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Abstract. Using a random deal of cards to players and a computatio-
nally unlimited eavesdropper, all players wish to share a common one-bit
secret key which is information-theoretically secure from the eavesdrop-
per. This can be done by the so-called key set protocol. In this paper
we give a necessary and sufficient condition for a key set protocol to be
“optimal,” that is, to succeed always in sharing a one-bit secret key.

1 Introduction

Suppose that there are k (≥ 2) players P1, P2, · · · , Pk and a passive eavesdrop-
per, Eve, whose computational power is unlimited. All players wish to share a
common one-bit secret key that is information-theoretically secure from Eve. Let
C be a set of d distinct cards which are numbered from 1 to d. All cards in C are
randomly dealt to players P1, P2, · · · , Pk and Eve. We call a set of cards dealt to
a player or Eve a hand. Let Ci ⊆ C be Pi’s hand, and let Ce ⊆ C be Eve’s hand.
We denote this deal by C = (C1, C2, · · · , Ck;Ce). Clearly {C1, C2, · · · , Ck, Ce} is
a partition of set C. We write ci = |Ci| for each 1 ≤ i ≤ k and ce = |Ce|, where
|A| denotes the cardinality of a set A. Note that c1, c2, · · · , ck and ce are the sizes
of hands held by P1, P2, · · · , Pk and Eve respectively, and that d =

∑k
i=1 ci + ce.

We call γ = (c1, c2, · · · , ck; ce) the signature of deal C. In this paper we assume
that c1 ≥ c2 ≥ · · · ≥ ck; if necessary, we rename the players. The set C and
the signature γ are public to all the players and even to Eve, but the cards in
the hand of a player or Eve are private to herself, as in the case of usual card
games. This paper addresses protocols which make all the players share a com-
mon one-bit secret key information-theoretically securely using such a random
deal of cards [2,3,4,5,6,10]. A reasonable situation in which such protocols are
practically required is discussed in [4,6], and also the reason why we deal cards
even to Eve is found there.

We consider a graph called a key exchange graph, in which each vertex i
represents a player Pi and each edge (i, j) joining vertices i and j represents
a pair of players Pi and Pj sharing a one-bit secret key rij ∈ {0, 1}. Refer to
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[8] for the graph-theoretic terminology. A connected graph having no cycle is
called a tree. If the key exchange graph is a tree, then all the players can share
a common one-bit secret key r ∈ {0, 1} as follows: an arbitrary player chooses
a one-bit secret key r ∈ {0, 1}, and sends it to the rest of the players along
the tree; when player Pi sends r to player Pj along an edge (i, j) of the tree,
Pi computes the exclusive-or r ⊕ rij of r and rij and sends it to Pj , and Pj

obtains r by computing (r ⊕ rij) ⊕ rij . For k = 2, Fischer, Paterson and Rackoff
give a protocol to form a tree, i.e. a graph having exactly one edge, as the key
exchange graph by using a random deal of cards [2]. Fischer and Wright extend
this protocol for any k ≥ 2, and formalize a class of protocols called “key set
protocols,” a formal definition of which will be given in the succeeding section [3,
6]. We say that a “key set protocol” works for a signature γ if the protocol always
forms a tree as the key exchange graph for any deal C having the signature γ.

Let Γk be the set of all signatures of deals for k players, where the total
number d of dealt cards is not fixed but takes any value. Furthermore, let Γ be
the set of all signatures where the number k of players is taken over all values,
that is,

Γ =
∞⋃

k=2

Γk.

Define sets W and L as follows:

W = {γ ∈ Γ | there is a key set protocol working for γ}; and

L = {γ ∈ Γ | there is no key set protocol working for γ}.

Thus {W, L} is a partition of set Γ . For k = 2, i.e. γ ∈ Γ2, Fischer and Wright
give a simple necessary and sufficient condition for γ ∈ W [3]. For k ≥ 3, the
authors give a simple necessary and sufficient condition for γ ∈ W [10]. (These
necessary and sufficient conditions will be described in Section 2.5.)

One wishes to design a key set protocol which works for all signatures γ ∈ W ,
that is, always forms a tree as the key exchange graph for all deals C having any
signature γ ∈ W . Such a protocol is said to be optimal for the class of key
set protocols [3,6]. There exists an optimal key set protocol indeed: the “SFP
protocol” given by Fischer and Wright is an example of an optimal key set
protocol [3,6]. However, neither an optimal key set protocol other than the SFP
protocol nor a characterization of optimal key set protocols has been known so
far.

In this paper, using the condition for γ ∈ W in [10], we give a complete
characterization of optimal key set protocols, that is, we give a necessary and
sufficient condition for a key set protocol to be optimal. Using the characteriza-
tion, we can design many optimal key set protocols. Thus we show that not only
the SFP protocol but also many others are optimal. Using these optimal proto-
cols, one can produce trees of various shapes as a key exchange graph; some of
them would be appropriate for efficient broadcast of a secret message. For ex-
ample, one can produce a tree of a small radius, as we will show later in Section
4.
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2 Preliminaries

In this section we explain the “key set protocol” formalized by Fischer and
Wright, and present some of the known results on this protocol [2,3,6,10].

2.1 Key Set Protocol

We first define some terms. A key set K = {x, y} consists of two cards x and y,
one in Ci, the other in Cj with i 6= j, say x ∈ Ci and y ∈ Cj . We say that a
key set K = {x, y} is opaque if 1 ≤ i, j ≤ k and Eve cannot determine whether
x ∈ Ci or x ∈ Cj with probability greater than 1/2. Note that both players Pi

and Pj know that x ∈ Ci and y ∈ Cj . If K is an opaque key set, then Pi and
Pj can share a one-bit secret key rij ∈ {0, 1}, using the following rule agreed
on before starting a protocol: rij = 0 if x > y; rij = 1, otherwise. Since Eve
cannot determine whether rij = 0 or rij = 1 with probability greater than 1/2,
the secret key rij is information-theoretically secure. We say that a card x is
discarded if all the players agree that x has been removed from someone’s hand,
that is, x 6∈ (

⋃k
i=1 Ci) ∪ Ce. We say that a player Pi drops out of the protocol if

she no longer participates in the protocol. We denote by V the set of indices i of
all the players Pi remaining in the protocol. Note that V = {1, 2, · · · , k} before
starting a protocol.

The “key set protocol” has four steps as follows.

1. Choose a player Ps, s ∈ V , as a proposer by a certain procedure.
2. The proposer Ps determines in mind two cards x, y. The cards are randomly

picked so that x is in her hand and y is not in her hand, i.e. x ∈ Cs and
y ∈ (

⋃
i∈V −{s} Ci)∪Ce. Then Ps proposes K = {x, y} as a key set to all the

players. (The key set is proposed just as a set. Actually it is sorted in some
order, for example in ascending order, so Eve learns nothing about which
card belongs to Cs unless Eve holds y.)

3. If there exists a player Pt holding y, then Pt accepts K. Since K is an opaque
key set, Ps and Pt can share a one-bit secret key rst that is information-
theoretically secure from Eve. (In this case an edge (s, t) is added to the key
exchange graph.) Both cards x and y are discarded. Let Pi be either Ps or Pt

that holds the smaller hand; if Ps and Pt hold hands of the same size, let Pi

be the proposer Ps. Pi discards all her cards and drops out of the protocol.
Set V := V − {i}. Return to step 1.

4. If there exists no player holding y, that is, Eve holds y, then both cards x
and y are discarded. Return to step 1. (In this case no new edge is added to
the key exchange graph.)

These steps 1–4 are repeated until either exactly one player remains in the
protocol or there are not enough cards left to complete step 2 even if two or
more players remain. In the first case the key exchange graph becomes a tree.
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In the second case the key exchange graph does not become a connected graph
and hence does not become a tree.

Considering various procedures for choosing the proposer Ps in step 1, we
obtain the class of key set protocols, where all the procedures are functions Γk →
V .

2.2 Malicious Adversary

If a key set protocol works for a signature γ, then the key exchange graph must
become a tree for any deal C having the signature γ. Hence, whoever has the card
y contained in the proposed key set K = {x, y}, the key exchange graph should
become a tree. The malicious adversary determines who holds the card y. We
use a function A : Γk × V → V ∪ {e} to represent a malicious adversary, where
e is Eve’s index. The inputs to the function A(γ, s) are the current signature
γ ∈ Γk and the index s ∈ V of a proposer Ps chosen by the protocol. Its output
is either the index t of a player Pt remaining in the protocol or the index e of
Eve; A(γ, s) = t 6= e means that player Pt holds card y; and A(γ, s) = e means
that Eve holds card y.

From now on, we denote by γ = (c1, c2, · · · , ck; ce) the current signature,
and denote by γ′

(s,A) = (c′
1, c

′
2, · · · , c′

k′ ; c′
e) the resulting signature after executing

steps 1–4 under the assumption that Ps proposes a key set K = {x, y} and
y ∈ CA(γ,s). We sometimes write γ′ instead of γ′

(s,A) if it is clear from context.
Consider a signature γ = (8, 7, 6, 4, 4, 4, 3, 2, 1; 3) as an example. Then, as

illustrated in Fig. 1(a), the size of the hand of each player or Eve can be repre-
sented by white rectangles. For example, if the malicious adversary A satisfies
A(γ, 2) = A(γ, 3) = 1, then γ′

(2,A) = (7, 6, 4, 4, 4, 3, 2, 1; 3) as in Fig. 1(b), and
γ′
(3,A) = (7, 7, 4, 4, 4, 3, 2, 1; 3) as in Fig. 1(c). In Figs. 1(b) and (c), the shaded

rectangles correspond to the discarded cards.
If an optimal key set protocol chooses a proposer Ps for γ ∈ W , then γ′

(s,A) ∈
W for any malicious adversary A; for convenience sake any signature γ = (c1; ce)
with k = 1 is assumed to be in W .

It follows from the definition of a key set protocol that if two players Pi and
Pj hold hands of the same size, that is, ci = cj , then

∀A γ′
(i,A) ∈ W ⇐⇒ ∀A γ′

(j,A) ∈ W.

Hence, if there exist two or more players Pi with ci = cs (including the proposer
Ps), then one may assume without loss of generality that Ps has the largest
index among all these players. We call it Assumption 1 for convenience sake.
Similarly, if A(γ, s) = t 6= e and there exist two or more players Pi with ci = ct

and i 6= s (including Pt), then one may assume without loss of generality that
Pt has the largest index among all these players. We call it Assumption 2 for
convenience sake. Under the two assumptions above, γ′

(s,A) = (c′
1, c

′
2, · · · , c′

k′ ; c′
e)

satisfies c′
1 ≥ c′

2 ≥ · · · ≥ c′
k′ since γ satisfies c1 ≥ c2 ≥ · · · ≥ ck.
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Fig. 1. The alteration of a signature.

2.3 Feasible Players

Fischer and Wright define a “feasible” player for a proposer as follows [3,6]. Let
k ≥ 3. If ce ≥ 1, Pi with ci = 1 were chosen as a proposer, and A(γ, i) = e,
then Pi’s hand would become empty although she remains in the protocol, and
hence the key exchange graph would not become a tree. On the other hand, if
ce = 0, then A(γ, i) 6= e and hence the protocol appears to be able to choose Pi

with ci = 1 as a proposer; however, if A(γ, i) = j and cj = 1, then Pj ’s hand
would become empty and hence the key exchange graph would not become a
tree. Thus the protocol can choose Pi with ci = 1 as a proposer only if ce = 0
and cj ≥ 2 for every j such that 1 ≤ j ≤ k and j 6= i, that is, only if ce = 0,
i = k and ck−1 ≥ 2. Remember that c1 ≥ c2 ≥ · · · ≥ ck is assumed. Hence, we
say that a player Pi is feasible if the following condition (1) or (2) holds.

(1) ci ≥ 2.
(2) ce = 0, ci = 1 with i = k, and ck−1 ≥ 2.

Thus, if the hands of all the players remaining in a protocol are not empty,
i.e. ck ≥ 1, and the proposer Ps is feasible, then the hands of all the players
remaining in the protocol will not be empty at the beginning of the succeeding
execution of steps 1–4, i.e. c′

k′ ≥ 1. Note that there will not always exist a
feasible player at the beginning of the succeeding execution of steps 1–4 even if
the proposer Ps is feasible.

We define a mapping f from Γk to {0, 1, 2, · · · , k}, as follows: f(γ) = i if Pi

is the feasible player with the smallest hand (ties are broken by selecting the
player having the largest index); and f(γ) = 0 if there is no feasible player. For
example, if γ = (4, 3, 2, 2, 1, 1; 3), then f(γ) = 4. If γ = (4, 4, 3, 3, 1; 0), then
f(γ) = k = 5 because ce = 0, ck = 1 and ck−1 ≥ 2. If γ = (1, 1, 1; 2), then
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f(γ) = 0 because there is no feasible player. Hereafter we often denote f(γ)
simply by f and f(γ′) by f ′.

The following Lemma 1 immediately holds [3,10].

Lemma 1 ([3,10]) The following (a)–(d) hold.

(a) If γ ∈ W , then ck ≥ 1 [3].
(b) If k ≥ 3 and γ ∈ W , then f ≥ 1 [3].
(c) If ck ≥ 1, then ci = 1 for every i such that f + 1 ≤ i ≤ k [10].
(d) If f ≥ 1 and cf = 1, then f = k, ck = 1, ck−1 ≥ 2, ce = 0, and γ ∈ W [3].

2.4 SFP Protocol

Fischer and Wright give the SFP (smallest feasible player) protocol as a key
set protocol [3,6]. The SFP protocol always chooses the feasible player with the
smallest hand as a proposer, that is, chooses the proposer Ps as follows:

s =
{

f(γ) if 1 ≤ f(γ) ≤ k;
1 if f(γ) = 0.

Fischer and Wright show that the SFP protocol is optimal [3,6].

Theorem 2 ([3,6]) The SFP protocol is optimal.

Not only the SFP protocol but also many other key set protocols are optimal.
This paper provides a complete characterization of optimal key set protocols.

2.5 Necessary and Sufficient Condition for γ ∈ W

For k = 2, the following Theorem 3 provides a necessary and sufficient condition
for γ ∈ W [3].

Theorem 3 ([3]) Let k = 2. Then γ ∈ W if and only if c2 ≥ 1 and c1 + c2 ≥
ce + 2.

For k = 3, the following Theorem 4 provides a necessary and sufficient con-
dition for γ ∈ W [10].

Theorem 4 ([10]) Let k = 3. Then γ ∈ W if and only if c3 ≥ 1 and c1 + c3 ≥
ce + 3.

For k ≥ 4, the following Theorem 5 provides a necessary and sufficient con-
dition for γ ∈ W [10]. Hereafter let B = {i ∈ V | ci = 2}, and let b = b|B|/2c.
Theorem 5 ([10]) Let k ≥ 4, ck ≥ 1 and f ≥ 1. Then γ ∈ W if and only if

k∑
i=1

max{ci − h+, 0} ≥ f̃ , (1)
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where
f̄ = f − δ, (2)

f̃ = f̄ − 2ε, (3)

h = ce − ck + k − f̄ , (4)

h+ = h + ε, (5)

δ =


0 if f = 1;
1 if 2 ≤ f ≤ k − 1;
2 if f = k and ck−1 ≥ ck + 1; and
3 if f = k and ck−1 = ck,

(6)

and

ε =


max{min{c2 − h, b}, 0} if 5 ≤ f ≤ k − 1;
max{min{c2 − h, b − 1}, 0} if 5 ≤ f = k and ce ≥ 1; and
0 otherwise.

(7)

For example, one can observe a signature γ = (8, 7, 6, 4, 4, 4, 3, 2, 1; 3) (see
Fig. 1(a)) satisfies Eq. (1) in Theorem 5 as follows. The signature γ satisfies
k = 9 and f = 8. Thus by Eq. (6) δ = 1. Since B = {8}, b = 0 and hence by
Eq. (7) ε = 0. Thus, by Eqs. (2) and (3) f̃ = f̄ = 8 − 1 = 7, and by Eqs. (4) and
(5) h+ = h = 3 − 1 + 9 − 7 = 4. Therefore,

k∑
i=1

max{ci − h+, 0} = 4 + 3 + 2 = 9 > 7 = f̃ ,

and hence the signature γ satisfies Eq. (1). (Note that
∑k

i=1 max{ci − h+, 0}
is equal to the number of rectangles above the dotted line in Fig. 1(a).) Thus
γ ∈ W .

Eq. (1) looks in appearance to be similar to the condition for a given degree
sequence to be “graphical” [1,7,8,11].

Since c1 ≥ c2 ≥ · · · ≥ ck is assumed, Eq. (1) is equivalent to

f̃∑
i=1

max{ci − h+, 0} ≥ f̃ (8)

where the summation is taken over all i, 1 ≤ i ≤ f̃ , although the summation in
Eq. (1) is taken over all i, 1 ≤ i ≤ k [10].

We define δ′, ε′, b′, f̄ ′, f̃ ′, h′, h+′ and B′ for γ′ as we did for γ.

3 Main Results

In this section we give a complete characterization of optimal key set protocols.
We first define some terms in Section 3.1, and then give the characterization in
Section 3.2.
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3.1 Definition of Selectable Players

In this subsection we define a “selectable” player that can be chosen as a proposer
by an optimal key set protocol. We will give a complete characterization of “sel-
ectable” players in the succeeding subsection. The characterization immediately
provides a complete characterization of optimal key set protocols.

The SFP protocol, which always chooses the feasible player Pf with the
smallest hand, is optimal. However, a key set protocol which chooses an arbitrary
feasible player is not necessarily optimal. We define a “selectable” player as
follows.

Definition 6 We say that a player Pi is selectable for γ if γ′
(i,A) ∈ W for any

malicious adversary A.

When γ ∈ W , the proposer chosen by an optimal key set protocol is a
selectable player, of course. Since the SFP protocol is optimal, Pf is a selectable
player if γ ∈ W .

Definition 6 implies that γ ∈ W if and only if there exists at least one
selectable player. In other words, γ ∈ L if and only if there exists no selectable
player.

Furthermore, a key set protocol is optimal if and only if the protocol always
chooses a selectable player as a proposer whenever such a player exists. Thus, in
the remainder of the paper, we characterize the set of all selectable players.

3.2 Characterization of Selectable Players

In this subsection we give a necessary and sufficient condition for a player to be
selectable.

If γ ∈ L, then there is no selectable player. Therefore it suffices to obtain a
necessary and sufficient condition for a player to be selectable only if γ ∈ W .

We first characterize the selectable players for k = 2 as in the following
Theorem 7.

Theorem 7 Let k = 2 and γ ∈ W . Then a player Pi is selectable if and only if
ci ≥ 2 or ce = 0.

Proof. Let k = 2 and γ ∈ W . By Lemma 1(a) c2 ≥ 1.
We first prove the necessity. Suppose for a contradiction that ci = 1 and ce ≥

1 although Pi is selectable. Then one may assume that i = 2 by Assumption 1
for convenience sake when Pi is chosen as a proposer. Since γ′

(2,A) = (c1, 0; ce−1)
for an adversary A such that A(γ, 2) = e, we have γ′

(2,A) ∈ L by Lemma 1(a).
Thus P2, i.e. Pi, is not selectable, a contradiction.

We next prove the sufficiency. Assume that ci ≥ 2 or ce = 0. Then it suffices
to show that γ′

(i,A) ∈ W for any adversary A. There are the following two cases
to consider.
Case 1: A(γ, i) 6= e.

In this case γ′ satisfies k′ = 1 and hence γ′ ∈ W .



Characterization of Optimal Key Set Protocols 281

Case 2: A(γ, i) = e.
In this case ce ≥ 1, and hence ci ≥ 2 because we assumed that ci ≥ 2 or

ce = 0. If i = 1 and c1 ≥ c2 + 1, then γ′ = (c1 − 1, c2; ce − 1); otherwise,
γ′ = (c1, c2 − 1; ce − 1). Thus, in either case, c′

1 + c′
2 = (c1 + c2) − 1 and

c′
e = ce − 1. On the other hand, since γ ∈ W , by Theorem 3 c1 + c2 ≥ ce + 2.

Therefore c′
1 + c′

2 ≥ (ce + 2) − 1 = ce + 1 = c′
e + 2. Furthermore, since ci ≥ 2,

c′
2 ≥ 1. Thus, by Theorem 3 γ′ ∈ W .

We next characterize the selectable players for k = 3. It has been known that,
if ck ≥ 1 and c1 + ck ≥ ce + k, then any key set protocol choosing an arbitrary
feasible player as a proposer works for γ [3,6]; thus the following Lemma 8
immediately holds.

Lemma 8 Let ck ≥ 1 and c1 + ck ≥ ce + k. Then every player Pi such that
1 ≤ i ≤ f is selectable.

Furthermore, it is obvious that any non-feasible player is not selectable when
k ≥ 3; thus we have the following Lemma 9.

Lemma 9 Let k ≥ 3. If a player Pi is selectable, then 1 ≤ i ≤ f .

By using Theorem 4, Lemmas 8 and 9, one can easily prove that the selectable
players for k = 3 are characterized as in the following Theorem 10.

Theorem 10 Let k = 3 and γ ∈ W . Then a player Pi is selectable if and only
if 1 ≤ i ≤ f .

Proof. Let k = 3 and γ ∈ W . Then by Theorem 4 c3 ≥ 1 and c1 + c3 ≥
ce +3. Thus Lemma 8 implies the sufficiency. Furthermore Lemma 9 implies the
necessity.

We finally characterize the selectable players for k ≥ 4. Before giving the
characterization, we first give some definitions.

In a key set protocol, for every i, j ∈ V such that i 6= j and ci = cj ,

Pi is selectable ⇐⇒ Pj is selectable.

Thus, if there exist two or more players holding hands of the same size, then it
suffices to determine whether an arbitrary player among such players is selectable
or not. For example, if γ = (8, 7, 6, 4, 4, 4, 3, 2, 1; 3), then one can choose P6 as a
“representative” player among the three players P4,P5 and P6 who have hands
of size 4. As in this example, we choose the player with the largest index among
all the players holding hands of the same size as a “representative” player, and
determine whether the chosen “representative” player is selectable or not. Let
Vr be the set of indices of all the “representative” players. That is,

Vr = {i ∈ V | i = maxX and X ∈ V/R},
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where V/R is the quotient set of V under the equivalence relation R = {(i, j) ∈
V × V | ci = cj}. For example, Vr = {1, 2, 3, 6, 7, 8, 9} for the above signature γ.
It suffices to give a necessary and sufficient condition for a player Pi, i ∈ Vr, to
be selectable. Of course, such a necessary and sufficient condition immediately
yields a complete characterization of all selectable players (whose indices are not
necessarily in Vr).

Let Pfm
be the player who holds the hand of the same size as Pf and has

the smallest index, that is,

fm = min{i ∈ V | ci = cf}.

From now on we define

M =
k∑

j=1

max{cj − h+, 0}.

Note that M is the same as the left side of Eq. (1) in Theorem 5. We define M ′

for γ′ as we did for γ.
Define ε̄ by the following Eq. (9), which is obtained by replacing c2 with c3

in Eq. (7):

ε̄ =


max{min{c3 − h, b}, 0} if 5 ≤ f ≤ k − 1;
max{min{c3 − h, b − 1}, 0} if 5 ≤ f = k and ce ≥ 1; and
0 otherwise.

(9)

Since c3 ≤ c2, Eqs. (7) and (9) imply

0 ≤ ε̄ ≤ ε. (10)

Furthermore, define Conditions 1 and 2 as follows.
(Condition 1)

5 ≤ f = k and ck−2 = ck−1 = ck + 1.

(Condition 2)
cfm−2 = cfm−1 = 3, |B| is an odd number, and the following (i) or (ii) holds.

(i) 6 ≤ f ≤ k − 1 and c2 − h ≥ b + 1.
(ii) 6 ≤ f = k, ce ≥ 1, b ≥ 1 and c2 − h ≥ b.

Define λ as follows:

λ =


2 if Condition 1 holds;
3 if Condition 2 holds; and
0 otherwise.

(11)

Finally, define ε̃ as follows:

ε̃ =
{

max{min{c2 − h − 1, b − 1}, 0} if f ≥ 8, ck = 1 and λ = 2; and
0 otherwise.

(12)

We are now ready to give a complete characterization of the selectable players
for k ≥ 4 as in the following Theorem 11.
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Theorem 11 Let k ≥ 4 and γ ∈ W . Then a player Pi such that i ∈ Vr is
selectable if and only if 1 ≤ i ≤ f and

c2 − h+ ≤ M − f̃ − (ε − ε̄) if i ≤ 2;∑f̃−λ−2̃ε
j=1 max{cj − (h+ + ε̃ + 1), 0} ≥ f̃ − λ − 2ε̃

if i = fm − 1 ≥ 4 and λ 6= 0; and

ci − h+ ≤ M − f̃ otherwise.

(13)

If (i) i ≤ 2 and ε − ε̄ = 0, (ii) i = 3, or (iii) i ≥ 4 and i 6= fm − 1 or λ = 0,
then Eq. (13) in Theorem 11 becomes{

c2 − h+ ≤ M − f̃ if i ≤ 2; and

ci − h+ ≤ M − f̃ if i ≥ 3.
(14)

Note that the most of signatures satisfy ε−ε̄ = λ = 0 and that very few signatures
satisfy ε − ε̄ ≥ 1 or λ 6= 0.

Consider the signature γ = (8, 7, 6, 4, 4, 4, 3, 2, 1; 3) as an example again (see
Fig. 1(a)). The signature γ satisfies ε = 0 as mentioned in Section 2.5, and hence
by Eq. (10) ε− ε̄ = 0. The signature γ does not satisfy Condition 1. Furthermore,
since f = fm = 8, we have cfm−2 = 4 6= 3 and hence Condition 2 does not hold.
Therefore, by Eq. (11) λ = 0. In addition, since the signature γ satisfies f = 8,
M = 9, f̃ = 7 and h+ = 4 as mentioned in Section 2.5, we have M − f̃ = 2.
Therefore, Eq. (13) in Theorem 11, i.e. Eq. (14), implies that all the selectable
players are the six players P3,P4,P5,P6,P7 and P8. These six players are the
feasible players holding the hands whose sizes do not exceed the solid line in
Fig. 1(a).

We now intuitively explain the correctness of Theorem 11. For simplicity, let
ε − ε̄ = λ = 0, and consider a player Pi such that i ≥ 2. Theorem 5 implies
that a necessary and sufficient condition for γ ∈ W is that M ≥ f̃ , i.e. there
are f̃ or more rectangles above the dotted line in Fig. 1(a). Thus, a signature
γ ∈ W has M − f̃ “spare” rectangles. That is, even if one removes at most
M − f̃ rectangles above the dotted line, γ still remains in W , but if one removed
(M − f̃) + 1 or more rectangles above the dotted line, then γ would be in L.
Further, in order for a player Pi to be selectable, there must exist at least f̃ ′

rectangles above the dotted line in the figure of γ′
(i,A) (e.g. Fig. 1(b) or (c)) for

any malicious adversary A. For some adversary A, the number of the rectangles
above the dotted line decreases by 1 + (ci − h+) when the proposer is Pi, as one
can immediately observe from Fig. 1(b) or (c). Note that these 1 + (ci − h+)
rectangles are lightly shaded in Figs. 1(b) and (c). Furthermore, since the number
of the feasible players decreases by exactly one, we have f̃ ′ = f̃ − 1. Hence, if
ci − h+ were greater than the number M − f̃ of the “spare” rectangles, then
M ′ = M − {1 + (ci − h+)} < f̃ − 1 = f̃ ′ and hence γ′ would be in L. Therefore,
a player Pi such that ci − h+ > M − f̃ is not selectable. On the other hand, if
ci − h+ ≤ M − f̃ , then γ′ will still remain in W , and hence a player Pi such
that ci − h+ ≤ M − f̃ is selectable. This is the intuitive reason why Theorem 11
holds.
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Due to the page limitation, we cannot include a proof of Theorem 11 in this
extended abstract; see [9].

4 Conclusion

A key set protocol is determined by giving a procedure for choosing a proposer.
In this paper, we defined a player to be selectable if the player can be chosen as
a proposer by an optimal key set protocol, and gave a complete characterization
of such selectable players in Theorem 11. Thus we succeeded in characterizing
the set of all optimal key set protocols.

Using Theorem 11, one can efficiently find all selectable players in time O(k).
Let Pj be the selectable player having the smallest index j. Then one may
intuitively expect that all players Pi such that j ≤ i ≤ f are selectable. However,
it is surprisingly not the case. Theorem 11 implies that all the players such that
j ≤ i ≤ f and ci 6= cfm−1 are selectable but Pfm−1 may or may not be selectable.
Consider a signature γ = (5, 5, 5, 4, 4, 3, 3, 2, 1; 2) as an example. Then γ satisfies
f = 8, fm − 1 = 7, λ = 3, h+ = 3, M = 8, ε = ε̄ = ε̃ = 0 and f̃ = 7. Thus
Eq. (13) in Theorem 11 becomes

c2 − 3 ≤ 1 if i ≤ 2;∑4
`=1 max{c` − 4, 0} ≥ 4 if i = 7; and

ci − 3 ≤ 1 otherwise.

Therefore, P7 is not selectable, and all the selectable players are the three play-
ers P4,P5 and P8. As in this example, the indices of selectable players are not
necessarily consecutive numbers.

Using the characterization of selectable players, one can design many optimal
key set protocols. Assume that c1 = c2 = · · · = ck and γ ∈ W . Then in most
cases the SFP protocol forms a spanning path of length k, i.e. a tree of radius
bk/2c, as the key exchange graph. On the other hand, using various optimal key
set protocols, one can produce trees of various shapes as a key exchange graph,
some of which would be appropriate for efficient broadcast of a secret message.
For example, consider an optimal key set protocol which always chooses, as a
proposer, the selectable player holding the largest hand; such a protocol forms
a tree of a smaller radius than bk/2c. Furthermore, we can choose the selectable
player having the largest degree as a proposer and modify step 3 of the key set
protocol in a way that either Ps or Pt who has the smaller degree drops out
of the protocol whenever the resulting signature remains in W ; such a protocol
forms a tree of much smaller radius, especially when c1 = c2 = · · · = ck is large.
We have verified these facts by extensive computer simulation.

This paper addresses only the key set protocol, which establishes a one-bit
secret key. On the other hand, the “transformation protocol” given by Fischer
and Wright [4] establishes an n-bit secret key. For a signature γ = (3, 2; 4) ∈ L,
any key set protocol does not work for γ, but the transformation protocol always
establishes a one-bit secret key for γ. However, for a signature γ = (4, 4, 4, 4; 4) ∈
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W , any optimal key set protocol works for γ, but the transformation protocol
cannot establish a one-bit secret key for γ. Thus a protocol entirely superior to
the key set protocol has not been known.
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