

n=128 0.005864 0.006625 0.000085
n=256 0.035171 0.042033 0.00023
n=512 0.195757 0.273959 0.000676
n=1024 1.212575 1.922552 0.002577

This scheme can easily be extended to a protocol where at most n out of
(

n
m

)
participants are required to recover the secret. By this means, the chosen weight
would maximize the binomial coefficient and therefore the number of potential
secret share holders. This is the case when m equals to � n

2�. To this end, the
dealer selects all possible vectors with weight wt = � n

2� and computes the cor-
responding secret shares. But the reconstruction of the secret is computational
infeasible for less than � n

2�+ 1 parties because fewer than � n
2�+ 1 of the se-

lected vectors cannot span a (� n
2�+ 1)-dimensional subspace and with the same

argument as above no unit vector can be computed. However, every particpant
can determine which other secret share holder could involve for the purpose
of computing the secret since λi of all participants are publicly available. As n
vectors form the basis matrix B, which is not necessarily consisting of linearly
independent vectors, it is required to know at least � n

2� vectors in order to
recover all basis vectors. One method is to use cyclic rotations of n

2 basis vectors.

Example:

1. Dimension: n = 100, (n = 1024)
2. Weight: n− 2 = 98, (1022)
3. Nr. of particpiants:

(
n

n−2

)
= n·(n−1)

2 = 4950, (523776)
4. Min. number of particpants to recover the secret: n− 1 = 99, (1023)
5. Max. number of particpants to recover the secret: n = 100, (1024)
6. B = [b1, . . . , bn−1, rot(bn−1)]

4 Conclusion

In this work we present a new and efficient construction of a secret sharing
scheme by making use of a lattice based hash function for the protection of
the secret. Every secret share holder is enabled to verify its share due to the
linearity of the employed hash function. We showed that breaking this scheme
by attacking the hash function is at least as hard as solving approximate SVP.
We also showed that in the (n, n)-scheme all parties have to participate in order
to recover the secret. In addition, it is computationally infeasible for less than
n participants to compute the basis matrix and hence the secret. Furthermore,
our scheme can be extended into n out of

(
n

� n
2 �

)
secret sharing scheme in order

to increase the number of potential secret share holders.
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