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some cryptographic protocol to securely send all further communication regarding theproject. Another place where this problem may arise is in a distributed system, forexample a computer network linking a corporation's headquarters and branch o�ces.Formally, the team wishes to determine a random n-bit sequence S satisfying agree-ment, secrecy, and uniformity. Agreement is met if each team player knows S. Secrecy ismet if the eavesdroppers' probability of guessing S correctly is the same before and afterhearing the communication between the team players. Uniformity requires that S hasequal probability of being any one of the 2n possible n-bit sequences. Such a secret keyis said to be shared by the team. Each team player has an output tape that is physicallyprotected from the other players. An n-bit secret key exchange protocol is one in whicheach team player outputs the same n-bit sequence satisfying the secrecy and uniformityconditions. The output can then be used for a variety of cryptographic purposes, forexample, as the key in private key cryptosystems (cf. [DH]).We allow the eavesdroppers to be computationally unlimited, so standard crypto-graphic techniques based on computational di�culty cannot be used. In fact, a secretkey exchange protocol is not possible without any further assumptions, for an eavesdrop-per can simulate any team player under all possible random choices and thereby learnS. Hence, we give the players secret initial information in the form of correlated randomvariables. While the value of each player's random variable is unknown to the otherplayers, the distribution from which the random variables are chosen is publicly known.For any team that forms, the remaining players are assumed to collaborate against theteam, possibly communicating among themselves via private channels. Thus we treatthem as a single eavesdropper, Eve, who possesses the initial information of all of thenon-team players. Note that because initial information is given to all players beforethe team forms, it is not possible to deny Eve all initial information. We would like todistribute the initial information in such a way that any team that forms can obtain asecret key.Our framework is very general and admits the trivial solution in which each player isgiven a priori a secret key for each team to which the player might eventually belong.Any team that forms can use the corresponding preassigned secret key, but since thereis an exponential number of possible teams, the amount of initial information is quitehigh. Also, the structure of the initial random information is rather complicated.We desire instead correlated random variables that have a simple structure and a smallamount of initial information. A familiar example of such correlated random variablesis provided by ordinary card games in which players are dealt hands from a randomlyshu�ed deck of cards. By looking at her own cards, a player gains some information



about the other players' hands. Namely, she learns a set of cards that appear in noother player's hand. Peter Winkler developed bidding conventions for the game of bridgewhereby one player could send her partner secret information about her hand that wastotally unrelated to the actual bid and completely undecipherable to the opponents, eventhough the protocol was known to them [Fl, Wi81a, Wi81b, Wi83]. Fischer, Paterson andRacko� [FPR] carried this idea further, using deals of cards for secret bit transmissionbetween two players. We consider secret key exchange protocols based on such cardgames in the remainder of this paper.The problem of secret key exchange has been considered by others in the context ofpublic key cryptography (cf. [DH, Me]). Impagliazzo and Rudich provide evidence thatmost of the standard techniques in cryptography cannot be used to construct a secretkey exchange protocol from a one-way permutation [IR]. Our results are quite di�erentin character from these, for we place no computational limitations on our participants.Thus, one-way permutations do not exist in our model, and one must rely on otherassumptions, such as the existence of prior secret initial information as in this paper,in order to make the problem solvable. Furthermore, techniques such as those used byMaurer [Ma] will not work here since we require that the key obtained is completely secretfrom Eve and is known exactly to all the team players, as prescribed by the secrecy andagreement conditions.In the remainder of the paper, we consider the situation in which a team has justformed, and investigate whether secret key exchange is possible. We use the followingterminology. A deck D is a �nite set, whose elements we call cards; a hand is subset ofD.Let d be the size of the deck. The cards in the deck are known to all the players, as is thesize of each player's hand, but the cards in each player's hand are private to that player.In an (h1; h2; : : : ; hk; e)-deal, each team player Pi is given a hand Hi such that Hi � Dand jHij = hi. Eve is dealt a hand E such that E � D and e = jEj = d �Pki=1 hi.The deal � = (H1;H2; : : : ;Hk;E) is legal if H1;H2; : : : ;Hk; E partition D. We call thedescription of the sizes of the hands, � = (h1; h2; : : : ; hk; e), the signature2 of the deal,and call a deal having signature � a �-deal. If all k team players have the same hand sizeh in a signature, we write (hk; e).An n-bit secret key exchange protocol that always succeeds in obtaining an n-bitsecret key for all legal �-deals is said to work for �. We also say such a protocol performsn-bit secret key exchange for �.In Section 2, we describe a simple 1-bit secret key exchange protocol that works forall deals in which the team players' hands are su�ciently large relative to the size of2This term is borrowed from algebra, and is not intended to have any connection to digital signatures.



the team and the size of Eve's hand. In Section 3, we present a protocol that improveson the �rst protocol in two ways. First, it establishes an n-bit secret key for arbitraryn. Second, it requires only that each team player hold an arbitrarily small fraction ofthe cards (assuming that the deck is su�ciently large). In Section 4, we present somenecessary conditions on the deal for a secret key exchange protocol to exist. In Section 5,we show that the protocol presented in Section 2 is optimal for a natural class of relatedprotocols.2 A One-Bit Secret Key Exchange ProtocolWe �rst consider a simple 1-bit secret key exchange protocol. We use the notion of a keyset de�ned in [FPR]. A key set K consists of two cards, one held by a team player P ,the other held by a di�erent team player Q. A key set K = fx; yg is opaque if, given theinformation available to Eve, it is equally likely that P holds x and Q holds y or that Pholds y and Q holds x.Once P and Q determine an opaque key set K that they hold, they can use it toobtain a bit r that is secret to Eve. Namely, they agree that r = 0 if P holds x and r = 1if P holds y, or vice versa. Thus K acts as a 1-bit secret channel ; that is, it allows Pand Q to communicate a single bit secretly.The structure of our protocol is as follows. We think of the team players as nodes ofa graph. We connect two team players by an edge if the team players have a 1-bit secretchannel between them. The goal of the protocol is to connect the team players. We obtain1-bit secret channels by �nding opaque key sets between pairs of team players until theteam is connected. Then a designated player, say P1, chooses a bit s randomly. Usingooding on the 1-bit secret channels, s is propagated to all the team players. Clearlys satis�es agreement and uniformity. Secrecy is satis�ed because each 1-bit channelpreserves secrecy. Hence, s is a 1-bit secret key.We de�ne the notion of a feasible player. Let each team player Pi hold hi cards andlet Eve hold e cards. Then Pi is feasible if hi > 1, or if hi = 1, e = 0, and hj > 1 for allj 6= i. In the protocol that follows, we say a card x is discarded from the deck if all teamplayers agree to play as if x is no longer part of the deck. Similarly, we say a team playerP drops out of the protocol if the team players agree to play as if P were no longer partof the team. The protocol follows.1. Let P be the feasible player holding the smallest hand. (Ties are broken in favor of



the lower-numbered player.) If no player is feasible, then P is the lowest-numberedplayer holding a non-empty hand, if any.2. P chooses a random card x contained in her hand and a random card y not in herhand and proposes K = fx; yg as a key set by asking, \Does any team player holda card in K?"33. If another team player Q holds y, she knows that K is a key set, so she acceptsK by announcing that she holds a card in K. The cards x and y are discarded.Whichever player of P and Q holds fewer cards exposes the remaining cards in herhand, which are discarded, and drops out of the protocol. The remaining teamplayers go back to step 1 with the \new" deal.4. If none of the team players holds y, then K is rejected . In this case, x and y arediscarded, and the players go back to step 1.The execution of the protocol continues in this manner until either there are notenough cards left to complete steps 1 and 2, or until only one team player is left. Inthe �rst case, the protocol fails. In the second case, all the team players are connectedby opaque key sets. To see this, note that every key set K = fx; yg accepted in step 3is opaque because it is equally likely to be proposed by P in the symmetric deal whereeverything is the same except that P holds y and Q holds x. Hence the team can obtaina 1-bit secret key by ooding as previously described. We call this protocol the SFP keyset protocol (for smallest feasible player). An inductive argument shows the following.Theorem 2.1 Let � = (h1; :::; hk; e). Let hi � 1 for 1 � i � k, and maxhi +minhi �k + e. Then the SFP key set protocol performs 1-bit secret key exchange for �.In Section 5 we consider protocols with di�erent rules for choosing P in step 1. Weshow there that the SFP key set protocol is optimal among all such key set protocols.3 An n-Bit Secret Key Exchange ProtocolThe SFP key set protocol has two limitations: it requires that the team hold more thanhalf the cards in the deck, and it only provides a 1-bit secret key. Moreover, it is notobvious how to modify the protocol to overcome these limitations. For example, the3In an abstract setting, fx; yg is clearly the same as fy; xg. In an actual implementation, care mustbe taken that the communication of fx; yg does not reveal which card came from P 's hand.



protocol cannot be repeated to obtain additional key bits since players drop out andexpose their remaining cards during execution.The �rst limitation is overcome in [FPR] for a team of two players. A 1-bit secretkey exchange protocol is presented there that works when each team player holds any�xed fraction of the cards and the deck is su�ciently large. An analysis of that protocolestablishes the following:Theorem 3.1 (Fischer, Paterson, Racko�) There is a 1-bit secret key exchange protocolP such that for all 0 < � � 1=2 and d � � 2�2 �21=�, P works for (b�dc ; b�dc ; d�2 b�dc).We show how to use such a protocol to perform n-bit secret key exchange for teamsof size k and su�ciently large decks. Our construction is a general reduction of then-bit, k-player problem for signature �� = (hk; d� kh) to the 1-bit, 2-player problem forsignature � = (bh=2nc ; bh=2nc ; d � 2 bh=2nc). Thus, given a protocol P that performs1-bit secret key exchange for �, we construct a new protocol P� that performs n-bit secretkey exchange for ��.Lemma 3.1 Let n � 1, k � 2 and d � kh. Let P be a 1-bit secret key exchange protocolthat works for � = �� h2n� ;� h2n� ; d� 2� h2n�� :Then there is a protocol P� that performs n-bit secret key exchange for �� = (hk; d�kh):Proof: Suppose n, k, d, h, P, and � satisfy the conditions of the lemma, and let�� = (hk; d� kh). We construct an n-bit secret key exchange protocol P� that works for��. Assume the players are linearly ordered, say, by their indices. Two team players aresaid to be neighbors if they are adjacent in the ordering. P1 is the leader and randomlychooses an n-bit string S to be the secret key. Each pair of neighbors Pi and Pi+1 usesP in sequence n times to establish an n-bit secret key Bi that they share, as describedin detail below. When Pi learns S from Pi�1, she sends Ei = S � Bi to Pi+1 publicly.Pi+1 recovers S by computing Ei � Bi.We now describe in detail how the one-time pads are established. Given a teamplayer Pi, we say Pi+1 is the right neighbor of Pi and Pi�1 is the left neighbor of Pi.Each player Pi divides her hand into 2n parts, H1i through H2ni , of size bh=2nc and a(possibly empty) part containing her remaining cards. Pi uses parts H1i through Hni to



establish Bi with her right neighbor, and she uses parts Hn+1i through H2ni to establishBi�1 with her left neighbor.The jth bit of the one-time pad Bi is gotten as follows. Pi plays the role of player 1in P, pretending that the only cards she holds are those in Hji . Pi+1 plays the role ofplayer 2 in P, pretending that the only cards she holds are those in Hn+ji+1 . The otherteam players do not participate. We call the cards in Hji [Hn+ji+1 the current cards. Bothplayers pretend that Eve holds all but the current cards. Thus Pi and Pi+1 execute P asif the deal were a �-deal. Since P is assumed to work for �, Pi and Pi+1 obtain a sharedsecret bit, which they use for the jth bit of Bi.Note that whenever a card x not in the current cards is referenced, all players behaveas if Eve holds x. If Eve does not hold x, she learns that x does not lie in the currentcards, but she learns nothing further about the location of x. Thus this process can berepeated, using each part of each team player's hand exactly once, to get all the one-timepads.We now apply Lemma 3.1 to families of 1-bit protocols.Theorem 3.2 Let n � 1, k � 2, and let f be a function on the reals. Suppose for every0 < � � 1=4 and every d � f(�) that there is a 1-bit secret key exchange protocol P thatworks for (b�dc ; b�dc ; d�2 b�dc). Let 0 < � � 1=k, and let d � f(�=2n). Let P� be theprotocol constructed as in the proof of Lemma 3.1. Then P� performs n-bit secret keyexchange for (b�dck ; d� k b�dc).Proof: Assume the hypotheses of the protocol, and assume we are given a deal ofsignature � = (b�dck ; d� k b�dc). Let h = b�dc and let � = �=2n. Since � � 1=k, itfollows that d � k b�dc = kh and � � 1=4. Also, since n is an integer, b�dc = b�d=2nc =bb�dc =2nc = bh=2nc. Hence, P satis�es the conditions for Lemma 3.1. It follows fromLemma 3.1 that P� performs n-bit secret key exchange for (hk; d� kh) = � as desired.The following corollary to Theorem 3.2 is immediate using Theorem 3.1, takingf(�) = � 2�2� 21=�.Corollary 3.1 Let 0 < � � 1=k. Suppose d � 8 �n��2 22n=�: Then P� performs n-bitsecret key exchange for (b�dck; d� k b�dc).Unfortunately, the required deck size here grows exponentially in n=�. Richard



Beigel [Be] has suggested an improved 1-bit two-player protocol in which the deck sizeappears to grow only polynomially in 1=�. Using such a protocol, our construction yieldsan n-bit team protocol for which the deck grows only polynomially in n=�.4 Lower Bound ResultsIn order to discuss lower bounds, we �rst de�ne our model more precisely. We look ata synchronous distributed model of computation in which there is a team of k playersP1 through Pk and a passive eavesdropper, Eve. Let P be an n-bit secret key exchangeprotocol for P1 through Pk. In each round of P, each of the team players simultaneouslybroadcasts a message to all of the other players. All messages are overheard by Eve. LetZ be the set of possible messages, and let zi 2 Z be the message that each Pi sends inthe round. The k-tuple (z1; z2; : : : ; zk) 2 Zk is called a statement of P. A sequence ofstatements is called a conversation of P, denoted by �P . We assume each protocol Palways terminates after some �xed number tP of rounds. A conversation �P is completeif j�Pj = tP. As it will be clear from context which protocol is being discussed, we willomit the protocol subscripts.The protocol run by each player Pi is a randomized algorithm that determines themessage for Pi to send at each round based on her hand and the conversation so far.Speci�cally, let Hi be the set of possible hands for Pi. Let Hi 2 Hi, and let � be aconversation. A protocol for Pi is a pair (�i;Oi). If � is not complete, �i(Hi; �) is arandom variable over the message space Z, where Pr [�i(Hi; �) = z] is the probabilitythat Pi sends message z at round r+1 given that Pi holds hand Hi and the conversationthrough round r is �. If � is complete, Oi(Hi; � ) 2 f0; 1gn speci�es Pi's output value.A joint protocol for players P1 through Pk consists of a set of protocols (�i;Oi),where each (�i;Oi) is a protocol for Pi. All the protocols (�i;Oi) are known to eachteam player, as well as to Eve. Thus an n-bit secret key exchange protocol that worksfor � is a joint protocol f(�1;O1); : : : ; (�k;Ok)g for the team players such that for allpossible runs on each legal �-deal, if every team player Pi plays according to (�i;Oi), theteam succeeds in obtaining an n-bit secret key. It is a straightforward exercise to modifythe protocols we describe in English in this paper to �t this model.We generalize a theorem of [FPR] to show that secret key exchange is not possible ifthe deal does not provide su�cient shared information. Throughout the remainder of thissection, we �x a deckD and a signature � = (h1; h2; : : : ; hk; e) such thatPki=1 hi+e = jDj.Recall that a �-deal of a deck D is a collection of k + 1 hands (H1; : : : ;Hk;E) such



that jHij = hi for i 2 f1; : : : ; kg and jEj = e, and recall that a deal is legal if the handspartition D. We sometimes use the term \general deal" to refer to a deal that is notnecessarily legal. Let �0 be the set of all (general) �-deals of D, and let � be the set oflegal �-deals of D. Note that � � �0 and that a general deal � is legal if and only if thehands in � are pairwise disjoint.A random legal deal is a uniformly distributed random variable over �. A randomgeneral deal is a uniformly distributed random variable over �0. Note that in both arandom legal deal and in a random general deal, each hand Hi is uniformly distributedover Hi. The di�erence is that in a random general deal, the hands H1; : : : ;Hk are inde-pendent random variables, whereas in a random legal deal, they are correlated. Hence,only in a random legal deal does player Pi get any information about the cards in otherplayer's hands.Let  be the probability that a random general deal is also a legal deal. Intuitively,the smaller  is, the more shared information the deal contains. The following theoremprovides an upper bound on  in order for n-bit secret exchange to be possible.Theorem 4.1 Let � and  be as de�ned above, and let n � 1. If  > 1=2k�1, then noprotocol performs n-bit secret key exchange for �.Proof (sketch): Assume to the contrary that some n-bit secret key exchange protocolworks for � when  > 1=2k�1. We may assume without loss of generality that n = 1.Using a somewhat involved probabilistic argument, we show that j�j=j�0j � 1=2k�1, i.e.,at most 1=2k�1 of all deals are legal. Since all deals are equally likely, it follows that � 1=2k�1, a contradiction. We conclude that no protocol performs 1-bit secret keyexchange for �.The full proof is rather long and is omitted. (It may be found in [FW].) We remarkthat the theorem holds even for protocols in which Eve is not allowed to look at herhand. Thus, our theorem applies to a larger class of protocols than necessary. We donot know how to use Eve's ability to see her cards to improve this result.Corollary 4.1 Let n � 1 and 2 � k � 8. Then no protocol performs n-bit secret keyexchange for (1k; 1).Proof: In these cases,  = (k + 1)!=(k+ 1)k > 1=2k�1 .For k > 8;  = (k + 1)!=(k + 1)k < 1=2k�1, so nothing can be concluded.



Theorem 4.1 says nothing about the (1k; 0) case. However, it is possible to show thefollowing.Theorem 4.2 Let n � 1. Then no protocol performs n-bit secret key exchange for(1; 1; 1; 0).Proof (sketch): It is su�cient to show no protocol performs 1-bit secret key exchangefor (1; 1; 1; 0). To prove this, we look at properties of the possible conversations of a 1-bitsecret key exchange protocol on (1; 1; 1; 0)-deals. Let � be a complete conversation. Wesay that � is realizable if there is some � 2 � such that � is a possible conversation of theprotocol when the deal is �, and in this case we say � is consistent with � . An outputv 2 f0; 1g is possible given � if there is some � = (H1;H2;H3) 2 � consistent with �such that v = Oi(Hi; � ) for each i.Suppose P performs 1-bit secret key exchange for (1; 1; 1; 0). We construct a treeof conversations as follows. The nodes of the tree are conversations, and the edges outof a node are labeled by possible next statements. Thus the interior nodes are partialconversations; leaf nodes are complete conversations. A conversation � passes througha node � if � extends �. It can be shown that exactly two deals are consistent witheach realizable conversation, and that both of the deals consistent with a realizableconversation have the same parity4. We say that the parity of a realizable conversation� is the parity of the two deals consistent with � . We say a node is single valued if allconversations passing through it have the same parity. It is multivalued otherwise. Weare now ready to derive a contradiction.By the correctness of P, all (1; 1; 1; 0)-deals must be possible initially. Thus theroot of the tree is multivalued. Because only one conversation passes through any leafnode, all leaves are single valued. Hence there must be a multivalued node � havingonly single valued children. Thus there exist complete conversations �0 and �1 passingthrough � such that �0 has parity 0 and �1 has parity 1. It is then possible to constructan \interpolated" conversation passing through � that gives rise to a multivalued child,a contradiction.This proof is highly dependent on speci�c properties of the set of possible (1; 1; 1; 0)-deals, and does not generalize easily to larger teams. However, using an extension tothe graph theoretical framework developed by Beaver, Haber and Winkler [BHW] torepresent shared knowledge between two players, it is possible to show the followinggeneral result (cf. [FWW]).4The parity of a (1;1;1; 0)-deal is the parity of the permutation describing it.



Theorem 4.3 Let n � 1, k � 2, and e � 0. Then no protocol performs n-bit secret keyexchange for (1k; e) unless n = 1; k = 2, and e = 0.5 Key Set Protocols RevisitedEven for the simple case of n = 1, there is a large gap between signatures for which wehave a secret key exchange protocol and signatures for which we have shown that noprotocol exists. For example, (2; 2; 2; 2) falls into this gap.One approach to closing the gap is to modify the SFP key set protocol presentedin Section 2. In step 1 of this protocol, a team player P , the proposer , is chosen. Byconsidering di�erent rules for choosing the proposer, we get a class of protocols. We callsuch a rule a proposing rule. We require a proposing rule to be a deterministic function ofthe current signature. We call the protocol that results from proposing rule R the R keyset protocol. We call the class of all such protocols the class of key set protocols. By thisde�nition, the SFP key set protocol results from the smallest feasible player proposingrule (SFP): If any team player is feasible, the feasible player with the smallest hand ischosen. (Ties are broken in favor of the lower-numbered player.) If no team player isfeasible, the lowest-numbered team player holding a non-empty hand is chosen, if any.Theorem 2.1 holds for anyR key set protocol where R always chooses a feasible playerif some team player is feasible. The converse, however, does not in general hold. Forexample, the signature � = (3; 3; 2; 1; 1) does not satisfy the conditions of the theorem,but the SFP key set protocol works for �. We have been unable to �nd an exact char-acterization of the signatures for which the SFP key set protocol works. Nevertheless,it is possible to show that the SFP key set protocol is optimal for the class of key setprotocols. By this we mean that for a signature �, if the R key set protocol works for� for some R, then the SFP key set protocol also works for �. To prove this we look ata simple combinatorial stick game between a team and an adversary. The stick gameabstracts the important aspects of the key set protocol.The stick game is a game between a team and an adversary. There are k team piles,P1 through Pk, and a pile E. Pile Pi contains hi sticks, and pile E contains e sticks.The team always moves �rst. On the team's turn, the team designates a team pile Picontaining at least one stick. On the adversary's turn, the adversary either removes onestick from Pi and one from E (allowed only when e > 0), or chooses another team pile Pjsuch that hj > 0, removes the smaller of Pi and Pj entirely, and removes one stick fromthe larger pile. Note that removing a pile is not the same as removing all the sticks inthe pile. Play ends when there are one or zero team piles, in which case the team wins,



or when there is no move available (either to the team or to the adversary), in whichcase the team loses. A con�guration of the stick game can be described by the tuple(h1; : : : ; hk; e; I), where I speci�es whether it is the team's turn (T ) or the adversary'sturn (A). We call the stick game starting from con�guration C the C stick game.A strategy for the team, or team strategy, is a function that, given a con�gurationof the stick game where it is the team's turn speci�es the next team move. Similarly,an adversary strategy is a function that speci�es the next adversary move. We say acon�guration C is winning if there is some team strategy S such that if the team playsthe C stick game by strategy S, then the team wins regardless of the moves chosen bythe adversary. We say S is a successful team strategy for C. We call S an optimal teamstrategy if it is a successful team strategy for every winning con�guration C. We similarlyde�ne optimal adversary strategy .The stick game is a �nite game, since every adversary turn decreases the total numberof sticks by at least two. Furthermore, it is a game of complete information, since theteam and the adversary take turns and all information about the state is known to boththe team and the adversary. Hence game theory tells us that every con�guration is eitherwinning or losing, and an optimal team strategy S and an optimal adversary strategy Aboth exist [BCG].We de�ne a feasible pile in a stick game con�guration exactly as we de�ned a feasibleplayer in a signature, and we similarly de�ne the SFP strategy for the team in the stickgame. It is easy to see that a con�guration in the stick game is winning for a giventeam strategy if and only if the key set protocol works for the corresponding signaturewhen the team plays according to the corresponding proposing rule. Hence to show theoptimality of the corresponding SFP key set protocol we need only show the optimalityof the SFP stick game strategy.We show this by a series of arguments known as strategy stealing arguments. Wede�ne size((h1; : : : ; hk; e; I)) = k + e. The strategy stealing arguments are by inductionon size(C). We construct con�gurations C1; : : : ; Ci and C 01; : : : ; C 0j as shown in Figure 1.C0 winning C 00 winning+ *... ...+ *Ci winning =) C 0j winningFigure 1: The strategy stealing argument.



The con�gurations C1; : : : are constructed by playing the C0 stick game. We assumethe team never makes a move that would take a winning con�guration to a losing one,and we specify the adversary moves. Since an adversary move cannot take a winningcon�guration to a losing one, it follows that if C0 is winning, then every C` is winning.Similarly, the con�gurations C 01; : : : are constructed by playing the C 00 stick game. Weassume the adversary never makes a move on a losing con�guration that results in awinning con�guration, and we specify the team moves. It follows that if C 00 is losing,then every C 0̀ is losing, or conversely, if any C 0̀ is winning, then C 00 is winning. Theconstruction terminates when we obtain Ci and C 0j for which we can show that if Ci iswinning then C 0j is also winning.A case by case analysis of possible adversary responses to each SFP teammove enablesus to prove the following. (A full proof appears in [FW]).Theorem 5.1 The SFP strategy is an optimal team strategy for the stick game, andhence the SFP key set protocol is optimal for the class of key set protocols.Theorem 5.1 indicates that changing the proposing rule is not a su�cient modi�cationto the key set protocol to close the gap described at the beginning of the section. However,there are other possible modi�cations to the key set protocol to consider. For example,one might allow the players to communicate in order to choose the proposer. This alsodoes not close the gap, for we can show that the SFP key set protocol is optimal forthe larger class of protocols this gives rise to. However, the optimality may fail if theproposed key set is allowed to be chosen non-randomly.In the key set protocols described here, every time a key set is found, one of theteam players discards all the cards in her hand and drops out of the protocol, exceptto wait to hear the secret bit. We do this in order to avoid getting more than one keyset between any two players. It would be possible to consider key set protocols in whicha team player only drops out when a team player in the same connected component ofthe key set graph is chosen to propose a key set. We suspect that this does not give theteam additional power, and conjecture that Theorem 5.1 holds for this larger class ofprotocols.Another possible modi�cation to the key set protocol is to allow team players todiscard only the key set cards and risk getting multiple key sets between two teamplayers. It is an open question whether multiple key sets can be used (for example to\send" some of the cards in a player's hand to another player) to achieve 1-bit secret keyexchange where no key set protocol of the class described in this paper succeeds.



6 Concluding RemarksWe have shown here some conditions on the signature of the deal that allow secret keyexchange and some conditions under which secret key exchange is not possible. However,there is a large gap. There are many signatures for which we can neither give a secretkey exchange protocol nor demonstrate the nonexistence of such a protocol.As a future direction for this work, we intend to look at the concept of shared secretinformation between a team. We would like to develop a theory of shared secret infor-mation which can be applied to arbitrary correlated random variables. Speci�cally, canwe quantify how many bits of shared secret information a deal contains for the team?How can we use this information to develop better protocols and tighter lower boundson the signatures for which secret key exchange is possible? More generally, what othermechanisms besides deals from a common deck of cards give correlated random variablesthat can be used for secret key exchange?Deals of cards have a small amount of initial information. However, deals of cardsappear somewhat ine�cient for secret key exchange, in that the number of secret bitsthe team can obtain is small in comparison to the number of cards they are dealt.Michael Rabin [Ra] suggests a protocol that uses private correlated random variables tosolve another classical security problem, authentication. His method requires randomvariables that appear to contain more initial information than a deal of cards, but alsoappear to contain more shared secret information. We would like to use the theory ofshared secret information suggested above to quantify the ratio of initial information toshared secret information, and to investigate upper and lower bounds on this ratio forsecret key exchange protocols.7 AcknowledgementsWe thank Michael Merritt for his contribution to the proof of Lemma3.1. We thank PeterWinkler for many helpful comments. We thank Nick Reingold for countless discussions,and for suggesting a simpler proof of a key lemma used in the full proof of Theorem 4.1.References[BHW] D. Beaver, S. Haber, and P. Winkler. On the Isolation of a Common Secret,preprint, Bellcore, 1991.
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