
Chapter 52 

An Efficient Protocol for Unconditionally Secure 
Secret Key Exchange* 

Michael J. Fischer+ 

Abstract 

The multiparty secret key exchange problem is to find 
a k-player protocol for generating an n-bit random key. 
At the end of the protocol, the key should be known 
to each player but remain completely secret from 
a computationally unlimited eavesdropper, Eve, who 
overhears all communication among the players. The 
players are initially dealt hands of cards of prespecified 
sizes from a deck of distinct cards; any remaining 
cards are given to Eve. Considered here is the case 
in which each player receives the same fraction p of 
the cards in the deck, for /3 in the interval (0,1/k]. The 
efficiency of a secret key exchange protocol is measured 
by the smallest deck size do for which the protocol is 
guaranteed of success. A secret key exchange protocol 
is presented with do = O(n(l//?)2.71). The best 
previous bound, by Fischer, Paterson, and Rackoff 
(1991), was super-polynomial in l/p and only handled 
the special case of k = 2 and n = 1. 

1 Introduction 

The problem of multiparty secret key exchange is an 
important problem in cryptography. Consider, for ex- 
ample, a certain government agency that handles secu- 
rity of information on a “community of interest” basis. 
For each project within the agency, a group of people 
are chosen to work on the project. We call this group 
a team. Teams form and dissolve as various projects 
are started and completed. All communication regard- 
ing the project is intended to be shared with those on 
the team, and to be kept secret from those outside the 
team. However, the security of the various communi- 
cation channels-the telephone, interoffice mail, elec- 
tronic mail, and face-to-face communication-is not 
guaranteed. Hence, each team that forms would like 
to exchange a secret key, which it can then use as a 
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part of some cryptographic protocol to securely send all 
further communication regarding the project. Another 
place where this problem may arise is in a distributed 
system, for example a computer network linking a cor- 
poration’s headquarters and branch offices. 

1.1 Secret Key Exchange More formally, we 
consider a multiparty protocol between a group of m 
players. The protocol of each player is publicly known, 
but each player is supplied with some initial private 
information before the protocol begins. The vector 
of initial values is chosen randomly from some known 
distribution, and in general the players’ random initial 
values are correlated. In addition, each player has a 
private independent random source. At some point 
in time, a team of k > 2 players PI through Pk is 
selected. The remaining (m - k) players are assumed 
to conspire against the team, possibly communicating 
among themselves via private channels. We treat them 
as a single computationally unlimited eavesdropper, 
Eve, who possesses the initial information of all of the 
conspirators and overhears all communication among 
the team members. 

An n-bit sequence I3 is a secret key if it satisfies 
agreement, secrecy, and uniformity. Agreement is met 
if each team player knows B. Secrecy is met if the 
eavesdropper’s probability of guessing B correctly is 
the same before and after hearing the communication 
between the team players. Uniformity requires that 
B has equal probability of being any one of the 2” 
possible n-bit sequences. Once obtained, the key can 
then be used for a variety of cryptographic purposes, 
for example, as the key in private key cryptosystems 
(cf. [DH76]). W e would like to know which distribu- 
tions of private initial values allow any team that forms 
to obtain an n-bit secret key. 

This framework is very general and admits the 
trivial solution in which each player is given a priori a 
secret key for each team to which the player might 
eventually belong. Any team that forms can use 
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the corresponding preassigned secret key, but since 
there is an exponential number of possible teams, the 
amount of initial information is exponential. Also, the 
structure of the initial random information is rather 
complicated. We desire instead correlated random 
variables that have a simple structure and a small 
amount of initial information. A familiar example 
of such correlated random variables is provided by 
ordinary card games in which players are dealt hands 
from a randomly shuffled deck of cards. By looking at 
her own cards, a player gains some information about 
the other players’ hands. Namely, she learns a set of 
cards that appear in no other player’s hand. Peter 
Winkler developed bidding conventions for the game of 
bridge whereby one player could send her partner secret 
information about her hand that was totally unrelated 
to the actual bid and completely undecipherable. to 
the opponents, even though the protocol was known 
to them [Fli81, WinBla, Win8lb, Win83]. Fischer, 
Paterson and Rackoff [FPRSl] carried this idea further, 
using deals of cards for secret bit transmission between 
two players. We consider secret bit exchange protocols 
based on such card games in the remainder of this 
paper (see also [FW92]). 

A deck D is a finite ordered set of elements called 
cards; a hand is a subset of D. A signature’ [ = 
(h, hz, . . .,ha;e), where k,hl,hz ,..., hk,e are non- 
negative integers, describes the sizes of the players’ 
hands. The deck is known to all players, as is 
the signature, but the actual cards in each player’s 
hand are private to that player. In a <-deal 6 = 
(Hl,H2,...,Hk;E), each team player Pi is given a 
hand Hi such that Hi C D and lHi[ = hi, and Eve 
is dealt a hand E such that E c D and e = IEI = 
d-Cf=,hi. The deal 6 is legal if Hl,Hz ,..., Hk,E 
partition D. If all k team players have the same hand 
size h in a signature, we write (h”; e). A protocol that 
always succeeds in obtaining a secret key at least n-bits 
long for all legal t-deals is said to perform n-bit secret 
key exchange for <. We also say such a protocol works 
fort* 

1.2 Results We present a protocol, the transfor- 
mation protocol, that performs n-bit secret key ex- 
change for teams of two players who each receive a fixed 
fraction /3 of the cards, provided the deck is sufficiently 
large. We show how to use the transformation proto- 
col to construct for any n > 1 and k 2 2, a protocol 
that performs n-bit secret key exchange for teams of k 
players who each receive a fixed fraction /3 of the cards, 

‘This term is borrowed from algebra, and is not intended to 
have any connection to digital signatures. 

again provided the deck is sufficiently large. Fischer, 
Paterson, and Rackoff [FPRSl] exhibit a protocol that 
solves the two player case for n = 1, but their required 
deck size grows super-polynomially in l/p. Our pro- 
tocol works for general n and arbitrarily large teams, 
and the required deck size is only O(n(l/p)2~71). 

The transformation protocol is presented in Sec- 
tion 2 and analyzed in Section 3. The analysis is baaed 
on a nontrivial potential argument and shows that the 
protocol works for [ whenever the potential of < is suf- 
ficiently large. 

Section 4 contains applications of the transfor- 
mation protocol. We show that there is a function 
ds(n,/?) = O(n(l//?)“.“) such that for any n 2 1 and 
0 < /? _< l/k, if d > do(n,/3) then the transforma- 
tion protocol performs n-bit secret bit exchange for 
the ([PdJ , [pd] ; d - 2 [/3dJ). Second, we show a gen- 
eral reduction of the multiparty case to the two player 
case. Applying this reduction to the transformation 
protocol yields a protocol that performs n-bit secret 
key exchange for teams of arbitrary size k, where each 
team player receives fraction /3 of the cards, provided 
the deck is sufficiently large. The required deck size 
is again only O(n(l//3)2.71). If we apply this to the 
case where the deck is initially divided evenly between 
m players, the deck size needed to guarantee that any 
team that forms will be able to obtain an n-bit secret 
key is O(nm2.71). 

1.3 Other Approaches The problem of secret key 
exchange has been considered by others in the context 
of public key cryptography (cf. [DH76, Mer78]). How- 
ever, there are several problems with public key cryp- 
tography. First, even if, for example, one way permu- 
tations are assumed to exist, this may not be useful, for 
Impagliazzo and Rudich [IR891 provide evidence that 
most of the standard techniques in cryptography can- 
not be used to construct a secret key exchange protocol 
from a one way permutation. Second, public key cryp- 
tography is based on unproven assumptions about the 
computational difficulty of certain problems. Even if 
public key cryptography is based on a problem that is 
actually asymptotically hard, it is not at all clear how 
to choose a key size in order to get the desired secu- 
rity. In the setting of multiparty protocols, there are 
further complications. If player A wants to send a mes- 
sage secretly to all the other players, she can encrypt 
it using each player’s public key and send the resulting 
encryptions. However, although each encryption by it- 
self gives no useful information to an eavesdropper, all 
of the encryptions taken together may divulge some 
information about the message. 

Our results are quite different in flavor from those 
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of public key cryptography and avoid the problems 
mentioned above. They are not based on computa- 
tional difficulty, for we place no computational limita- 
tions on our participants. In addition, we require that 
our protocols always work for a given signature, not 
just with high probability. Because we allow the eaves- 
dropper to be computationally unlimited, standard 
cryptographic techniques based on computational diffi- 
culty cannot be used. Furthermore, techniques such as 
those used by Maurer [MauSl] will not work, since we 
require the key obtained to be completely secret from 
Eve and known ezactly to all the team players, as pre- 
scribed by the secrecy and agreement conditions. In 
fact, a secret key exchange protocol is not possible in 
our model without the initial random values, for oth- 
erwise an eavesdropper could simulate any team player 
over all possible random choices and thereby learn B. 
Similarly, unless the initial random values are corre- 
lated, an eavesdropper can simulate any player over all 
random choices and all possible initial random values 
and learn B. 

2 The Protocol 
Consider a team of two players, Alice and Bob. Fix a 
signature [ = (a, 6; d - a - b) and a deck D, and let 
Alice and Bob be dealt a random t-deal 6 of D. A set 
of cards S s D is called an (s, i, $-portion (relative 
to 6) if ISI = s and S contains exactly i cards from 
Alice’s hand and exactly j cards from Bob’s hand. The 
remaining s - i-j cards belong to Eve. We sometimes 
refer to an (s, 1, 1)-portion as an s-portion, and to any 
(s, i, j)-portion simply as a portion. An (s, i, j)-portion 
is useful if i, j 3 1. 

An (s, i, j)-portion S is opaque if Eve does not 
know anything about the location of the cards in S 
that she does not hold, other than the information 
provided by the fact that S is an (s, i, j)-portion. More 
formally, given the information available to Eve, each 
arrangement of the i + j cards in S that Eve does not 
hold, in which Alice holds i of these cards and Bob 
holds the remaining j cards, is equally probable. 

A bit B is associated with any a-portion K. 
Namely, B = 0 if Alice holds the smaller card in K 
and B = 1 if Alice holds the larger card in K. If K is 
opaque and Alice and Bob know K is a 2-portion, then 
B is a l-bit secret key, since Eve considers Alice equally 
likely to hold either card and therefore considers it 
equally likely that B = 0 or B = 1. 

Our protocol, called the transformation protocol, 
maintains a collection C of pairwise disjoint, useful, 
opaque portions. The portions in C are common 
knowledge to Alice, Bob, and Eve at all times. The 
deck D is a (d, a, b)-portion relative to 6 since 6 is a 

(a,b;d-a - b)-deal. The initial collection Cc contains 
the single portion D. 

A step of the protocol modifies C by removing a set 
of one or more portions from C and then adding one 
or more new portions to C according to a rule called 
a transformation. A transformation is applicable to C 
if C contains portions satisfying the preconditions of 
the transformation. A collection C is terminal if no 
transformation is applicable to it. 

A sequence Cc,Ci,C2,. . . of collections of portions 
is called a trace from Cc if for each i >_ 1, Ci can result 
from Ci-r by some transformation. A trace is complete 
if either it is infinite, or it is finite and the last collection 
in the sequence is terminal. 

The protocol is to apply transformations to C until 
the resulting collection is terminal. Thus, a run of 
the transformation protocol generates a complete trace 
from the initial collection Cc. We show in Section 3 that 
every trace from a finite collection is finite. Hence every 
run of the protocol terminates with some collection 
C. Call the 2-portions in C, in lexicographic order, 
Sl,S2,...,Sn. Each Si provides a l-bit secret key 
Bi as described above. The l-bit secret keys are 
concatenated together to form a single n-bit secret key 
B1B2...B,,. 

The transformation protocol: 

1. C = {D} is the initial collection. 

2. While C is not terminal the following steps are 
repeated: 

(a) Alice randomly chooses an applicable trans- 
formation, and announces the transformation 
and the portions to which it applies. 

(b) The protocol specified below for the an- 
nounced transformation is carried out. 

3. The bits B1, . . . , B,, provided by the 2-portions 
Sl , . . . , S, (in lexicographic order) in C are con- 
catenated together to form the output sequence 
B1B2...B,. 

Note that if it is desirable to conserve communi- 
cation and randomness, the transformation chosen in 
Step 2a can be chosen by any prearranged determinis- 
tic function of the public information. 

The transformations are splitting and combining. 
Splitting replaces an (s, i, j)-portion in C with several 
smaller portions, each of which contains exactly one of 
Alice’s cards if i >_ j, and exactly one of Bob’s cards 
if i < j. Combining replaces two (s, 1, 1)-portions by a 
single (s’, 1, 1)-portion for some s’ < s. 

Splitting: An (s, i, j)-portion S in C can be split if 
i + j 2 3. If i 2 j, the splitting proceeds as described 
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below. If i < j, the roles of Alice and Bob are reversed. 

1. 

2. 

3. 

4. 

S is removed from C. 

Alice randomly partitions S into i sets, each of 
size [s/iJ or [s/z1 , such that she holds exactly one 
card in each set, and announces the sets.2 

Bob says how many cards he holds in each set 
announced by Alice. 

Each set in which Bob holds at least one card is 
added to C. 

Combining: Two (s, 1, 1)-portions Sr and S2 can be 
combined if s 1 3. 

Si and 5’2 are removed from C. 

Alice randomly chooses p E { 1,2}. Let q = 3 - p. 

Alice constructs and announces a new set T con- 
sisting of her card from S,, [s/3] - 1 randomly 
chosen cards that are not hers from S,, and ls/SJ 
randomly chosen cards that are not hers from S,. 

Bob announces how many cards he holds in T. 

(a) If Bob holds no cards in T, then Alice an- 
nounces the set difference S, - T, which is 
added to C. 

(b) If Bob holds one card in T, then T is added 
to c. 

(c) If Bob holds two cards in T, then Alice 
announces S, n T, which is added to C. 

LEMMA 2.1. Let C be a collection of disjoint, useful, 
opaque portions, and let C’ be an element in a trace 
from C. Then C’ is a collection of disjoint, useful, 
opaque portions. 

Proof. It suffices to show that each transformation 
preserves the disjointness, usefulness and opaqueness 
of the portions in a collection. Let C be a collection of 
disjoint, useful, opaque portions. 

Suppose an (s, i, j)-portion S in C is split. Split- 
ting preserves the disjointness property because S is 
removed and the new portions added are disjoint sub- 
sets of S. Each portion added to C is useful because, 
if i 2 j, then Alice holds exactly one card in each set 
she announces, and only those sets in which Bob holds 
at least one card are added. Similarly, if i < j, then 
Bob holds exactly one card and Alice holds at least one 
card in each portion added to C. To see that splitting 
produces only opaque portions, suppose that i 2 j, 

21n an abstract setting, the sets {z,y} and {y, z} are equal. 
In an actual implementation, to prevent the communication of a 
set from revealing which cards came from Alice’s hand, the set 
should be communicated in a canonical form. 

FISCHER AND WRIGHT 

and consider an (s’, 1, j/)-portion S’ that is added to 
C. Since S is opaque and Alice randomly chose the 
partition for S among all partitions in which she holds 
one card in each subset, Alice’s card is equally likely to 
be any of the j’ + 1 cards not held by Eve in S’, given 
the communication that takes place. 

Now consider the combining of two i-portions 
Sr and Sz, resulting in the portion S’. Combining 
preserves the disjointness property because all the 
elements in S’ are in either S1 or S2, both of which have 
been removed from C. To see that S’ is useful, we must 
consider the possible outcomes. Let p be as chosen by 
Alice in the process of combining, let q = 3 -p, and let 
T be the new set constructed by Alice. Then Alice and 
Bob both hold one card in each of S, and S,, and in 
particular, Alice holds one card in S, nT and one card 
in S, - T. If Bob holds no cards in T, Bob’s card in S, 
must lie in S, -T. Therefore S, -T, which is added to 
C, is useful. If Bob holds one card in T, then T, which 
is added to C, is useful. If Bob holds two cards in T, 
then one of them must lie in S, n T and one in S, n T. 
Therefore S, n T, which is added to C, is useful. 

To see that S’ is opaque, suppose Alice holds card 
x1 in Si and card xz in Sz, and Bob holds card 
yi in Si and card y2 in Sz. Then the sequence of 
communication taking place during the combining, as 
well as the resulting set added to C, is equally likely to 
occur in the symmetric deal where Alice holds y1 and 
yz and Bob holds ~1 and x2. n 

3 Analysis 
We use a “potential” argument to analyze how many 2- 
portions are produced by the transformation protocol. 
Given a collection C of useful portions, we define a 
quantity 4(C), called its potential. We show that if 
C’ results from C by any transformation, then 4 (C’) 2 
4 (C). Thus, if C’ results from C via any sequence of 
transformations, then 4 (C’) > 4 (C). Finally, we define 
a constant W, and we show that if 4 (C) > W + 2p, 
where p is the number of 2-portions in C, then at least 
one transformation is applicable to C. It follows from 
the above claims that if C is terminal and 4 (C) > W + 
2(n - 1) then the number of 2-portions in C is at least 
n. Every trace from a finite collection of portions is 
finite, since each transformation reduces the difference 
between total size of all portions and the number 
of portions. Thus every run of the transformation 
protocol terminates, and if a, b 1 1 and d 2 a + b, the 
transformation protocol performs [($ (CO) - W)/21-bit 
secret key exchange for (a, b; d - a - b), where CO is the 
initial collection. The remainder of this section defines 
4(S) and proves the above claims. 

The constant c = logs,, 2 = l/ log,(3/2) < 1.7096 
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is used throughout the analysis. Note that (2/3)-” = 2 
and 1 - l/c > 0. Given an (s, i, j)-portion S, we 
recursively define q5 (S) = q5 (s, i, j) = 

i 

2 ifs=2,i=j=l 
(s -2)-C ifs>3,i=j=l 
jq6([s/;I,l,l) ifi>j,i>2 
4 (s, j, i) ifi< j 

Hence, q5 (s, i, j) is symmetric in its last two arguments, 
and q5 (s, 1,l) is monotonically decreasing in s for all 
integers s 1 2. We extend the potential function to 
collections C of useful portions by defining 4 (C) = 

CSG 4 (3. 
FACT 3.1. Let y, z be integers, z # 0. Then [y/z] 5 
(y - q/z + 1. 

Proof. We have y = qz + P for integers q and r such 
thatO<r<z,so [y/z] =q+l<q+(r-l)/z+l= 
(qz + r - 1)/z + 1 = (y - 1)/z + 1. n 

In analyzing the splitting transformation, we will 
need the following lemma relating the potential of an 
s-portion to the potential of a [s/bl-portion. 

LEMMA 3.2. Let b be an integer such that 1 5 b 5 
s- 1. Then bq%(s,l,l) sq%([s/bl ,l,l). 

Proof. Let b be an integer such that 1 < b < s - 1. If 
b = 1, then trivially bq5(s, 1,l) = g([s/bl ,l,l). 

Otherwise, 2 5 b 5 s - 1, and thus q5 (s, 1,l) = 
(s - 2)+ and [s/b] 12. If [s/b1 = 2 then 

b4(s,l,l) = b(s-2)-” 

5 (s - l)(s -2)-C 

5 2(s - 2)(1-C) 

L 2 

= 4 ([fl Al) 
as desired. Otherwise, [s/b] 2 3, so 

bd(s,l,l) = b(s-22)+ 

Wlbl, Ll) = (rs/bl - 2)-' 
(3.1) 

(3.2) 

Since (l/c) - 1 < 0 < c, we have b(l/e)-l < 1 < blic. 
Also s - 1 > b since [s/b1 2 3, so 

b(s - 2)-’ = b((s - 1) - 1)-’ 

< b (b(l/c)-‘(s - 1) - 61/C) -’ 

= (t+y (3.3) 

By Fact 3.1, 

(q - 1>-‘5 ([fl -2)-c (3.4) 

Combining lines (3.1) through (3.4) yields the desired 
result. B 

LEMMA 3.3. Suppose C’ results from C by a splitting 
trunsformation. Then Q (Ct) 2 q5 (C). 

Proof. It suffices to show that the potential of the 
portion to be split is no more than the total potential 
of the resulting portions. Let S be an (s, Z, y)-portion, 
and suppose without loss of generality that z 1 y (the 
case z < y is symmetric). Let 5’1, Ss, . . . , St be the 
portions added to C’ as a result of splitting S, where 
Si is an (si, 1, bi)-portion. 

Since each Si was added to C’, it follows that 
1 2 bi 5 si - 1 and si 2 2. Also, si E {[S/Z] , [S/Z] }, 
SO 2 5 Si 5 [S/Z]. Thus, by the monotonicity of 
q5 (s, 1,1) and Lemma 3.2, 

bi4 (Ii1 ,l,l) I bi 4 (sip 191) 

Therefore, 

4(S) = 4(S,Z,Y) 

= Y4 (13 Al) 

= &bi4 (If1 ,l>l) 
i=l 

I &4(si,l,bi) ‘= 
L 

=&I 4 Si 

i=l 

as desired. n 

LEMMA 3.4. Suppose C’ results from C by a combining 
transformation. Then 4 (Ct) 2 4 (C). 

Proof. As before, we need only compare the potential 
of the portions that are combined to the potential of 
the resulting portion. 

Let Sr and Ss be s-portions, and suppose St is 
an St-portion resulting from combining Si and Ss. In 
order for combining to be possible, we must have s > 3. 
Hence 4 (Sl) + 4 (5’~) = 2(s - 2)-c 5 2. 

Let T be the new set constructed by Alice. Then 
ITI = 2 [s/31. If Bob holds no cards in T, then an 
(s - ls/3J)-P or ion is added to C. If Bob holds one t 
card in T, then a (2 [s/3])-portion is added to C. If 
Bob holds two cards in T, then a ([s/3J)-portion is 
added to C. In all cases, we have s’ 5 [2s/31. 
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4 C$, 
s’ = 2, then 4(S’) = 2, so 4 (Sl) + 4(&) 5 
as desired. Otherwise, 2 < s’ < [2s/3]. Using 

this and Fact 3.1, we have 

4(S’) = (s/-2)-C 

2 ([2s/3] - 2)-” 

2 (2s/3 + 2/3 - 2)-’ 

= 2(s-2)-” 

= 4(S1)+4(%) 

completing the proof. n 

Let W = C,“=,(s - 2)-c. Since c > 1, this series 
converges and W is finite. Numerical analysis shows 
that 2.0356 < W < 2.0358. Given a collection C, we 
define r(C) to be the number of P-portions in C. 

LEMMA 3.5. IfC is terminal, then 4 (C) 5 W +27r(C). 

Proof. Let C be a collection of portions such that 
4 (C) > W + 2n(C). We show that C is not terminal. 
Since 4 (C) > 0, C is nonempty. If C contains an (s, i, j)- 
portion such that i + j 2 3, then splitting is possible. 
Otherwise, each portion Si in C is an si-portion for 
some si 2 2. In order to satisfy 4 (C) > W + 27r(C), 
it must be the case that there are two s-portions in C 
for some s >_ 3, since W + 27r(C) is the potential of a 
collection containing w(C) 2-portions and one s-portion 
for every s 1 3. Thus combining can be applied. n 

LEMMA 3.6. Let C be a finite collection of useful por- 
tions. Then every trace from C is finite. 

Proof. For any collection C, let 

M(C) = C(lSl - 1) = c ISI - ICI 
SEC SEC 

Let C be a finite collection of useful portions, and 
suppose C’ results from C by any transformation. By 
Lemma 2.1, all portions in C’ are useful, so M(C) 2 0. 
If M(C) = 0, then C is empty, and therefore no 
transformations can be applied to C. Furthermore, 
M(C’) < M(C). T o see this, we consider splitting and 
combining separately. 

Suppose C’ results from C by a splitting transfor- 
mation of an (s, i, j)-portion S with i 2 i. (The case 
i < j is symmetric). Then Csec IS] > Csec, IS] and 
]C] 5 ]C’], since at least one set gets added. In or- 
der for S to be split, i + j 2 3, so i 1 2. Thus if 
Csec IS] = CSEC, IS], then ]C] < I@], since in this 
case all i > 2 sets announced by Alice are added to C’. 
Thus, M(C’) < M(C). 

If C’ results from C by a combining transformation, 
then ]C’] = ]C] - 1. Also CSEC, IS] 5 Csec IS] - 2 
since USEC s - usw S contains one card from each 

of Alice’s and Bob’s hand. Thus CSEC, IS] - IC’l 2 
Es@2 PI - ICI - 1, and thus M(C’) < M(C). 

Hence, M(C) is an upper bound on the length of 
any trace from C. n 

LEMMA 3.7. Let C be a terminal collection of useful 
potiions. If 4 (C) > W + 2(n - l), then r(C) 2 n. 

Proof. Let C be a terminal collection of useful portions 
such that 4 (C) > W + 2(rz - 1). Since C is terminal, 
Lemma 3.5 implies 4 (C) 5 W + 2a(C). Thus W + 
2(” - 1) < w + 27r(C), and hence r(C) > n - 1, so 
7r(C) 2 n. n 

THEOREM 3.8. Let a, b 2 1, d 2 a+b, and4(d, a, b) > 
w + 2(n - 1). Then the transformation protocol 
performs n-bit secret key exchange for (a, b; d - a - b). 

Proof. Assume the conditions of the theorem. Con- 
sider a run of the transformation protocol on a ran- 
dom (a, b; d - a - b)-deal. The initial collection Cc 
contains a single (d,a, b)-portion S. Thus 4 (Cc) = 
4 (d, a, b) > W + 2(n - 1). Since a, b > 1, S is use- 
ful. S is opaque because the deal is random. By 
Lemma 3.6, the run terminates with some terminal col- 
lection C’. By Lemmas 3.3 and 3.4, 4 (C’) 2 4(Ce). 
Thus 4 (C’) > W + 2 (n - 1). By Lemma 2.1, C’ is a 
collection of disjoint, useful, opaque portions. Hence 
by Lemma 3.7, r(C’) 2 n. Since, in particular, all the 
2-portions in C’ are opaque, the output sequence is a 
secret key of length at least n. n 

COROLLARY 3.9. Let a, b 2 1, d 2 a + b and n = 

l’(4(4a,b)- W/21. Th en the transformation proto- 
col performs n-bit secret key exchange for (a, b; d- a - 

b)- 

Proof. Assume the conditions of the corollary and let 
40 = 4 (d, a, b). Then n = [(40 - W)/Zl. By Fact 3.1, 
n 5 (40--W+1)/2. Thus W+2(n-1) _< 40-l < 4,~. 
Hence by Theorem 3.8, the transformation protocol 
performs n-bit secret key exchange, as desired. I 

4 Applications 
In this section, we present two applications of the 
transformation protocol. The first obtains a much 
improved bound for a problem studied in [FPRSl] 
in which each player holds a constant fraction of the 
cards. The second uses the transformation protocol as 
a building block for constructing a multiparty secret 
key exchange protocol. 

4.1 Two Players Each Holding a Fraction of 
the Cards We consider the situation in which each 
of two players receives a constant fraction ,0 of the 
cards in the deck, and the remainder go to Eve. This 
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situation arises naturally with ,0 = l/m, for example, 
in protocols where the deck is dealt out evenly to m 
players. We are interested in how large the deck must 
be in order for the transformation protocol to work in 
this situation. We use the following in our analysis. 

FACT 4.1. Let x be a positive integer and ,0 be any real 
number arch that px 2 1. Then [x/ [,BxJl < 2/p+ 1. 

Proof. Let e = Lpz]. Then 1 5 4 < px < ! + 1, 
so x < (1+ 1)/p and (e + 1)/e 6 2. Thus x/L 5 
(e-l-l)/(@) 5 2/p. It follows that lx/ [px]] = [s/q 5 
p/P1 < 2/P + 1. n 

The following shows that the transformation pro- 
tocol performs arbitrary n-bit secret key exchange for 
two players each holding a fraction p of the cards 
if the deck is sufficiently large. The required deck 
yy; is ,on;y O(n(l/P) (c+‘)), which is polynomial in 

mear in n. Recall that c = log,/Z 2 and 
W =an&‘?a(a - 2)-“, and let cl = 2(“+l) < 6.5411 
and c2 = (W - 2)/2 + 2+/cr. Calculation shows that 
0.0645 < c2 < 0.0647. 

THEOREM 4.2. Let 0 < p 5 l/2, n 1 1, and suppose 
that d 2 q(l/p) (‘+l)(n+cz). Then the transformation 
protocol performs n-bit secret key exchange for t = 
(lP4WJ;d-WdJ). 
Proof Let p, d, and t satisfy the conditions of the 
theorem. By Theorem 3.8, it suffices to show that 
P4 2 1, d L 2 1PdJ and 4(4lPdJ,lPdJ) > W+ 
2(n - 1). 

Since p < l/2, it follows that 2 [PdJ 2 2pd 5 d, as 
desired. Furthermore, (2p)-c 2 1 and 2/p 2 4. Since 
n + c2 2 1, using the bound on d and the definition of 
cl gives 

pd 2 c$“(n + ~2) 

222 
0 

c 

P 

So [PdJ > 1, as desired. 
We now establish that 4 (d, [PdJ , [PdJ) > W + 

2(n - 1). We begin by examining 4 ([d/ FdJl , 1,l). 
Note that we have [d/ [PdJl > d/@d = l/p 2 2. 
If [d/ PdJl = 2, then qS([d/ [PdJl ,l, 1) = 2 > 1 > 
3-” 1(2/P- 1)-C. If [d/ lpdJl > 2, then 

4(rd/ WJl ,Ll) = Udl WJl - ‘WC 
> (2/P- l)-c 

by Fact 4.1. Hence, in either case, Q (rd/ FdJl , 1,1) > 
(2/p - 1)-‘. Thus 

4 (4 l&J > WJ > = WJ 4(rd/ 1PdJl ,l,l) 
> (pd - 1)(2/p - l)-” (4.5) 

Using the bound on d and the definitions of cl and ~2, 
we get 

pd- 1 > clP-“(n+cz) - 1 

= cl/l-e n+- ( w-2+2-c -1 
- 

1 clpec (n+e) Cl 

> 

= (2/p)yw + 2(” - 1)) (4.6) 

Combining lines (4.5) and (4.6) yields 

2/P WWJUdJ) > - ( 1 VP- 1 
c (W + 2(” - 1)) 

> lV+2(n-1) 

Hence, by Theorem 3.8, the transformation protocol 
performs n-bit secret key exchange for <. I 

It was shown in [FPRSl] that secret bit transmis- 
sion is possible for two players each holding a fraction 
p of the cards, but the minimum deck size for the pro- 
tocol to work is super-polynomial in l/p. From Theo- 
rem 4.2 with n = 1, it follows that the transformation 
protocol can be used to solve this problem with a min- 
imum deck size that is only O((l/p)(c+l)). 

4.2 Multiparty Secret Key Exchange We re- 
duce the problem of multiparty n-bit secret key ex- 
change to the problem of 2-party n-bit secret key ex- 
change by showing how to use an arbitrary protocol P 
for the signature [ = (a, b; d - a - b) to construct a pro- 
tocolP’forthesignature[*=(hl,...,hk;d-xhi), 
where each hi must be sufficiently large. The construc- 
tion has the property that if P performs n-bit secret 
key exchange for t, then P* performs n-bit secret key 
exchange for t*. A similar construction appears in 
[FW92]. Applying this construction to the 2-player 
transformation protocol yields an efficient multiparty 
n-bit secret key exchange protocol. 

The main idea of this construction is that a subset 
of a team can sometimes carry out a protocol P, 
designed for signature E, when the actual signature 
is <‘. Let < = (h~,...,hk;d - Chi) and <* = 
(hi,..., hi.; d-x hf). The construction works if there 
is an injection u : (1,. . . , k} --+ { 1, . . . , Ic*} with the 
property that hi 5 h’, ij, for 1 5 i 5 k. Player PO(i) in 
P* plays the role of p ayer I Pi in P, using a randomly 
chosen subset Hi of size hi from her real hand HzCij. 
When carrying out P, she pretends that she holds only 
the cards in Hi. Players Pj for j not in the range of 
u do not participate. Thus, P runs just as it would 
for a t-deal, and Eve learns nothing in P* about the 
locations of any cards not in the simulated hands of 
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P, allowing those cards to be used later to carry out 
another protocol. 

THEOREM 4.3. Let n 2 1 and k 2 2, and let [ = 
(a, b; d-a-b) and <* = (hl, . . . , hk; d-C hi) SUCK that 
hl 1 a, hk 2 b, and hi > a + b for all 2 5 i 5 k - 1, 
and let P be a protocol that performs n-bit secret key 
exchange for t. Then there is a protocol P* that 
performs n-bit secret key exchange for <‘. 

Proof. Assume the conditions of the theorem. We 
construct a new protocol P* to perform n-bit, k- 
player secret key exchange. Each team player Pi for 
1 5 i 5 k - 1 randomly chooses a subset &’ containing 
a of her cards. Each team player Pi for 2 2 i 5 k 
randomly chooses a subset Hi containing b of her cards 
not in H;“. 

P* uses protocol P a total of k - 1 times. In the ith 
use, neighbors Pi and Pi+1 become the active players 
and participate to establish an n-bit secret key Xi that 
they share. Player Pi uses Hi” as her hand to play the 
role of Alice in P. Player Pi+i uses Hj+l as her hand 
to play the role of Bob in P. The other players do 
not participate. We call Hi” n Hi+l the current cards. 
During each use of P, all team players behave as if 
Eve holds all the cards except the current cards. Thus, 
Eve may learn, for example, that a card c is held by a 
non-active player, but she learns nothing about which 
non-active player holds z. Thus it is possible to use P 
again with different active players, provided that the 
new set of current cards is distinct from all previous 
such sets. 

After the k - 1 uses of P are completed, player 
PI becomes the leader and randomly chooses an n- 
bit string B to be the team’s secret key. The team 
transmits B secretly from player to player as follows 
until the whole team knows B. When Pi learns B, she 
sends Ei = B $ Xi to Pi+1 publicly. Pi+1 recovers B 
by computing Ei $ Xi. In this way, all players learn B 
while releasing no information about B to Eve. Hence, 
P* performs n-bit secret key exchange for <*. n 

We can apply Theorem 4.3 to the transformation 
protocol to obtain an n-bit, k-player secret key ex- 
change protocol that requires the deck size to be only 
linear in n and polynomial in ~/CU, where Q is the frac- 
tion of the deck held by each team player. Recall that 
cl = 2(“+‘) and c2 = (IV - 2)/2 + 2-“/cl. 

COROLLARY 4.4. Let k 2 2, 0 < CY 5 l/k, and 
suppose that d 2 q(2/(~) (C+1)(n+c2). Then there is an 

n-bit secret key exchange protocol for c* = (LadJ”; d - 

k IQ4 1. 
Proof. Let Q and d satisfy the conditions of the corol- 
lary, and let p = o/2. By Theorem 4.2, the transfor- 
mation protocol performs n-bit secret key exchange for 

([PdJ , lj3dJ ; d- 2 FdJ). Since 2 [PdJ 5 LadJ , the con- 
ditions of Theorem 4.3 are satisfied, and hence there is 
a protocol that performs n-bit secret key exchange for 
<** n 

COROLLARY 4.5. Assume m > 2 divides d, and let 
each of m players be dealt hands of size d/m from a 
deck of site d 1 cl(2m)(“+l)(n + ~2). Then for any 
team of size 2 < k 5 m that forms, there is a protocol 
that establishes an n-bit secret key for the team. 

5 Conclusions 
We have developed and analyzed the new transforma- 
tion protocol for secret key exchange using deals of 
cards. The protocol maintains a dynamically changing 
collection of portions. It is analyzed using a nontrivial 
potential argument. 

The transformation protocol is almost efficient 
enough to have practical applications. For example, 
consider the dynamic case of m players dealt hands of 
equal size. The initial deal of cards could be performed 
in a centralized, secure environment, and the hands of 
the players written to m portable mass storage media 
such as optical disks, one for each player. After the 
disks have been distributed, any subset of players can 
form a team and use the protocol to obtain a secret 
key. For m = 100 and n = 1000, Theorem 4.2 shows 
that a deck of size about 1.1 x 10” is sufficient. Each 
of the 100 hands can be encoded using roughly 10’ 
bytes (for example, by storing the differences between 
successive cards in the hand instead of absolute card 
values). Storing 100 Megabytes on an optical disk is 
easily within the capabilities of today’s technology. 

Naive implementation of our protocol requires a 
large number of rounds of communication, but many 
transformations can be applied in parallel, greatly 
increasing its efficiency. 
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